| /* | 
 |  *  kernel/cpuset.c | 
 |  * | 
 |  *  Processor and Memory placement constraints for sets of tasks. | 
 |  * | 
 |  *  Copyright (C) 2003 BULL SA. | 
 |  *  Copyright (C) 2004-2007 Silicon Graphics, Inc. | 
 |  *  Copyright (C) 2006 Google, Inc | 
 |  * | 
 |  *  Portions derived from Patrick Mochel's sysfs code. | 
 |  *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
 |  * | 
 |  *  2003-10-10 Written by Simon Derr. | 
 |  *  2003-10-22 Updates by Stephen Hemminger. | 
 |  *  2004 May-July Rework by Paul Jackson. | 
 |  *  2006 Rework by Paul Menage to use generic cgroups | 
 |  *  2008 Rework of the scheduler domains and CPU hotplug handling | 
 |  *       by Max Krasnyansky | 
 |  * | 
 |  *  This file is subject to the terms and conditions of the GNU General Public | 
 |  *  License.  See the file COPYING in the main directory of the Linux | 
 |  *  distribution for more details. | 
 |  */ | 
 |  | 
 | #include "cgroup-internal.h" | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/err.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/fs_context.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/deadline.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/security.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/string.h> | 
 | #include <linux/time.h> | 
 | #include <linux/time64.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/sched/isolation.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/wait.h> | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); | 
 | DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); | 
 |  | 
 | /* See "Frequency meter" comments, below. */ | 
 |  | 
 | struct fmeter { | 
 | 	int cnt;		/* unprocessed events count */ | 
 | 	int val;		/* most recent output value */ | 
 | 	time64_t time;		/* clock (secs) when val computed */ | 
 | 	spinlock_t lock;	/* guards read or write of above */ | 
 | }; | 
 |  | 
 | struct cpuset { | 
 | 	struct cgroup_subsys_state css; | 
 |  | 
 | 	unsigned long flags;		/* "unsigned long" so bitops work */ | 
 |  | 
 | 	/* | 
 | 	 * On default hierarchy: | 
 | 	 * | 
 | 	 * The user-configured masks can only be changed by writing to | 
 | 	 * cpuset.cpus and cpuset.mems, and won't be limited by the | 
 | 	 * parent masks. | 
 | 	 * | 
 | 	 * The effective masks is the real masks that apply to the tasks | 
 | 	 * in the cpuset. They may be changed if the configured masks are | 
 | 	 * changed or hotplug happens. | 
 | 	 * | 
 | 	 * effective_mask == configured_mask & parent's effective_mask, | 
 | 	 * and if it ends up empty, it will inherit the parent's mask. | 
 | 	 * | 
 | 	 * | 
 | 	 * On legacy hierachy: | 
 | 	 * | 
 | 	 * The user-configured masks are always the same with effective masks. | 
 | 	 */ | 
 |  | 
 | 	/* user-configured CPUs and Memory Nodes allow to tasks */ | 
 | 	cpumask_var_t cpus_allowed; | 
 | 	cpumask_var_t cpus_requested; | 
 | 	nodemask_t mems_allowed; | 
 |  | 
 | 	/* effective CPUs and Memory Nodes allow to tasks */ | 
 | 	cpumask_var_t effective_cpus; | 
 | 	nodemask_t effective_mems; | 
 |  | 
 | 	/* | 
 | 	 * CPUs allocated to child sub-partitions (default hierarchy only) | 
 | 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus | 
 | 	 * - effective_cpus and subparts_cpus are mutually exclusive. | 
 | 	 * | 
 | 	 * effective_cpus contains only onlined CPUs, but subparts_cpus | 
 | 	 * may have offlined ones. | 
 | 	 */ | 
 | 	cpumask_var_t subparts_cpus; | 
 |  | 
 | 	/* | 
 | 	 * This is old Memory Nodes tasks took on. | 
 | 	 * | 
 | 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. | 
 | 	 * - A new cpuset's old_mems_allowed is initialized when some | 
 | 	 *   task is moved into it. | 
 | 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change | 
 | 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and | 
 | 	 *   then old_mems_allowed is updated to mems_allowed. | 
 | 	 */ | 
 | 	nodemask_t old_mems_allowed; | 
 |  | 
 | 	struct fmeter fmeter;		/* memory_pressure filter */ | 
 |  | 
 | 	/* | 
 | 	 * Tasks are being attached to this cpuset.  Used to prevent | 
 | 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). | 
 | 	 */ | 
 | 	int attach_in_progress; | 
 |  | 
 | 	/* partition number for rebuild_sched_domains() */ | 
 | 	int pn; | 
 |  | 
 | 	/* for custom sched domain */ | 
 | 	int relax_domain_level; | 
 |  | 
 | 	/* number of CPUs in subparts_cpus */ | 
 | 	int nr_subparts_cpus; | 
 |  | 
 | 	/* partition root state */ | 
 | 	int partition_root_state; | 
 |  | 
 | 	/* | 
 | 	 * Default hierarchy only: | 
 | 	 * use_parent_ecpus - set if using parent's effective_cpus | 
 | 	 * child_ecpus_count - # of children with use_parent_ecpus set | 
 | 	 */ | 
 | 	int use_parent_ecpus; | 
 | 	int child_ecpus_count; | 
 | }; | 
 |  | 
 | /* | 
 |  * Partition root states: | 
 |  * | 
 |  *   0 - not a partition root | 
 |  * | 
 |  *   1 - partition root | 
 |  * | 
 |  *  -1 - invalid partition root | 
 |  *       None of the cpus in cpus_allowed can be put into the parent's | 
 |  *       subparts_cpus. In this case, the cpuset is not a real partition | 
 |  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set | 
 |  *       and the cpuset can be restored back to a partition root if the | 
 |  *       parent cpuset can give more CPUs back to this child cpuset. | 
 |  */ | 
 | #define PRS_DISABLED		0 | 
 | #define PRS_ENABLED		1 | 
 | #define PRS_ERROR		-1 | 
 |  | 
 | /* | 
 |  * Temporary cpumasks for working with partitions that are passed among | 
 |  * functions to avoid memory allocation in inner functions. | 
 |  */ | 
 | struct tmpmasks { | 
 | 	cpumask_var_t addmask, delmask;	/* For partition root */ | 
 | 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */ | 
 | }; | 
 |  | 
 | static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) | 
 | { | 
 | 	return css ? container_of(css, struct cpuset, css) : NULL; | 
 | } | 
 |  | 
 | /* Retrieve the cpuset for a task */ | 
 | static inline struct cpuset *task_cs(struct task_struct *task) | 
 | { | 
 | 	return css_cs(task_css(task, cpuset_cgrp_id)); | 
 | } | 
 |  | 
 | static inline struct cpuset *parent_cs(struct cpuset *cs) | 
 | { | 
 | 	return css_cs(cs->css.parent); | 
 | } | 
 |  | 
 | /* bits in struct cpuset flags field */ | 
 | typedef enum { | 
 | 	CS_ONLINE, | 
 | 	CS_CPU_EXCLUSIVE, | 
 | 	CS_MEM_EXCLUSIVE, | 
 | 	CS_MEM_HARDWALL, | 
 | 	CS_MEMORY_MIGRATE, | 
 | 	CS_SCHED_LOAD_BALANCE, | 
 | 	CS_SPREAD_PAGE, | 
 | 	CS_SPREAD_SLAB, | 
 | } cpuset_flagbits_t; | 
 |  | 
 | /* convenient tests for these bits */ | 
 | static inline bool is_cpuset_online(struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); | 
 | } | 
 |  | 
 | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_mem_exclusive(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_mem_hardwall(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_MEM_HARDWALL, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_sched_load_balance(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_memory_migrate(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_spread_page(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_SPREAD_PAGE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_spread_slab(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_SPREAD_SLAB, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_partition_root(const struct cpuset *cs) | 
 | { | 
 | 	return cs->partition_root_state > 0; | 
 | } | 
 |  | 
 | static struct cpuset top_cpuset = { | 
 | 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | | 
 | 		  (1 << CS_MEM_EXCLUSIVE)), | 
 | 	.partition_root_state = PRS_ENABLED, | 
 | }; | 
 |  | 
 | /** | 
 |  * cpuset_for_each_child - traverse online children of a cpuset | 
 |  * @child_cs: loop cursor pointing to the current child | 
 |  * @pos_css: used for iteration | 
 |  * @parent_cs: target cpuset to walk children of | 
 |  * | 
 |  * Walk @child_cs through the online children of @parent_cs.  Must be used | 
 |  * with RCU read locked. | 
 |  */ | 
 | #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\ | 
 | 	css_for_each_child((pos_css), &(parent_cs)->css)		\ | 
 | 		if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) | 
 |  | 
 | /** | 
 |  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants | 
 |  * @des_cs: loop cursor pointing to the current descendant | 
 |  * @pos_css: used for iteration | 
 |  * @root_cs: target cpuset to walk ancestor of | 
 |  * | 
 |  * Walk @des_cs through the online descendants of @root_cs.  Must be used | 
 |  * with RCU read locked.  The caller may modify @pos_css by calling | 
 |  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the | 
 |  * iteration and the first node to be visited. | 
 |  */ | 
 | #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\ | 
 | 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\ | 
 | 		if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) | 
 |  | 
 | /* | 
 |  * There are two global locks guarding cpuset structures - cpuset_mutex and | 
 |  * callback_lock. We also require taking task_lock() when dereferencing a | 
 |  * task's cpuset pointer. See "The task_lock() exception", at the end of this | 
 |  * comment. | 
 |  * | 
 |  * A task must hold both locks to modify cpusets.  If a task holds | 
 |  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it | 
 |  * is the only task able to also acquire callback_lock and be able to | 
 |  * modify cpusets.  It can perform various checks on the cpuset structure | 
 |  * first, knowing nothing will change.  It can also allocate memory while | 
 |  * just holding cpuset_mutex.  While it is performing these checks, various | 
 |  * callback routines can briefly acquire callback_lock to query cpusets. | 
 |  * Once it is ready to make the changes, it takes callback_lock, blocking | 
 |  * everyone else. | 
 |  * | 
 |  * Calls to the kernel memory allocator can not be made while holding | 
 |  * callback_lock, as that would risk double tripping on callback_lock | 
 |  * from one of the callbacks into the cpuset code from within | 
 |  * __alloc_pages(). | 
 |  * | 
 |  * If a task is only holding callback_lock, then it has read-only | 
 |  * access to cpusets. | 
 |  * | 
 |  * Now, the task_struct fields mems_allowed and mempolicy may be changed | 
 |  * by other task, we use alloc_lock in the task_struct fields to protect | 
 |  * them. | 
 |  * | 
 |  * The cpuset_common_file_read() handlers only hold callback_lock across | 
 |  * small pieces of code, such as when reading out possibly multi-word | 
 |  * cpumasks and nodemasks. | 
 |  * | 
 |  * Accessing a task's cpuset should be done in accordance with the | 
 |  * guidelines for accessing subsystem state in kernel/cgroup.c | 
 |  */ | 
 |  | 
 | DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); | 
 | static DEFINE_SPINLOCK(callback_lock); | 
 |  | 
 | static struct workqueue_struct *cpuset_migrate_mm_wq; | 
 |  | 
 | /* | 
 |  * CPU / memory hotplug is handled asynchronously. | 
 |  */ | 
 | static void cpuset_hotplug_workfn(struct work_struct *work); | 
 | static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); | 
 |  | 
 | /* | 
 |  * Cgroup v2 behavior is used when on default hierarchy or the | 
 |  * cgroup_v2_mode flag is set. | 
 |  */ | 
 | static inline bool is_in_v2_mode(void) | 
 | { | 
 | 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || | 
 | 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); | 
 | } | 
 |  | 
 | /* | 
 |  * Return in pmask the portion of a cpusets's cpus_allowed that | 
 |  * are online.  If none are online, walk up the cpuset hierarchy | 
 |  * until we find one that does have some online cpus. | 
 |  * | 
 |  * One way or another, we guarantee to return some non-empty subset | 
 |  * of cpu_online_mask. | 
 |  * | 
 |  * Call with callback_lock or cpuset_mutex held. | 
 |  */ | 
 | static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) | 
 | { | 
 | 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { | 
 | 		cs = parent_cs(cs); | 
 | 		if (unlikely(!cs)) { | 
 | 			/* | 
 | 			 * The top cpuset doesn't have any online cpu as a | 
 | 			 * consequence of a race between cpuset_hotplug_work | 
 | 			 * and cpu hotplug notifier.  But we know the top | 
 | 			 * cpuset's effective_cpus is on its way to to be | 
 | 			 * identical to cpu_online_mask. | 
 | 			 */ | 
 | 			cpumask_copy(pmask, cpu_online_mask); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * Return in *pmask the portion of a cpusets's mems_allowed that | 
 |  * are online, with memory.  If none are online with memory, walk | 
 |  * up the cpuset hierarchy until we find one that does have some | 
 |  * online mems.  The top cpuset always has some mems online. | 
 |  * | 
 |  * One way or another, we guarantee to return some non-empty subset | 
 |  * of node_states[N_MEMORY]. | 
 |  * | 
 |  * Call with callback_lock or cpuset_mutex held. | 
 |  */ | 
 | static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) | 
 | { | 
 | 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) | 
 | 		cs = parent_cs(cs); | 
 | 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); | 
 | } | 
 |  | 
 | /* | 
 |  * update task's spread flag if cpuset's page/slab spread flag is set | 
 |  * | 
 |  * Call with callback_lock or cpuset_mutex held. | 
 |  */ | 
 | static void cpuset_update_task_spread_flag(struct cpuset *cs, | 
 | 					struct task_struct *tsk) | 
 | { | 
 | 	if (is_spread_page(cs)) | 
 | 		task_set_spread_page(tsk); | 
 | 	else | 
 | 		task_clear_spread_page(tsk); | 
 |  | 
 | 	if (is_spread_slab(cs)) | 
 | 		task_set_spread_slab(tsk); | 
 | 	else | 
 | 		task_clear_spread_slab(tsk); | 
 | } | 
 |  | 
 | /* | 
 |  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
 |  * | 
 |  * One cpuset is a subset of another if all its allowed CPUs and | 
 |  * Memory Nodes are a subset of the other, and its exclusive flags | 
 |  * are only set if the other's are set.  Call holding cpuset_mutex. | 
 |  */ | 
 |  | 
 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
 | { | 
 | 	return	cpumask_subset(p->cpus_requested, q->cpus_requested) && | 
 | 		nodes_subset(p->mems_allowed, q->mems_allowed) && | 
 | 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
 | 		is_mem_exclusive(p) <= is_mem_exclusive(q); | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_cpumasks - allocate three cpumasks for cpuset | 
 |  * @cs:  the cpuset that have cpumasks to be allocated. | 
 |  * @tmp: the tmpmasks structure pointer | 
 |  * Return: 0 if successful, -ENOMEM otherwise. | 
 |  * | 
 |  * Only one of the two input arguments should be non-NULL. | 
 |  */ | 
 | static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) | 
 | { | 
 | 	cpumask_var_t *pmask1, *pmask2, *pmask3; | 
 |  | 
 | 	if (cs) { | 
 | 		pmask1 = &cs->cpus_allowed; | 
 | 		pmask2 = &cs->effective_cpus; | 
 | 		pmask3 = &cs->subparts_cpus; | 
 | 	} else { | 
 | 		pmask1 = &tmp->new_cpus; | 
 | 		pmask2 = &tmp->addmask; | 
 | 		pmask3 = &tmp->delmask; | 
 | 	} | 
 |  | 
 | 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) | 
 | 		goto free_one; | 
 |  | 
 | 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) | 
 | 		goto free_two; | 
 |  | 
 | 	if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL)) | 
 | 		goto free_three; | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_three: | 
 | 	free_cpumask_var(*pmask3); | 
 | free_two: | 
 | 	free_cpumask_var(*pmask2); | 
 | free_one: | 
 | 	free_cpumask_var(*pmask1); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  * free_cpumasks - free cpumasks in a tmpmasks structure | 
 |  * @cs:  the cpuset that have cpumasks to be free. | 
 |  * @tmp: the tmpmasks structure pointer | 
 |  */ | 
 | static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) | 
 | { | 
 | 	if (cs) { | 
 | 		free_cpumask_var(cs->cpus_allowed); | 
 | 		free_cpumask_var(cs->cpus_requested); | 
 | 		free_cpumask_var(cs->effective_cpus); | 
 | 		free_cpumask_var(cs->subparts_cpus); | 
 | 	} | 
 | 	if (tmp) { | 
 | 		free_cpumask_var(tmp->new_cpus); | 
 | 		free_cpumask_var(tmp->addmask); | 
 | 		free_cpumask_var(tmp->delmask); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_trial_cpuset - allocate a trial cpuset | 
 |  * @cs: the cpuset that the trial cpuset duplicates | 
 |  */ | 
 | static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) | 
 | { | 
 | 	struct cpuset *trial; | 
 |  | 
 | 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | 
 | 	if (!trial) | 
 | 		return NULL; | 
 |  | 
 | 	if (alloc_cpumasks(trial, NULL)) { | 
 | 		kfree(trial); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | 
 | 	cpumask_copy(trial->cpus_requested, cs->cpus_requested); | 
 | 	cpumask_copy(trial->effective_cpus, cs->effective_cpus); | 
 | 	return trial; | 
 | } | 
 |  | 
 | /** | 
 |  * free_cpuset - free the cpuset | 
 |  * @cs: the cpuset to be freed | 
 |  */ | 
 | static inline void free_cpuset(struct cpuset *cs) | 
 | { | 
 | 	free_cpumasks(cs, NULL); | 
 | 	kfree(cs); | 
 | } | 
 |  | 
 | /* | 
 |  * validate_change() - Used to validate that any proposed cpuset change | 
 |  *		       follows the structural rules for cpusets. | 
 |  * | 
 |  * If we replaced the flag and mask values of the current cpuset | 
 |  * (cur) with those values in the trial cpuset (trial), would | 
 |  * our various subset and exclusive rules still be valid?  Presumes | 
 |  * cpuset_mutex held. | 
 |  * | 
 |  * 'cur' is the address of an actual, in-use cpuset.  Operations | 
 |  * such as list traversal that depend on the actual address of the | 
 |  * cpuset in the list must use cur below, not trial. | 
 |  * | 
 |  * 'trial' is the address of bulk structure copy of cur, with | 
 |  * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
 |  * or flags changed to new, trial values. | 
 |  * | 
 |  * Return 0 if valid, -errno if not. | 
 |  */ | 
 |  | 
 | static int validate_change(struct cpuset *cur, struct cpuset *trial) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct cpuset *c, *par; | 
 | 	int ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	/* Each of our child cpusets must be a subset of us */ | 
 | 	ret = -EBUSY; | 
 | 	cpuset_for_each_child(c, css, cur) | 
 | 		if (!is_cpuset_subset(c, trial)) | 
 | 			goto out; | 
 |  | 
 | 	/* Remaining checks don't apply to root cpuset */ | 
 | 	ret = 0; | 
 | 	if (cur == &top_cpuset) | 
 | 		goto out; | 
 |  | 
 | 	par = parent_cs(cur); | 
 |  | 
 | 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */ | 
 | 	ret = -EACCES; | 
 | 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If either I or some sibling (!= me) is exclusive, we can't | 
 | 	 * overlap | 
 | 	 */ | 
 | 	ret = -EINVAL; | 
 | 	cpuset_for_each_child(c, css, par) { | 
 | 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
 | 		    c != cur && | 
 | 		    cpumask_intersects(trial->cpus_requested, c->cpus_requested)) | 
 | 			goto out; | 
 | 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
 | 		    c != cur && | 
 | 		    nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cpusets with tasks - existing or newly being attached - can't | 
 | 	 * be changed to have empty cpus_allowed or mems_allowed. | 
 | 	 */ | 
 | 	ret = -ENOSPC; | 
 | 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { | 
 | 		if (!cpumask_empty(cur->cpus_allowed) && | 
 | 		    cpumask_empty(trial->cpus_allowed)) | 
 | 			goto out; | 
 | 		if (!nodes_empty(cur->mems_allowed) && | 
 | 		    nodes_empty(trial->mems_allowed)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE | 
 | 	 * tasks. | 
 | 	 */ | 
 | 	ret = -EBUSY; | 
 | 	if (is_cpu_exclusive(cur) && | 
 | 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed, | 
 | 				       trial->cpus_allowed)) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Helper routine for generate_sched_domains(). | 
 |  * Do cpusets a, b have overlapping effective cpus_allowed masks? | 
 |  */ | 
 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) | 
 | { | 
 | 	return cpumask_intersects(a->effective_cpus, b->effective_cpus); | 
 | } | 
 |  | 
 | static void | 
 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | 
 | { | 
 | 	if (dattr->relax_domain_level < c->relax_domain_level) | 
 | 		dattr->relax_domain_level = c->relax_domain_level; | 
 | 	return; | 
 | } | 
 |  | 
 | static void update_domain_attr_tree(struct sched_domain_attr *dattr, | 
 | 				    struct cpuset *root_cs) | 
 | { | 
 | 	struct cpuset *cp; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { | 
 | 		/* skip the whole subtree if @cp doesn't have any CPU */ | 
 | 		if (cpumask_empty(cp->cpus_allowed)) { | 
 | 			pos_css = css_rightmost_descendant(pos_css); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (is_sched_load_balance(cp)) | 
 | 			update_domain_attr(dattr, cp); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* Must be called with cpuset_mutex held.  */ | 
 | static inline int nr_cpusets(void) | 
 | { | 
 | 	/* jump label reference count + the top-level cpuset */ | 
 | 	return static_key_count(&cpusets_enabled_key.key) + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * generate_sched_domains() | 
 |  * | 
 |  * This function builds a partial partition of the systems CPUs | 
 |  * A 'partial partition' is a set of non-overlapping subsets whose | 
 |  * union is a subset of that set. | 
 |  * The output of this function needs to be passed to kernel/sched/core.c | 
 |  * partition_sched_domains() routine, which will rebuild the scheduler's | 
 |  * load balancing domains (sched domains) as specified by that partial | 
 |  * partition. | 
 |  * | 
 |  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst | 
 |  * for a background explanation of this. | 
 |  * | 
 |  * Does not return errors, on the theory that the callers of this | 
 |  * routine would rather not worry about failures to rebuild sched | 
 |  * domains when operating in the severe memory shortage situations | 
 |  * that could cause allocation failures below. | 
 |  * | 
 |  * Must be called with cpuset_mutex held. | 
 |  * | 
 |  * The three key local variables below are: | 
 |  *    cp - cpuset pointer, used (together with pos_css) to perform a | 
 |  *	   top-down scan of all cpusets. For our purposes, rebuilding | 
 |  *	   the schedulers sched domains, we can ignore !is_sched_load_ | 
 |  *	   balance cpusets. | 
 |  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets | 
 |  *	   that need to be load balanced, for convenient iterative | 
 |  *	   access by the subsequent code that finds the best partition, | 
 |  *	   i.e the set of domains (subsets) of CPUs such that the | 
 |  *	   cpus_allowed of every cpuset marked is_sched_load_balance | 
 |  *	   is a subset of one of these domains, while there are as | 
 |  *	   many such domains as possible, each as small as possible. | 
 |  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to | 
 |  *	   the kernel/sched/core.c routine partition_sched_domains() in a | 
 |  *	   convenient format, that can be easily compared to the prior | 
 |  *	   value to determine what partition elements (sched domains) | 
 |  *	   were changed (added or removed.) | 
 |  * | 
 |  * Finding the best partition (set of domains): | 
 |  *	The triple nested loops below over i, j, k scan over the | 
 |  *	load balanced cpusets (using the array of cpuset pointers in | 
 |  *	csa[]) looking for pairs of cpusets that have overlapping | 
 |  *	cpus_allowed, but which don't have the same 'pn' partition | 
 |  *	number and gives them in the same partition number.  It keeps | 
 |  *	looping on the 'restart' label until it can no longer find | 
 |  *	any such pairs. | 
 |  * | 
 |  *	The union of the cpus_allowed masks from the set of | 
 |  *	all cpusets having the same 'pn' value then form the one | 
 |  *	element of the partition (one sched domain) to be passed to | 
 |  *	partition_sched_domains(). | 
 |  */ | 
 | static int generate_sched_domains(cpumask_var_t **domains, | 
 | 			struct sched_domain_attr **attributes) | 
 | { | 
 | 	struct cpuset *cp;	/* top-down scan of cpusets */ | 
 | 	struct cpuset **csa;	/* array of all cpuset ptrs */ | 
 | 	int csn;		/* how many cpuset ptrs in csa so far */ | 
 | 	int i, j, k;		/* indices for partition finding loops */ | 
 | 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */ | 
 | 	struct sched_domain_attr *dattr;  /* attributes for custom domains */ | 
 | 	int ndoms = 0;		/* number of sched domains in result */ | 
 | 	int nslot;		/* next empty doms[] struct cpumask slot */ | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	bool root_load_balance = is_sched_load_balance(&top_cpuset); | 
 |  | 
 | 	doms = NULL; | 
 | 	dattr = NULL; | 
 | 	csa = NULL; | 
 |  | 
 | 	/* Special case for the 99% of systems with one, full, sched domain */ | 
 | 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) { | 
 | 		ndoms = 1; | 
 | 		doms = alloc_sched_domains(ndoms); | 
 | 		if (!doms) | 
 | 			goto done; | 
 |  | 
 | 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); | 
 | 		if (dattr) { | 
 | 			*dattr = SD_ATTR_INIT; | 
 | 			update_domain_attr_tree(dattr, &top_cpuset); | 
 | 		} | 
 | 		cpumask_and(doms[0], top_cpuset.effective_cpus, | 
 | 			    housekeeping_cpumask(HK_FLAG_DOMAIN)); | 
 |  | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); | 
 | 	if (!csa) | 
 | 		goto done; | 
 | 	csn = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (root_load_balance) | 
 | 		csa[csn++] = &top_cpuset; | 
 | 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { | 
 | 		if (cp == &top_cpuset) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Continue traversing beyond @cp iff @cp has some CPUs and | 
 | 		 * isn't load balancing.  The former is obvious.  The | 
 | 		 * latter: All child cpusets contain a subset of the | 
 | 		 * parent's cpus, so just skip them, and then we call | 
 | 		 * update_domain_attr_tree() to calc relax_domain_level of | 
 | 		 * the corresponding sched domain. | 
 | 		 * | 
 | 		 * If root is load-balancing, we can skip @cp if it | 
 | 		 * is a subset of the root's effective_cpus. | 
 | 		 */ | 
 | 		if (!cpumask_empty(cp->cpus_allowed) && | 
 | 		    !(is_sched_load_balance(cp) && | 
 | 		      cpumask_intersects(cp->cpus_allowed, | 
 | 					 housekeeping_cpumask(HK_FLAG_DOMAIN)))) | 
 | 			continue; | 
 |  | 
 | 		if (root_load_balance && | 
 | 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) | 
 | 			continue; | 
 |  | 
 | 		if (is_sched_load_balance(cp) && | 
 | 		    !cpumask_empty(cp->effective_cpus)) | 
 | 			csa[csn++] = cp; | 
 |  | 
 | 		/* skip @cp's subtree if not a partition root */ | 
 | 		if (!is_partition_root(cp)) | 
 | 			pos_css = css_rightmost_descendant(pos_css); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	for (i = 0; i < csn; i++) | 
 | 		csa[i]->pn = i; | 
 | 	ndoms = csn; | 
 |  | 
 | restart: | 
 | 	/* Find the best partition (set of sched domains) */ | 
 | 	for (i = 0; i < csn; i++) { | 
 | 		struct cpuset *a = csa[i]; | 
 | 		int apn = a->pn; | 
 |  | 
 | 		for (j = 0; j < csn; j++) { | 
 | 			struct cpuset *b = csa[j]; | 
 | 			int bpn = b->pn; | 
 |  | 
 | 			if (apn != bpn && cpusets_overlap(a, b)) { | 
 | 				for (k = 0; k < csn; k++) { | 
 | 					struct cpuset *c = csa[k]; | 
 |  | 
 | 					if (c->pn == bpn) | 
 | 						c->pn = apn; | 
 | 				} | 
 | 				ndoms--;	/* one less element */ | 
 | 				goto restart; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we know how many domains to create. | 
 | 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 
 | 	 */ | 
 | 	doms = alloc_sched_domains(ndoms); | 
 | 	if (!doms) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * The rest of the code, including the scheduler, can deal with | 
 | 	 * dattr==NULL case. No need to abort if alloc fails. | 
 | 	 */ | 
 | 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), | 
 | 			      GFP_KERNEL); | 
 |  | 
 | 	for (nslot = 0, i = 0; i < csn; i++) { | 
 | 		struct cpuset *a = csa[i]; | 
 | 		struct cpumask *dp; | 
 | 		int apn = a->pn; | 
 |  | 
 | 		if (apn < 0) { | 
 | 			/* Skip completed partitions */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		dp = doms[nslot]; | 
 |  | 
 | 		if (nslot == ndoms) { | 
 | 			static int warnings = 10; | 
 | 			if (warnings) { | 
 | 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", | 
 | 					nslot, ndoms, csn, i, apn); | 
 | 				warnings--; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		cpumask_clear(dp); | 
 | 		if (dattr) | 
 | 			*(dattr + nslot) = SD_ATTR_INIT; | 
 | 		for (j = i; j < csn; j++) { | 
 | 			struct cpuset *b = csa[j]; | 
 |  | 
 | 			if (apn == b->pn) { | 
 | 				cpumask_or(dp, dp, b->effective_cpus); | 
 | 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); | 
 | 				if (dattr) | 
 | 					update_domain_attr_tree(dattr + nslot, b); | 
 |  | 
 | 				/* Done with this partition */ | 
 | 				b->pn = -1; | 
 | 			} | 
 | 		} | 
 | 		nslot++; | 
 | 	} | 
 | 	BUG_ON(nslot != ndoms); | 
 |  | 
 | done: | 
 | 	kfree(csa); | 
 |  | 
 | 	/* | 
 | 	 * Fallback to the default domain if kmalloc() failed. | 
 | 	 * See comments in partition_sched_domains(). | 
 | 	 */ | 
 | 	if (doms == NULL) | 
 | 		ndoms = 1; | 
 |  | 
 | 	*domains    = doms; | 
 | 	*attributes = dattr; | 
 | 	return ndoms; | 
 | } | 
 |  | 
 | static void update_tasks_root_domain(struct cpuset *cs) | 
 | { | 
 | 	struct css_task_iter it; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	css_task_iter_start(&cs->css, 0, &it); | 
 |  | 
 | 	while ((task = css_task_iter_next(&it))) | 
 | 		dl_add_task_root_domain(task); | 
 |  | 
 | 	css_task_iter_end(&it); | 
 | } | 
 |  | 
 | static void rebuild_root_domains(void) | 
 | { | 
 | 	struct cpuset *cs = NULL; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 |  | 
 | 	percpu_rwsem_assert_held(&cpuset_rwsem); | 
 | 	lockdep_assert_cpus_held(); | 
 | 	lockdep_assert_held(&sched_domains_mutex); | 
 |  | 
 | 	cgroup_enable_task_cg_lists(); | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	/* | 
 | 	 * Clear default root domain DL accounting, it will be computed again | 
 | 	 * if a task belongs to it. | 
 | 	 */ | 
 | 	dl_clear_root_domain(&def_root_domain); | 
 |  | 
 | 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { | 
 |  | 
 | 		if (cpumask_empty(cs->effective_cpus)) { | 
 | 			pos_css = css_rightmost_descendant(pos_css); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		css_get(&cs->css); | 
 |  | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		update_tasks_root_domain(cs); | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		css_put(&cs->css); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void | 
 | partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | 
 | 				    struct sched_domain_attr *dattr_new) | 
 | { | 
 | 	mutex_lock(&sched_domains_mutex); | 
 | 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); | 
 | 	rebuild_root_domains(); | 
 | 	mutex_unlock(&sched_domains_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * Rebuild scheduler domains. | 
 |  * | 
 |  * If the flag 'sched_load_balance' of any cpuset with non-empty | 
 |  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | 
 |  * which has that flag enabled, or if any cpuset with a non-empty | 
 |  * 'cpus' is removed, then call this routine to rebuild the | 
 |  * scheduler's dynamic sched domains. | 
 |  * | 
 |  * Call with cpuset_mutex held.  Takes get_online_cpus(). | 
 |  */ | 
 | static void rebuild_sched_domains_locked(void) | 
 | { | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	struct sched_domain_attr *attr; | 
 | 	cpumask_var_t *doms; | 
 | 	struct cpuset *cs; | 
 | 	int ndoms; | 
 |  | 
 | 	lockdep_assert_cpus_held(); | 
 | 	percpu_rwsem_assert_held(&cpuset_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * If we have raced with CPU hotplug, return early to avoid | 
 | 	 * passing doms with offlined cpu to partition_sched_domains(). | 
 | 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. | 
 | 	 * | 
 | 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs | 
 | 	 * should be the same as the active CPUs, so checking only top_cpuset | 
 | 	 * is enough to detect racing CPU offlines. | 
 | 	 */ | 
 | 	if (!top_cpuset.nr_subparts_cpus && | 
 | 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * With subpartition CPUs, however, the effective CPUs of a partition | 
 | 	 * root should be only a subset of the active CPUs.  Since a CPU in any | 
 | 	 * partition root could be offlined, all must be checked. | 
 | 	 */ | 
 | 	if (top_cpuset.nr_subparts_cpus) { | 
 | 		rcu_read_lock(); | 
 | 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { | 
 | 			if (!is_partition_root(cs)) { | 
 | 				pos_css = css_rightmost_descendant(pos_css); | 
 | 				continue; | 
 | 			} | 
 | 			if (!cpumask_subset(cs->effective_cpus, | 
 | 					    cpu_active_mask)) { | 
 | 				rcu_read_unlock(); | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	/* Generate domain masks and attrs */ | 
 | 	ndoms = generate_sched_domains(&doms, &attr); | 
 |  | 
 | 	/* Have scheduler rebuild the domains */ | 
 | 	partition_and_rebuild_sched_domains(ndoms, doms, attr); | 
 | } | 
 | #else /* !CONFIG_SMP */ | 
 | static void rebuild_sched_domains_locked(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | void rebuild_sched_domains(void) | 
 | { | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	rebuild_sched_domains_locked(); | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | } | 
 |  | 
 | /** | 
 |  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | 
 |  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | 
 |  * | 
 |  * Iterate through each task of @cs updating its cpus_allowed to the | 
 |  * effective cpuset's.  As this function is called with cpuset_mutex held, | 
 |  * cpuset membership stays stable. | 
 |  */ | 
 | static void update_tasks_cpumask(struct cpuset *cs) | 
 | { | 
 | 	struct css_task_iter it; | 
 | 	struct task_struct *task; | 
 | 	bool top_cs = cs == &top_cpuset; | 
 |  | 
 | 	css_task_iter_start(&cs->css, 0, &it); | 
 | 	while ((task = css_task_iter_next(&it))) { | 
 | 		/* | 
 | 		 * Percpu kthreads in top_cpuset are ignored | 
 | 		 */ | 
 | 		if (top_cs && (task->flags & PF_KTHREAD) && | 
 | 		    kthread_is_per_cpu(task)) | 
 | 			continue; | 
 | 		set_cpus_allowed_ptr(task, cs->effective_cpus); | 
 | 	} | 
 | 	css_task_iter_end(&it); | 
 | } | 
 |  | 
 | /** | 
 |  * compute_effective_cpumask - Compute the effective cpumask of the cpuset | 
 |  * @new_cpus: the temp variable for the new effective_cpus mask | 
 |  * @cs: the cpuset the need to recompute the new effective_cpus mask | 
 |  * @parent: the parent cpuset | 
 |  * | 
 |  * If the parent has subpartition CPUs, include them in the list of | 
 |  * allowable CPUs in computing the new effective_cpus mask. Since offlined | 
 |  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask | 
 |  * to mask those out. | 
 |  */ | 
 | static void compute_effective_cpumask(struct cpumask *new_cpus, | 
 | 				      struct cpuset *cs, struct cpuset *parent) | 
 | { | 
 | 	if (parent->nr_subparts_cpus) { | 
 | 		cpumask_or(new_cpus, parent->effective_cpus, | 
 | 			   parent->subparts_cpus); | 
 | 		cpumask_and(new_cpus, new_cpus, cs->cpus_requested); | 
 | 		cpumask_and(new_cpus, new_cpus, cpu_active_mask); | 
 | 	} else { | 
 | 		cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Commands for update_parent_subparts_cpumask | 
 |  */ | 
 | enum subparts_cmd { | 
 | 	partcmd_enable,		/* Enable partition root	 */ | 
 | 	partcmd_disable,	/* Disable partition root	 */ | 
 | 	partcmd_update,		/* Update parent's subparts_cpus */ | 
 | }; | 
 |  | 
 | /** | 
 |  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset | 
 |  * @cpuset:  The cpuset that requests change in partition root state | 
 |  * @cmd:     Partition root state change command | 
 |  * @newmask: Optional new cpumask for partcmd_update | 
 |  * @tmp:     Temporary addmask and delmask | 
 |  * Return:   0, 1 or an error code | 
 |  * | 
 |  * For partcmd_enable, the cpuset is being transformed from a non-partition | 
 |  * root to a partition root. The cpus_allowed mask of the given cpuset will | 
 |  * be put into parent's subparts_cpus and taken away from parent's | 
 |  * effective_cpus. The function will return 0 if all the CPUs listed in | 
 |  * cpus_allowed can be granted or an error code will be returned. | 
 |  * | 
 |  * For partcmd_disable, the cpuset is being transofrmed from a partition | 
 |  * root back to a non-partition root. any CPUs in cpus_allowed that are in | 
 |  * parent's subparts_cpus will be taken away from that cpumask and put back | 
 |  * into parent's effective_cpus. 0 should always be returned. | 
 |  * | 
 |  * For partcmd_update, if the optional newmask is specified, the cpu | 
 |  * list is to be changed from cpus_allowed to newmask. Otherwise, | 
 |  * cpus_allowed is assumed to remain the same. The cpuset should either | 
 |  * be a partition root or an invalid partition root. The partition root | 
 |  * state may change if newmask is NULL and none of the requested CPUs can | 
 |  * be granted by the parent. The function will return 1 if changes to | 
 |  * parent's subparts_cpus and effective_cpus happen or 0 otherwise. | 
 |  * Error code should only be returned when newmask is non-NULL. | 
 |  * | 
 |  * The partcmd_enable and partcmd_disable commands are used by | 
 |  * update_prstate(). The partcmd_update command is used by | 
 |  * update_cpumasks_hier() with newmask NULL and update_cpumask() with | 
 |  * newmask set. | 
 |  * | 
 |  * The checking is more strict when enabling partition root than the | 
 |  * other two commands. | 
 |  * | 
 |  * Because of the implicit cpu exclusive nature of a partition root, | 
 |  * cpumask changes that violates the cpu exclusivity rule will not be | 
 |  * permitted when checked by validate_change(). The validate_change() | 
 |  * function will also prevent any changes to the cpu list if it is not | 
 |  * a superset of children's cpu lists. | 
 |  */ | 
 | static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, | 
 | 					  struct cpumask *newmask, | 
 | 					  struct tmpmasks *tmp) | 
 | { | 
 | 	struct cpuset *parent = parent_cs(cpuset); | 
 | 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */ | 
 | 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */ | 
 | 	bool part_error = false;	/* Partition error? */ | 
 |  | 
 | 	percpu_rwsem_assert_held(&cpuset_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * The parent must be a partition root. | 
 | 	 * The new cpumask, if present, or the current cpus_allowed must | 
 | 	 * not be empty. | 
 | 	 */ | 
 | 	if (!is_partition_root(parent) || | 
 | 	   (newmask && cpumask_empty(newmask)) || | 
 | 	   (!newmask && cpumask_empty(cpuset->cpus_allowed))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Enabling/disabling partition root is not allowed if there are | 
 | 	 * online children. | 
 | 	 */ | 
 | 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* | 
 | 	 * Enabling partition root is not allowed if not all the CPUs | 
 | 	 * can be granted from parent's effective_cpus or at least one | 
 | 	 * CPU will be left after that. | 
 | 	 */ | 
 | 	if ((cmd == partcmd_enable) && | 
 | 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || | 
 | 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * A cpumask update cannot make parent's effective_cpus become empty. | 
 | 	 */ | 
 | 	adding = deleting = false; | 
 | 	if (cmd == partcmd_enable) { | 
 | 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed); | 
 | 		adding = true; | 
 | 	} else if (cmd == partcmd_disable) { | 
 | 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, | 
 | 				       parent->subparts_cpus); | 
 | 	} else if (newmask) { | 
 | 		/* | 
 | 		 * partcmd_update with newmask: | 
 | 		 * | 
 | 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus | 
 | 		 * addmask = newmask & parent->effective_cpus | 
 | 		 *		     & ~parent->subparts_cpus | 
 | 		 */ | 
 | 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); | 
 | 		deleting = cpumask_and(tmp->delmask, tmp->delmask, | 
 | 				       parent->subparts_cpus); | 
 |  | 
 | 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus); | 
 | 		adding = cpumask_andnot(tmp->addmask, tmp->addmask, | 
 | 					parent->subparts_cpus); | 
 | 		/* | 
 | 		 * Return error if the new effective_cpus could become empty. | 
 | 		 */ | 
 | 		if (adding && | 
 | 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) { | 
 | 			if (!deleting) | 
 | 				return -EINVAL; | 
 | 			/* | 
 | 			 * As some of the CPUs in subparts_cpus might have | 
 | 			 * been offlined, we need to compute the real delmask | 
 | 			 * to confirm that. | 
 | 			 */ | 
 | 			if (!cpumask_and(tmp->addmask, tmp->delmask, | 
 | 					 cpu_active_mask)) | 
 | 				return -EINVAL; | 
 | 			cpumask_copy(tmp->addmask, parent->effective_cpus); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * partcmd_update w/o newmask: | 
 | 		 * | 
 | 		 * addmask = cpus_allowed & parent->effectiveb_cpus | 
 | 		 * | 
 | 		 * Note that parent's subparts_cpus may have been | 
 | 		 * pre-shrunk in case there is a change in the cpu list. | 
 | 		 * So no deletion is needed. | 
 | 		 */ | 
 | 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, | 
 | 				     parent->effective_cpus); | 
 | 		part_error = cpumask_equal(tmp->addmask, | 
 | 					   parent->effective_cpus); | 
 | 	} | 
 |  | 
 | 	if (cmd == partcmd_update) { | 
 | 		int prev_prs = cpuset->partition_root_state; | 
 |  | 
 | 		/* | 
 | 		 * Check for possible transition between PRS_ENABLED | 
 | 		 * and PRS_ERROR. | 
 | 		 */ | 
 | 		switch (cpuset->partition_root_state) { | 
 | 		case PRS_ENABLED: | 
 | 			if (part_error) | 
 | 				cpuset->partition_root_state = PRS_ERROR; | 
 | 			break; | 
 | 		case PRS_ERROR: | 
 | 			if (!part_error) | 
 | 				cpuset->partition_root_state = PRS_ENABLED; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Set part_error if previously in invalid state. | 
 | 		 */ | 
 | 		part_error = (prev_prs == PRS_ERROR); | 
 | 	} | 
 |  | 
 | 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) | 
 | 		return 0;	/* Nothing need to be done */ | 
 |  | 
 | 	if (cpuset->partition_root_state == PRS_ERROR) { | 
 | 		/* | 
 | 		 * Remove all its cpus from parent's subparts_cpus. | 
 | 		 */ | 
 | 		adding = false; | 
 | 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, | 
 | 				       parent->subparts_cpus); | 
 | 	} | 
 |  | 
 | 	if (!adding && !deleting) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Change the parent's subparts_cpus. | 
 | 	 * Newly added CPUs will be removed from effective_cpus and | 
 | 	 * newly deleted ones will be added back to effective_cpus. | 
 | 	 */ | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	if (adding) { | 
 | 		cpumask_or(parent->subparts_cpus, | 
 | 			   parent->subparts_cpus, tmp->addmask); | 
 | 		cpumask_andnot(parent->effective_cpus, | 
 | 			       parent->effective_cpus, tmp->addmask); | 
 | 	} | 
 | 	if (deleting) { | 
 | 		cpumask_andnot(parent->subparts_cpus, | 
 | 			       parent->subparts_cpus, tmp->delmask); | 
 | 		/* | 
 | 		 * Some of the CPUs in subparts_cpus might have been offlined. | 
 | 		 */ | 
 | 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); | 
 | 		cpumask_or(parent->effective_cpus, | 
 | 			   parent->effective_cpus, tmp->delmask); | 
 | 	} | 
 |  | 
 | 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	return cmd == partcmd_update; | 
 | } | 
 |  | 
 | /* | 
 |  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree | 
 |  * @cs:  the cpuset to consider | 
 |  * @tmp: temp variables for calculating effective_cpus & partition setup | 
 |  * | 
 |  * When congifured cpumask is changed, the effective cpumasks of this cpuset | 
 |  * and all its descendants need to be updated. | 
 |  * | 
 |  * On legacy hierachy, effective_cpus will be the same with cpu_allowed. | 
 |  * | 
 |  * Called with cpuset_mutex held | 
 |  */ | 
 | static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) | 
 | { | 
 | 	struct cpuset *cp; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 | 	bool need_rebuild_sched_domains = false; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	cpuset_for_each_descendant_pre(cp, pos_css, cs) { | 
 | 		struct cpuset *parent = parent_cs(cp); | 
 |  | 
 | 		compute_effective_cpumask(tmp->new_cpus, cp, parent); | 
 |  | 
 | 		/* | 
 | 		 * If it becomes empty, inherit the effective mask of the | 
 | 		 * parent, which is guaranteed to have some CPUs. | 
 | 		 */ | 
 | 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { | 
 | 			cpumask_copy(tmp->new_cpus, parent->effective_cpus); | 
 | 			if (!cp->use_parent_ecpus) { | 
 | 				cp->use_parent_ecpus = true; | 
 | 				parent->child_ecpus_count++; | 
 | 			} | 
 | 		} else if (cp->use_parent_ecpus) { | 
 | 			cp->use_parent_ecpus = false; | 
 | 			WARN_ON_ONCE(!parent->child_ecpus_count); | 
 | 			parent->child_ecpus_count--; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Skip the whole subtree if the cpumask remains the same | 
 | 		 * and has no partition root state. | 
 | 		 */ | 
 | 		if (!cp->partition_root_state && | 
 | 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { | 
 | 			pos_css = css_rightmost_descendant(pos_css); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * update_parent_subparts_cpumask() should have been called | 
 | 		 * for cs already in update_cpumask(). We should also call | 
 | 		 * update_tasks_cpumask() again for tasks in the parent | 
 | 		 * cpuset if the parent's subparts_cpus changes. | 
 | 		 */ | 
 | 		if ((cp != cs) && cp->partition_root_state) { | 
 | 			switch (parent->partition_root_state) { | 
 | 			case PRS_DISABLED: | 
 | 				/* | 
 | 				 * If parent is not a partition root or an | 
 | 				 * invalid partition root, clear the state | 
 | 				 * state and the CS_CPU_EXCLUSIVE flag. | 
 | 				 */ | 
 | 				WARN_ON_ONCE(cp->partition_root_state | 
 | 					     != PRS_ERROR); | 
 | 				cp->partition_root_state = 0; | 
 |  | 
 | 				/* | 
 | 				 * clear_bit() is an atomic operation and | 
 | 				 * readers aren't interested in the state | 
 | 				 * of CS_CPU_EXCLUSIVE anyway. So we can | 
 | 				 * just update the flag without holding | 
 | 				 * the callback_lock. | 
 | 				 */ | 
 | 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); | 
 | 				break; | 
 |  | 
 | 			case PRS_ENABLED: | 
 | 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) | 
 | 					update_tasks_cpumask(parent); | 
 | 				break; | 
 |  | 
 | 			case PRS_ERROR: | 
 | 				/* | 
 | 				 * When parent is invalid, it has to be too. | 
 | 				 */ | 
 | 				cp->partition_root_state = PRS_ERROR; | 
 | 				if (cp->nr_subparts_cpus) { | 
 | 					cp->nr_subparts_cpus = 0; | 
 | 					cpumask_clear(cp->subparts_cpus); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!css_tryget_online(&cp->css)) | 
 | 			continue; | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		spin_lock_irq(&callback_lock); | 
 |  | 
 | 		cpumask_copy(cp->effective_cpus, tmp->new_cpus); | 
 | 		if (cp->nr_subparts_cpus && | 
 | 		   (cp->partition_root_state != PRS_ENABLED)) { | 
 | 			cp->nr_subparts_cpus = 0; | 
 | 			cpumask_clear(cp->subparts_cpus); | 
 | 		} else if (cp->nr_subparts_cpus) { | 
 | 			/* | 
 | 			 * Make sure that effective_cpus & subparts_cpus | 
 | 			 * are mutually exclusive. | 
 | 			 * | 
 | 			 * In the unlikely event that effective_cpus | 
 | 			 * becomes empty. we clear cp->nr_subparts_cpus and | 
 | 			 * let its child partition roots to compete for | 
 | 			 * CPUs again. | 
 | 			 */ | 
 | 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus, | 
 | 				       cp->subparts_cpus); | 
 | 			if (cpumask_empty(cp->effective_cpus)) { | 
 | 				cpumask_copy(cp->effective_cpus, tmp->new_cpus); | 
 | 				cpumask_clear(cp->subparts_cpus); | 
 | 				cp->nr_subparts_cpus = 0; | 
 | 			} else if (!cpumask_subset(cp->subparts_cpus, | 
 | 						   tmp->new_cpus)) { | 
 | 				cpumask_andnot(cp->subparts_cpus, | 
 | 					cp->subparts_cpus, tmp->new_cpus); | 
 | 				cp->nr_subparts_cpus | 
 | 					= cpumask_weight(cp->subparts_cpus); | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irq(&callback_lock); | 
 |  | 
 | 		WARN_ON(!is_in_v2_mode() && | 
 | 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); | 
 |  | 
 | 		update_tasks_cpumask(cp); | 
 |  | 
 | 		/* | 
 | 		 * On legacy hierarchy, if the effective cpumask of any non- | 
 | 		 * empty cpuset is changed, we need to rebuild sched domains. | 
 | 		 * On default hierarchy, the cpuset needs to be a partition | 
 | 		 * root as well. | 
 | 		 */ | 
 | 		if (!cpumask_empty(cp->cpus_allowed) && | 
 | 		    is_sched_load_balance(cp) && | 
 | 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || | 
 | 		    is_partition_root(cp))) | 
 | 			need_rebuild_sched_domains = true; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		css_put(&cp->css); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (need_rebuild_sched_domains) | 
 | 		rebuild_sched_domains_locked(); | 
 | } | 
 |  | 
 | /** | 
 |  * update_sibling_cpumasks - Update siblings cpumasks | 
 |  * @parent:  Parent cpuset | 
 |  * @cs:      Current cpuset | 
 |  * @tmp:     Temp variables | 
 |  */ | 
 | static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, | 
 | 				    struct tmpmasks *tmp) | 
 | { | 
 | 	struct cpuset *sibling; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 |  | 
 | 	percpu_rwsem_assert_held(&cpuset_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * Check all its siblings and call update_cpumasks_hier() | 
 | 	 * if their use_parent_ecpus flag is set in order for them | 
 | 	 * to use the right effective_cpus value. | 
 | 	 * | 
 | 	 * The update_cpumasks_hier() function may sleep. So we have to | 
 | 	 * release the RCU read lock before calling it. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	cpuset_for_each_child(sibling, pos_css, parent) { | 
 | 		if (sibling == cs) | 
 | 			continue; | 
 | 		if (!sibling->use_parent_ecpus) | 
 | 			continue; | 
 | 		if (!css_tryget_online(&sibling->css)) | 
 | 			continue; | 
 |  | 
 | 		rcu_read_unlock(); | 
 | 		update_cpumasks_hier(sibling, tmp); | 
 | 		rcu_read_lock(); | 
 | 		css_put(&sibling->css); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /** | 
 |  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | 
 |  * @cs: the cpuset to consider | 
 |  * @trialcs: trial cpuset | 
 |  * @buf: buffer of cpu numbers written to this cpuset | 
 |  */ | 
 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, | 
 | 			  const char *buf) | 
 | { | 
 | 	int retval; | 
 | 	struct tmpmasks tmp; | 
 |  | 
 | 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ | 
 | 	if (cs == &top_cpuset) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * An empty cpus_requested is ok only if the cpuset has no tasks. | 
 | 	 * Since cpulist_parse() fails on an empty mask, we special case | 
 | 	 * that parsing.  The validate_change() call ensures that cpusets | 
 | 	 * with tasks have cpus. | 
 | 	 */ | 
 | 	if (!*buf) { | 
 | 		cpumask_clear(trialcs->cpus_requested); | 
 | 	} else { | 
 | 		retval = cpulist_parse(buf, trialcs->cpus_requested); | 
 | 		if (retval < 0) | 
 | 			return retval; | 
 | 	} | 
 |  | 
 | 	if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask); | 
 |  | 
 | 	/* Nothing to do if the cpus didn't change */ | 
 | 	if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested)) | 
 | 		return 0; | 
 |  | 
 | 	retval = validate_change(cs, trialcs); | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 |  | 
 | #ifdef CONFIG_CPUMASK_OFFSTACK | 
 | 	/* | 
 | 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers | 
 | 	 * to allocated cpumasks. | 
 | 	 */ | 
 | 	tmp.addmask  = trialcs->subparts_cpus; | 
 | 	tmp.delmask  = trialcs->effective_cpus; | 
 | 	tmp.new_cpus = trialcs->cpus_allowed; | 
 | #endif | 
 |  | 
 | 	if (cs->partition_root_state) { | 
 | 		/* Cpumask of a partition root cannot be empty */ | 
 | 		if (cpumask_empty(trialcs->cpus_allowed)) | 
 | 			return -EINVAL; | 
 | 		if (update_parent_subparts_cpumask(cs, partcmd_update, | 
 | 					trialcs->cpus_allowed, &tmp) < 0) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); | 
 | 	cpumask_copy(cs->cpus_requested, trialcs->cpus_requested); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that subparts_cpus is a subset of cpus_allowed. | 
 | 	 */ | 
 | 	if (cs->nr_subparts_cpus) { | 
 | 		cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed); | 
 | 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); | 
 | 	} | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	update_cpumasks_hier(cs, &tmp); | 
 |  | 
 | 	if (cs->partition_root_state) { | 
 | 		struct cpuset *parent = parent_cs(cs); | 
 |  | 
 | 		/* | 
 | 		 * For partition root, update the cpumasks of sibling | 
 | 		 * cpusets if they use parent's effective_cpus. | 
 | 		 */ | 
 | 		if (parent->child_ecpus_count) | 
 | 			update_sibling_cpumasks(parent, cs, &tmp); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Migrate memory region from one set of nodes to another.  This is | 
 |  * performed asynchronously as it can be called from process migration path | 
 |  * holding locks involved in process management.  All mm migrations are | 
 |  * performed in the queued order and can be waited for by flushing | 
 |  * cpuset_migrate_mm_wq. | 
 |  */ | 
 |  | 
 | struct cpuset_migrate_mm_work { | 
 | 	struct work_struct	work; | 
 | 	struct mm_struct	*mm; | 
 | 	nodemask_t		from; | 
 | 	nodemask_t		to; | 
 | }; | 
 |  | 
 | static void cpuset_migrate_mm_workfn(struct work_struct *work) | 
 | { | 
 | 	struct cpuset_migrate_mm_work *mwork = | 
 | 		container_of(work, struct cpuset_migrate_mm_work, work); | 
 |  | 
 | 	/* on a wq worker, no need to worry about %current's mems_allowed */ | 
 | 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); | 
 | 	mmput(mwork->mm); | 
 | 	kfree(mwork); | 
 | } | 
 |  | 
 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | 
 | 							const nodemask_t *to) | 
 | { | 
 | 	struct cpuset_migrate_mm_work *mwork; | 
 |  | 
 | 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); | 
 | 	if (mwork) { | 
 | 		mwork->mm = mm; | 
 | 		mwork->from = *from; | 
 | 		mwork->to = *to; | 
 | 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); | 
 | 		queue_work(cpuset_migrate_mm_wq, &mwork->work); | 
 | 	} else { | 
 | 		mmput(mm); | 
 | 	} | 
 | } | 
 |  | 
 | static void cpuset_post_attach(void) | 
 | { | 
 | 	flush_workqueue(cpuset_migrate_mm_wq); | 
 | } | 
 |  | 
 | /* | 
 |  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy | 
 |  * @tsk: the task to change | 
 |  * @newmems: new nodes that the task will be set | 
 |  * | 
 |  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed | 
 |  * and rebind an eventual tasks' mempolicy. If the task is allocating in | 
 |  * parallel, it might temporarily see an empty intersection, which results in | 
 |  * a seqlock check and retry before OOM or allocation failure. | 
 |  */ | 
 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | 
 | 					nodemask_t *newmems) | 
 | { | 
 | 	task_lock(tsk); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	write_seqcount_begin(&tsk->mems_allowed_seq); | 
 |  | 
 | 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); | 
 | 	mpol_rebind_task(tsk, newmems); | 
 | 	tsk->mems_allowed = *newmems; | 
 |  | 
 | 	write_seqcount_end(&tsk->mems_allowed_seq); | 
 | 	local_irq_enable(); | 
 |  | 
 | 	task_unlock(tsk); | 
 | } | 
 |  | 
 | static void *cpuset_being_rebound; | 
 |  | 
 | /** | 
 |  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 
 |  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 
 |  * | 
 |  * Iterate through each task of @cs updating its mems_allowed to the | 
 |  * effective cpuset's.  As this function is called with cpuset_mutex held, | 
 |  * cpuset membership stays stable. | 
 |  */ | 
 | static void update_tasks_nodemask(struct cpuset *cs) | 
 | { | 
 | 	static nodemask_t newmems;	/* protected by cpuset_mutex */ | 
 | 	struct css_task_iter it; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */ | 
 |  | 
 | 	guarantee_online_mems(cs, &newmems); | 
 |  | 
 | 	/* | 
 | 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't | 
 | 	 * take while holding tasklist_lock.  Forks can happen - the | 
 | 	 * mpol_dup() cpuset_being_rebound check will catch such forks, | 
 | 	 * and rebind their vma mempolicies too.  Because we still hold | 
 | 	 * the global cpuset_mutex, we know that no other rebind effort | 
 | 	 * will be contending for the global variable cpuset_being_rebound. | 
 | 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 
 | 	 * is idempotent.  Also migrate pages in each mm to new nodes. | 
 | 	 */ | 
 | 	css_task_iter_start(&cs->css, 0, &it); | 
 | 	while ((task = css_task_iter_next(&it))) { | 
 | 		struct mm_struct *mm; | 
 | 		bool migrate; | 
 |  | 
 | 		cpuset_change_task_nodemask(task, &newmems); | 
 |  | 
 | 		mm = get_task_mm(task); | 
 | 		if (!mm) | 
 | 			continue; | 
 |  | 
 | 		migrate = is_memory_migrate(cs); | 
 |  | 
 | 		mpol_rebind_mm(mm, &cs->mems_allowed); | 
 | 		if (migrate) | 
 | 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); | 
 | 		else | 
 | 			mmput(mm); | 
 | 	} | 
 | 	css_task_iter_end(&it); | 
 |  | 
 | 	/* | 
 | 	 * All the tasks' nodemasks have been updated, update | 
 | 	 * cs->old_mems_allowed. | 
 | 	 */ | 
 | 	cs->old_mems_allowed = newmems; | 
 |  | 
 | 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 
 | 	cpuset_being_rebound = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree | 
 |  * @cs: the cpuset to consider | 
 |  * @new_mems: a temp variable for calculating new effective_mems | 
 |  * | 
 |  * When configured nodemask is changed, the effective nodemasks of this cpuset | 
 |  * and all its descendants need to be updated. | 
 |  * | 
 |  * On legacy hiearchy, effective_mems will be the same with mems_allowed. | 
 |  * | 
 |  * Called with cpuset_mutex held | 
 |  */ | 
 | static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) | 
 | { | 
 | 	struct cpuset *cp; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	cpuset_for_each_descendant_pre(cp, pos_css, cs) { | 
 | 		struct cpuset *parent = parent_cs(cp); | 
 |  | 
 | 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); | 
 |  | 
 | 		/* | 
 | 		 * If it becomes empty, inherit the effective mask of the | 
 | 		 * parent, which is guaranteed to have some MEMs. | 
 | 		 */ | 
 | 		if (is_in_v2_mode() && nodes_empty(*new_mems)) | 
 | 			*new_mems = parent->effective_mems; | 
 |  | 
 | 		/* Skip the whole subtree if the nodemask remains the same. */ | 
 | 		if (nodes_equal(*new_mems, cp->effective_mems)) { | 
 | 			pos_css = css_rightmost_descendant(pos_css); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!css_tryget_online(&cp->css)) | 
 | 			continue; | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		spin_lock_irq(&callback_lock); | 
 | 		cp->effective_mems = *new_mems; | 
 | 		spin_unlock_irq(&callback_lock); | 
 |  | 
 | 		WARN_ON(!is_in_v2_mode() && | 
 | 			!nodes_equal(cp->mems_allowed, cp->effective_mems)); | 
 |  | 
 | 		update_tasks_nodemask(cp); | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		css_put(&cp->css); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Handle user request to change the 'mems' memory placement | 
 |  * of a cpuset.  Needs to validate the request, update the | 
 |  * cpusets mems_allowed, and for each task in the cpuset, | 
 |  * update mems_allowed and rebind task's mempolicy and any vma | 
 |  * mempolicies and if the cpuset is marked 'memory_migrate', | 
 |  * migrate the tasks pages to the new memory. | 
 |  * | 
 |  * Call with cpuset_mutex held. May take callback_lock during call. | 
 |  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 
 |  * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 
 |  * their mempolicies to the cpusets new mems_allowed. | 
 |  */ | 
 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | 
 | 			   const char *buf) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	/* | 
 | 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; | 
 | 	 * it's read-only | 
 | 	 */ | 
 | 	if (cs == &top_cpuset) { | 
 | 		retval = -EACCES; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset. | 
 | 	 * Since nodelist_parse() fails on an empty mask, we special case | 
 | 	 * that parsing.  The validate_change() call ensures that cpusets | 
 | 	 * with tasks have memory. | 
 | 	 */ | 
 | 	if (!*buf) { | 
 | 		nodes_clear(trialcs->mems_allowed); | 
 | 	} else { | 
 | 		retval = nodelist_parse(buf, trialcs->mems_allowed); | 
 | 		if (retval < 0) | 
 | 			goto done; | 
 |  | 
 | 		if (!nodes_subset(trialcs->mems_allowed, | 
 | 				  top_cpuset.mems_allowed)) { | 
 | 			retval = -EINVAL; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { | 
 | 		retval = 0;		/* Too easy - nothing to do */ | 
 | 		goto done; | 
 | 	} | 
 | 	retval = validate_change(cs, trialcs); | 
 | 	if (retval < 0) | 
 | 		goto done; | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	cs->mems_allowed = trialcs->mems_allowed; | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	/* use trialcs->mems_allowed as a temp variable */ | 
 | 	update_nodemasks_hier(cs, &trialcs->mems_allowed); | 
 | done: | 
 | 	return retval; | 
 | } | 
 |  | 
 | bool current_cpuset_is_being_rebound(void) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = task_cs(current) == cpuset_being_rebound; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	if (val < -1 || val > sched_domain_level_max + 1) | 
 | 		return -EINVAL; | 
 | #endif | 
 |  | 
 | 	if (val != cs->relax_domain_level) { | 
 | 		cs->relax_domain_level = val; | 
 | 		if (!cpumask_empty(cs->cpus_allowed) && | 
 | 		    is_sched_load_balance(cs)) | 
 | 			rebuild_sched_domains_locked(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * update_tasks_flags - update the spread flags of tasks in the cpuset. | 
 |  * @cs: the cpuset in which each task's spread flags needs to be changed | 
 |  * | 
 |  * Iterate through each task of @cs updating its spread flags.  As this | 
 |  * function is called with cpuset_mutex held, cpuset membership stays | 
 |  * stable. | 
 |  */ | 
 | static void update_tasks_flags(struct cpuset *cs) | 
 | { | 
 | 	struct css_task_iter it; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	css_task_iter_start(&cs->css, 0, &it); | 
 | 	while ((task = css_task_iter_next(&it))) | 
 | 		cpuset_update_task_spread_flag(cs, task); | 
 | 	css_task_iter_end(&it); | 
 | } | 
 |  | 
 | /* | 
 |  * update_flag - read a 0 or a 1 in a file and update associated flag | 
 |  * bit:		the bit to update (see cpuset_flagbits_t) | 
 |  * cs:		the cpuset to update | 
 |  * turning_on: 	whether the flag is being set or cleared | 
 |  * | 
 |  * Call with cpuset_mutex held. | 
 |  */ | 
 |  | 
 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, | 
 | 		       int turning_on) | 
 | { | 
 | 	struct cpuset *trialcs; | 
 | 	int balance_flag_changed; | 
 | 	int spread_flag_changed; | 
 | 	int err; | 
 |  | 
 | 	trialcs = alloc_trial_cpuset(cs); | 
 | 	if (!trialcs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (turning_on) | 
 | 		set_bit(bit, &trialcs->flags); | 
 | 	else | 
 | 		clear_bit(bit, &trialcs->flags); | 
 |  | 
 | 	err = validate_change(cs, trialcs); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	balance_flag_changed = (is_sched_load_balance(cs) != | 
 | 				is_sched_load_balance(trialcs)); | 
 |  | 
 | 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) | 
 | 			|| (is_spread_page(cs) != is_spread_page(trialcs))); | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	cs->flags = trialcs->flags; | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) | 
 | 		rebuild_sched_domains_locked(); | 
 |  | 
 | 	if (spread_flag_changed) | 
 | 		update_tasks_flags(cs); | 
 | out: | 
 | 	free_cpuset(trialcs); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * update_prstate - update partititon_root_state | 
 |  * cs:	the cpuset to update | 
 |  * val: 0 - disabled, 1 - enabled | 
 |  * | 
 |  * Call with cpuset_mutex held. | 
 |  */ | 
 | static int update_prstate(struct cpuset *cs, int val) | 
 | { | 
 | 	int err; | 
 | 	struct cpuset *parent = parent_cs(cs); | 
 | 	struct tmpmasks tmp; | 
 |  | 
 | 	if ((val != 0) && (val != 1)) | 
 | 		return -EINVAL; | 
 | 	if (val == cs->partition_root_state) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Cannot force a partial or invalid partition root to a full | 
 | 	 * partition root. | 
 | 	 */ | 
 | 	if (val && cs->partition_root_state) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (alloc_cpumasks(NULL, &tmp)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (!cs->partition_root_state) { | 
 | 		/* | 
 | 		 * Turning on partition root requires setting the | 
 | 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed | 
 | 		 * cannot be NULL. | 
 | 		 */ | 
 | 		if (cpumask_empty(cs->cpus_allowed)) | 
 | 			goto out; | 
 |  | 
 | 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = update_parent_subparts_cpumask(cs, partcmd_enable, | 
 | 						     NULL, &tmp); | 
 | 		if (err) { | 
 | 			update_flag(CS_CPU_EXCLUSIVE, cs, 0); | 
 | 			goto out; | 
 | 		} | 
 | 		cs->partition_root_state = PRS_ENABLED; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Turning off partition root will clear the | 
 | 		 * CS_CPU_EXCLUSIVE bit. | 
 | 		 */ | 
 | 		if (cs->partition_root_state == PRS_ERROR) { | 
 | 			cs->partition_root_state = 0; | 
 | 			update_flag(CS_CPU_EXCLUSIVE, cs, 0); | 
 | 			err = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		err = update_parent_subparts_cpumask(cs, partcmd_disable, | 
 | 						     NULL, &tmp); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		cs->partition_root_state = 0; | 
 |  | 
 | 		/* Turning off CS_CPU_EXCLUSIVE will not return error */ | 
 | 		update_flag(CS_CPU_EXCLUSIVE, cs, 0); | 
 | 	} | 
 |  | 
 | 	update_tasks_cpumask(parent); | 
 |  | 
 | 	if (parent->child_ecpus_count) | 
 | 		update_sibling_cpumasks(parent, cs, &tmp); | 
 |  | 
 | 	rebuild_sched_domains_locked(); | 
 | out: | 
 | 	free_cpumasks(NULL, &tmp); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Frequency meter - How fast is some event occurring? | 
 |  * | 
 |  * These routines manage a digitally filtered, constant time based, | 
 |  * event frequency meter.  There are four routines: | 
 |  *   fmeter_init() - initialize a frequency meter. | 
 |  *   fmeter_markevent() - called each time the event happens. | 
 |  *   fmeter_getrate() - returns the recent rate of such events. | 
 |  *   fmeter_update() - internal routine used to update fmeter. | 
 |  * | 
 |  * A common data structure is passed to each of these routines, | 
 |  * which is used to keep track of the state required to manage the | 
 |  * frequency meter and its digital filter. | 
 |  * | 
 |  * The filter works on the number of events marked per unit time. | 
 |  * The filter is single-pole low-pass recursive (IIR).  The time unit | 
 |  * is 1 second.  Arithmetic is done using 32-bit integers scaled to | 
 |  * simulate 3 decimal digits of precision (multiplied by 1000). | 
 |  * | 
 |  * With an FM_COEF of 933, and a time base of 1 second, the filter | 
 |  * has a half-life of 10 seconds, meaning that if the events quit | 
 |  * happening, then the rate returned from the fmeter_getrate() | 
 |  * will be cut in half each 10 seconds, until it converges to zero. | 
 |  * | 
 |  * It is not worth doing a real infinitely recursive filter.  If more | 
 |  * than FM_MAXTICKS ticks have elapsed since the last filter event, | 
 |  * just compute FM_MAXTICKS ticks worth, by which point the level | 
 |  * will be stable. | 
 |  * | 
 |  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | 
 |  * arithmetic overflow in the fmeter_update() routine. | 
 |  * | 
 |  * Given the simple 32 bit integer arithmetic used, this meter works | 
 |  * best for reporting rates between one per millisecond (msec) and | 
 |  * one per 32 (approx) seconds.  At constant rates faster than one | 
 |  * per msec it maxes out at values just under 1,000,000.  At constant | 
 |  * rates between one per msec, and one per second it will stabilize | 
 |  * to a value N*1000, where N is the rate of events per second. | 
 |  * At constant rates between one per second and one per 32 seconds, | 
 |  * it will be choppy, moving up on the seconds that have an event, | 
 |  * and then decaying until the next event.  At rates slower than | 
 |  * about one in 32 seconds, it decays all the way back to zero between | 
 |  * each event. | 
 |  */ | 
 |  | 
 | #define FM_COEF 933		/* coefficient for half-life of 10 secs */ | 
 | #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */ | 
 | #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */ | 
 | #define FM_SCALE 1000		/* faux fixed point scale */ | 
 |  | 
 | /* Initialize a frequency meter */ | 
 | static void fmeter_init(struct fmeter *fmp) | 
 | { | 
 | 	fmp->cnt = 0; | 
 | 	fmp->val = 0; | 
 | 	fmp->time = 0; | 
 | 	spin_lock_init(&fmp->lock); | 
 | } | 
 |  | 
 | /* Internal meter update - process cnt events and update value */ | 
 | static void fmeter_update(struct fmeter *fmp) | 
 | { | 
 | 	time64_t now; | 
 | 	u32 ticks; | 
 |  | 
 | 	now = ktime_get_seconds(); | 
 | 	ticks = now - fmp->time; | 
 |  | 
 | 	if (ticks == 0) | 
 | 		return; | 
 |  | 
 | 	ticks = min(FM_MAXTICKS, ticks); | 
 | 	while (ticks-- > 0) | 
 | 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | 
 | 	fmp->time = now; | 
 |  | 
 | 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | 
 | 	fmp->cnt = 0; | 
 | } | 
 |  | 
 | /* Process any previous ticks, then bump cnt by one (times scale). */ | 
 | static void fmeter_markevent(struct fmeter *fmp) | 
 | { | 
 | 	spin_lock(&fmp->lock); | 
 | 	fmeter_update(fmp); | 
 | 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | 
 | 	spin_unlock(&fmp->lock); | 
 | } | 
 |  | 
 | /* Process any previous ticks, then return current value. */ | 
 | static int fmeter_getrate(struct fmeter *fmp) | 
 | { | 
 | 	int val; | 
 |  | 
 | 	spin_lock(&fmp->lock); | 
 | 	fmeter_update(fmp); | 
 | 	val = fmp->val; | 
 | 	spin_unlock(&fmp->lock); | 
 | 	return val; | 
 | } | 
 |  | 
 | static struct cpuset *cpuset_attach_old_cs; | 
 |  | 
 | /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ | 
 | static int cpuset_can_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct cpuset *cs; | 
 | 	struct task_struct *task; | 
 | 	int ret; | 
 |  | 
 | 	/* used later by cpuset_attach() */ | 
 | 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); | 
 | 	cs = css_cs(css); | 
 |  | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 |  | 
 | 	/* allow moving tasks into an empty cpuset if on default hierarchy */ | 
 | 	ret = -ENOSPC; | 
 | 	if (!is_in_v2_mode() && | 
 | 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) | 
 | 		goto out_unlock; | 
 |  | 
 | 	cgroup_taskset_for_each(task, css, tset) { | 
 | 		ret = task_can_attach(task, cs->cpus_allowed); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 		ret = security_task_setscheduler(task); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark attach is in progress.  This makes validate_change() fail | 
 | 	 * changes which zero cpus/mems_allowed. | 
 | 	 */ | 
 | 	cs->attach_in_progress++; | 
 | 	ret = 0; | 
 | out_unlock: | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void cpuset_cancel_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct cpuset *cs; | 
 |  | 
 | 	cgroup_taskset_first(tset, &css); | 
 | 	cs = css_cs(css); | 
 |  | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	cs->attach_in_progress--; | 
 | 	if (!cs->attach_in_progress) | 
 | 		wake_up(&cpuset_attach_wq); | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | } | 
 |  | 
 | /* | 
 |  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach() | 
 |  * but we can't allocate it dynamically there.  Define it global and | 
 |  * allocate from cpuset_init(). | 
 |  */ | 
 | static cpumask_var_t cpus_attach; | 
 |  | 
 | static void cpuset_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	/* static buf protected by cpuset_mutex */ | 
 | 	static nodemask_t cpuset_attach_nodemask_to; | 
 | 	struct task_struct *task; | 
 | 	struct task_struct *leader; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct cpuset *cs; | 
 | 	struct cpuset *oldcs = cpuset_attach_old_cs; | 
 |  | 
 | 	cgroup_taskset_first(tset, &css); | 
 | 	cs = css_cs(css); | 
 |  | 
 | 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */ | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 |  | 
 | 	/* prepare for attach */ | 
 | 	if (cs == &top_cpuset) | 
 | 		cpumask_copy(cpus_attach, cpu_possible_mask); | 
 | 	else | 
 | 		guarantee_online_cpus(cs, cpus_attach); | 
 |  | 
 | 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to); | 
 |  | 
 | 	cgroup_taskset_for_each(task, css, tset) { | 
 | 		/* | 
 | 		 * can_attach beforehand should guarantee that this doesn't | 
 | 		 * fail.  TODO: have a better way to handle failure here | 
 | 		 */ | 
 | 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); | 
 |  | 
 | 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); | 
 | 		cpuset_update_task_spread_flag(cs, task); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Change mm for all threadgroup leaders. This is expensive and may | 
 | 	 * sleep and should be moved outside migration path proper. | 
 | 	 */ | 
 | 	cpuset_attach_nodemask_to = cs->effective_mems; | 
 | 	cgroup_taskset_for_each_leader(leader, css, tset) { | 
 | 		struct mm_struct *mm = get_task_mm(leader); | 
 |  | 
 | 		if (mm) { | 
 | 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); | 
 |  | 
 | 			/* | 
 | 			 * old_mems_allowed is the same with mems_allowed | 
 | 			 * here, except if this task is being moved | 
 | 			 * automatically due to hotplug.  In that case | 
 | 			 * @mems_allowed has been updated and is empty, so | 
 | 			 * @old_mems_allowed is the right nodesets that we | 
 | 			 * migrate mm from. | 
 | 			 */ | 
 | 			if (is_memory_migrate(cs)) | 
 | 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, | 
 | 						  &cpuset_attach_nodemask_to); | 
 | 			else | 
 | 				mmput(mm); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cs->old_mems_allowed = cpuset_attach_nodemask_to; | 
 |  | 
 | 	cs->attach_in_progress--; | 
 | 	if (!cs->attach_in_progress) | 
 | 		wake_up(&cpuset_attach_wq); | 
 |  | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | } | 
 |  | 
 | /* The various types of files and directories in a cpuset file system */ | 
 |  | 
 | typedef enum { | 
 | 	FILE_MEMORY_MIGRATE, | 
 | 	FILE_CPULIST, | 
 | 	FILE_MEMLIST, | 
 | 	FILE_EFFECTIVE_CPULIST, | 
 | 	FILE_EFFECTIVE_MEMLIST, | 
 | 	FILE_SUBPARTS_CPULIST, | 
 | 	FILE_CPU_EXCLUSIVE, | 
 | 	FILE_MEM_EXCLUSIVE, | 
 | 	FILE_MEM_HARDWALL, | 
 | 	FILE_SCHED_LOAD_BALANCE, | 
 | 	FILE_PARTITION_ROOT, | 
 | 	FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
 | 	FILE_MEMORY_PRESSURE_ENABLED, | 
 | 	FILE_MEMORY_PRESSURE, | 
 | 	FILE_SPREAD_PAGE, | 
 | 	FILE_SPREAD_SLAB, | 
 | } cpuset_filetype_t; | 
 |  | 
 | static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, | 
 | 			    u64 val) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	int retval = 0; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	if (!is_cpuset_online(cs)) { | 
 | 		retval = -ENODEV; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_CPU_EXCLUSIVE: | 
 | 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEM_EXCLUSIVE: | 
 | 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEM_HARDWALL: | 
 | 		retval = update_flag(CS_MEM_HARDWALL, cs, val); | 
 | 		break; | 
 | 	case FILE_SCHED_LOAD_BALANCE: | 
 | 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEMORY_MIGRATE: | 
 | 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEMORY_PRESSURE_ENABLED: | 
 | 		cpuset_memory_pressure_enabled = !!val; | 
 | 		break; | 
 | 	case FILE_SPREAD_PAGE: | 
 | 		retval = update_flag(CS_SPREAD_PAGE, cs, val); | 
 | 		break; | 
 | 	case FILE_SPREAD_SLAB: | 
 | 		retval = update_flag(CS_SPREAD_SLAB, cs, val); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | out_unlock: | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, | 
 | 			    s64 val) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	int retval = -ENODEV; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	if (!is_cpuset_online(cs)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
 | 		retval = update_relax_domain_level(cs, val); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | out_unlock: | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Common handling for a write to a "cpus" or "mems" file. | 
 |  */ | 
 | static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, | 
 | 				    char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct cpuset *cs = css_cs(of_css(of)); | 
 | 	struct cpuset *trialcs; | 
 | 	int retval = -ENODEV; | 
 |  | 
 | 	buf = strstrip(buf); | 
 |  | 
 | 	/* | 
 | 	 * CPU or memory hotunplug may leave @cs w/o any execution | 
 | 	 * resources, in which case the hotplug code asynchronously updates | 
 | 	 * configuration and transfers all tasks to the nearest ancestor | 
 | 	 * which can execute. | 
 | 	 * | 
 | 	 * As writes to "cpus" or "mems" may restore @cs's execution | 
 | 	 * resources, wait for the previously scheduled operations before | 
 | 	 * proceeding, so that we don't end up keep removing tasks added | 
 | 	 * after execution capability is restored. | 
 | 	 * | 
 | 	 * cpuset_hotplug_work calls back into cgroup core via | 
 | 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs | 
 | 	 * operation like this one can lead to a deadlock through kernfs | 
 | 	 * active_ref protection.  Let's break the protection.  Losing the | 
 | 	 * protection is okay as we check whether @cs is online after | 
 | 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy | 
 | 	 * hierarchies. | 
 | 	 */ | 
 | 	css_get(&cs->css); | 
 | 	kernfs_break_active_protection(of->kn); | 
 | 	flush_work(&cpuset_hotplug_work); | 
 |  | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	if (!is_cpuset_online(cs)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	trialcs = alloc_trial_cpuset(cs); | 
 | 	if (!trialcs) { | 
 | 		retval = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	switch (of_cft(of)->private) { | 
 | 	case FILE_CPULIST: | 
 | 		retval = update_cpumask(cs, trialcs, buf); | 
 | 		break; | 
 | 	case FILE_MEMLIST: | 
 | 		retval = update_nodemask(cs, trialcs, buf); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	free_cpuset(trialcs); | 
 | out_unlock: | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | 	kernfs_unbreak_active_protection(of->kn); | 
 | 	css_put(&cs->css); | 
 | 	flush_workqueue(cpuset_migrate_mm_wq); | 
 | 	return retval ?: nbytes; | 
 | } | 
 |  | 
 | /* | 
 |  * These ascii lists should be read in a single call, by using a user | 
 |  * buffer large enough to hold the entire map.  If read in smaller | 
 |  * chunks, there is no guarantee of atomicity.  Since the display format | 
 |  * used, list of ranges of sequential numbers, is variable length, | 
 |  * and since these maps can change value dynamically, one could read | 
 |  * gibberish by doing partial reads while a list was changing. | 
 |  */ | 
 | static int cpuset_common_seq_show(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct cpuset *cs = css_cs(seq_css(sf)); | 
 | 	cpuset_filetype_t type = seq_cft(sf)->private; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_CPULIST: | 
 | 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested)); | 
 | 		break; | 
 | 	case FILE_MEMLIST: | 
 | 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); | 
 | 		break; | 
 | 	case FILE_EFFECTIVE_CPULIST: | 
 | 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); | 
 | 		break; | 
 | 	case FILE_EFFECTIVE_MEMLIST: | 
 | 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); | 
 | 		break; | 
 | 	case FILE_SUBPARTS_CPULIST: | 
 | 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&callback_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	switch (type) { | 
 | 	case FILE_CPU_EXCLUSIVE: | 
 | 		return is_cpu_exclusive(cs); | 
 | 	case FILE_MEM_EXCLUSIVE: | 
 | 		return is_mem_exclusive(cs); | 
 | 	case FILE_MEM_HARDWALL: | 
 | 		return is_mem_hardwall(cs); | 
 | 	case FILE_SCHED_LOAD_BALANCE: | 
 | 		return is_sched_load_balance(cs); | 
 | 	case FILE_MEMORY_MIGRATE: | 
 | 		return is_memory_migrate(cs); | 
 | 	case FILE_MEMORY_PRESSURE_ENABLED: | 
 | 		return cpuset_memory_pressure_enabled; | 
 | 	case FILE_MEMORY_PRESSURE: | 
 | 		return fmeter_getrate(&cs->fmeter); | 
 | 	case FILE_SPREAD_PAGE: | 
 | 		return is_spread_page(cs); | 
 | 	case FILE_SPREAD_SLAB: | 
 | 		return is_spread_slab(cs); | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* Unreachable but makes gcc happy */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	switch (type) { | 
 | 	case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
 | 		return cs->relax_domain_level; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* Unrechable but makes gcc happy */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sched_partition_show(struct seq_file *seq, void *v) | 
 | { | 
 | 	struct cpuset *cs = css_cs(seq_css(seq)); | 
 |  | 
 | 	switch (cs->partition_root_state) { | 
 | 	case PRS_ENABLED: | 
 | 		seq_puts(seq, "root\n"); | 
 | 		break; | 
 | 	case PRS_DISABLED: | 
 | 		seq_puts(seq, "member\n"); | 
 | 		break; | 
 | 	case PRS_ERROR: | 
 | 		seq_puts(seq, "root invalid\n"); | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, | 
 | 				     size_t nbytes, loff_t off) | 
 | { | 
 | 	struct cpuset *cs = css_cs(of_css(of)); | 
 | 	int val; | 
 | 	int retval = -ENODEV; | 
 |  | 
 | 	buf = strstrip(buf); | 
 |  | 
 | 	/* | 
 | 	 * Convert "root" to ENABLED, and convert "member" to DISABLED. | 
 | 	 */ | 
 | 	if (!strcmp(buf, "root")) | 
 | 		val = PRS_ENABLED; | 
 | 	else if (!strcmp(buf, "member")) | 
 | 		val = PRS_DISABLED; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	css_get(&cs->css); | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	if (!is_cpuset_online(cs)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = update_prstate(cs, val); | 
 | out_unlock: | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | 	css_put(&cs->css); | 
 | 	return retval ?: nbytes; | 
 | } | 
 |  | 
 | /* | 
 |  * for the common functions, 'private' gives the type of file | 
 |  */ | 
 |  | 
 | static struct cftype legacy_files[] = { | 
 | 	{ | 
 | 		.name = "cpus", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.write = cpuset_write_resmask, | 
 | 		.max_write_len = (100U + 6 * NR_CPUS), | 
 | 		.private = FILE_CPULIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mems", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.write = cpuset_write_resmask, | 
 | 		.max_write_len = (100U + 6 * MAX_NUMNODES), | 
 | 		.private = FILE_MEMLIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "effective_cpus", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.private = FILE_EFFECTIVE_CPULIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "effective_mems", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.private = FILE_EFFECTIVE_MEMLIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "cpu_exclusive", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_CPU_EXCLUSIVE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mem_exclusive", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEM_EXCLUSIVE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mem_hardwall", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEM_HARDWALL, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "sched_load_balance", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_SCHED_LOAD_BALANCE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "sched_relax_domain_level", | 
 | 		.read_s64 = cpuset_read_s64, | 
 | 		.write_s64 = cpuset_write_s64, | 
 | 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_migrate", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEMORY_MIGRATE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_pressure", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.private = FILE_MEMORY_PRESSURE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_spread_page", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_SPREAD_PAGE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_spread_slab", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_SPREAD_SLAB, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_pressure_enabled", | 
 | 		.flags = CFTYPE_ONLY_ON_ROOT, | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEMORY_PRESSURE_ENABLED, | 
 | 	}, | 
 |  | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | /* | 
 |  * This is currently a minimal set for the default hierarchy. It can be | 
 |  * expanded later on by migrating more features and control files from v1. | 
 |  */ | 
 | static struct cftype dfl_files[] = { | 
 | 	{ | 
 | 		.name = "cpus", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.write = cpuset_write_resmask, | 
 | 		.max_write_len = (100U + 6 * NR_CPUS), | 
 | 		.private = FILE_CPULIST, | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mems", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.write = cpuset_write_resmask, | 
 | 		.max_write_len = (100U + 6 * MAX_NUMNODES), | 
 | 		.private = FILE_MEMLIST, | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "cpus.effective", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.private = FILE_EFFECTIVE_CPULIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mems.effective", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.private = FILE_EFFECTIVE_MEMLIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "cpus.partition", | 
 | 		.seq_show = sched_partition_show, | 
 | 		.write = sched_partition_write, | 
 | 		.private = FILE_PARTITION_ROOT, | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "cpus.subpartitions", | 
 | 		.seq_show = cpuset_common_seq_show, | 
 | 		.private = FILE_SUBPARTS_CPULIST, | 
 | 		.flags = CFTYPE_DEBUG, | 
 | 	}, | 
 |  | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  *	cpuset_css_alloc - allocate a cpuset css | 
 |  *	cgrp:	control group that the new cpuset will be part of | 
 |  */ | 
 |  | 
 | static struct cgroup_subsys_state * | 
 | cpuset_css_alloc(struct cgroup_subsys_state *parent_css) | 
 | { | 
 | 	struct cpuset *cs; | 
 |  | 
 | 	if (!parent_css) | 
 | 		return &top_cpuset.css; | 
 |  | 
 | 	cs = kzalloc(sizeof(*cs), GFP_KERNEL); | 
 | 	if (!cs) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (alloc_cpumasks(cs, NULL)) { | 
 | 		kfree(cs); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
 | 	nodes_clear(cs->mems_allowed); | 
 | 	nodes_clear(cs->effective_mems); | 
 | 	fmeter_init(&cs->fmeter); | 
 | 	cs->relax_domain_level = -1; | 
 |  | 
 | 	return &cs->css; | 
 | } | 
 |  | 
 | static int cpuset_css_online(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 | 	struct cpuset *parent = parent_cs(cs); | 
 | 	struct cpuset *tmp_cs; | 
 | 	struct cgroup_subsys_state *pos_css; | 
 |  | 
 | 	if (!parent) | 
 | 		return 0; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 |  | 
 | 	set_bit(CS_ONLINE, &cs->flags); | 
 | 	if (is_spread_page(parent)) | 
 | 		set_bit(CS_SPREAD_PAGE, &cs->flags); | 
 | 	if (is_spread_slab(parent)) | 
 | 		set_bit(CS_SPREAD_SLAB, &cs->flags); | 
 |  | 
 | 	cpuset_inc(); | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	if (is_in_v2_mode()) { | 
 | 		cpumask_copy(cs->effective_cpus, parent->effective_cpus); | 
 | 		cs->effective_mems = parent->effective_mems; | 
 | 		cs->use_parent_ecpus = true; | 
 | 		parent->child_ecpus_count++; | 
 | 	} | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is | 
 | 	 * set.  This flag handling is implemented in cgroup core for | 
 | 	 * histrical reasons - the flag may be specified during mount. | 
 | 	 * | 
 | 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we | 
 | 	 * refuse to clone the configuration - thereby refusing the task to | 
 | 	 * be entered, and as a result refusing the sys_unshare() or | 
 | 	 * clone() which initiated it.  If this becomes a problem for some | 
 | 	 * users who wish to allow that scenario, then this could be | 
 | 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | 
 | 	 * (and likewise for mems) to the new cgroup. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	cpuset_for_each_child(tmp_cs, pos_css, parent) { | 
 | 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { | 
 | 			rcu_read_unlock(); | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	cs->mems_allowed = parent->mems_allowed; | 
 | 	cs->effective_mems = parent->mems_allowed; | 
 | 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); | 
 | 	cpumask_copy(cs->cpus_requested, parent->cpus_requested); | 
 | 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed); | 
 | 	spin_unlock_irq(&callback_lock); | 
 | out_unlock: | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If the cpuset being removed has its flag 'sched_load_balance' | 
 |  * enabled, then simulate turning sched_load_balance off, which | 
 |  * will call rebuild_sched_domains_locked(). That is not needed | 
 |  * in the default hierarchy where only changes in partition | 
 |  * will cause repartitioning. | 
 |  * | 
 |  * If the cpuset has the 'sched.partition' flag enabled, simulate | 
 |  * turning 'sched.partition" off. | 
 |  */ | 
 |  | 
 | static void cpuset_css_offline(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 |  | 
 | 	get_online_cpus(); | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 |  | 
 | 	if (is_partition_root(cs)) | 
 | 		update_prstate(cs, 0); | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && | 
 | 	    is_sched_load_balance(cs)) | 
 | 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | 
 |  | 
 | 	if (cs->use_parent_ecpus) { | 
 | 		struct cpuset *parent = parent_cs(cs); | 
 |  | 
 | 		cs->use_parent_ecpus = false; | 
 | 		parent->child_ecpus_count--; | 
 | 	} | 
 |  | 
 | 	cpuset_dec(); | 
 | 	clear_bit(CS_ONLINE, &cs->flags); | 
 |  | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | 	put_online_cpus(); | 
 | } | 
 |  | 
 | static void cpuset_css_free(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct cpuset *cs = css_cs(css); | 
 |  | 
 | 	free_cpuset(cs); | 
 | } | 
 |  | 
 | static void cpuset_bind(struct cgroup_subsys_state *root_css) | 
 | { | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | 	spin_lock_irq(&callback_lock); | 
 |  | 
 | 	if (is_in_v2_mode()) { | 
 | 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); | 
 | 		top_cpuset.mems_allowed = node_possible_map; | 
 | 	} else { | 
 | 		cpumask_copy(top_cpuset.cpus_allowed, | 
 | 			     top_cpuset.effective_cpus); | 
 | 		top_cpuset.mems_allowed = top_cpuset.effective_mems; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&callback_lock); | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure the new task conform to the current state of its parent, | 
 |  * which could have been changed by cpuset just after it inherits the | 
 |  * state from the parent and before it sits on the cgroup's task list. | 
 |  */ | 
 | static void cpuset_fork(struct task_struct *task) | 
 | { | 
 | 	if (task_css_is_root(task, cpuset_cgrp_id)) | 
 | 		return; | 
 |  | 
 | 	set_cpus_allowed_ptr(task, current->cpus_ptr); | 
 | 	task->mems_allowed = current->mems_allowed; | 
 | } | 
 |  | 
 | struct cgroup_subsys cpuset_cgrp_subsys = { | 
 | 	.css_alloc	= cpuset_css_alloc, | 
 | 	.css_online	= cpuset_css_online, | 
 | 	.css_offline	= cpuset_css_offline, | 
 | 	.css_free	= cpuset_css_free, | 
 | 	.can_attach	= cpuset_can_attach, | 
 | 	.cancel_attach	= cpuset_cancel_attach, | 
 | 	.attach		= cpuset_attach, | 
 | 	.post_attach	= cpuset_post_attach, | 
 | 	.bind		= cpuset_bind, | 
 | 	.fork		= cpuset_fork, | 
 | 	.legacy_cftypes	= legacy_files, | 
 | 	.dfl_cftypes	= dfl_files, | 
 | 	.early_init	= true, | 
 | 	.threaded	= true, | 
 | }; | 
 |  | 
 | /** | 
 |  * cpuset_init - initialize cpusets at system boot | 
 |  * | 
 |  * Description: Initialize top_cpuset | 
 |  **/ | 
 |  | 
 | int __init cpuset_init(void) | 
 | { | 
 | 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); | 
 |  | 
 | 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); | 
 | 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); | 
 | 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); | 
 | 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL)); | 
 |  | 
 | 	cpumask_setall(top_cpuset.cpus_allowed); | 
 | 	cpumask_setall(top_cpuset.cpus_requested); | 
 | 	nodes_setall(top_cpuset.mems_allowed); | 
 | 	cpumask_setall(top_cpuset.effective_cpus); | 
 | 	nodes_setall(top_cpuset.effective_mems); | 
 |  | 
 | 	fmeter_init(&top_cpuset.fmeter); | 
 | 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); | 
 | 	top_cpuset.relax_domain_level = -1; | 
 |  | 
 | 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If CPU and/or memory hotplug handlers, below, unplug any CPUs | 
 |  * or memory nodes, we need to walk over the cpuset hierarchy, | 
 |  * removing that CPU or node from all cpusets.  If this removes the | 
 |  * last CPU or node from a cpuset, then move the tasks in the empty | 
 |  * cpuset to its next-highest non-empty parent. | 
 |  */ | 
 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) | 
 | { | 
 | 	struct cpuset *parent; | 
 |  | 
 | 	/* | 
 | 	 * Find its next-highest non-empty parent, (top cpuset | 
 | 	 * has online cpus, so can't be empty). | 
 | 	 */ | 
 | 	parent = parent_cs(cs); | 
 | 	while (cpumask_empty(parent->cpus_allowed) || | 
 | 			nodes_empty(parent->mems_allowed)) | 
 | 		parent = parent_cs(parent); | 
 |  | 
 | 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { | 
 | 		pr_err("cpuset: failed to transfer tasks out of empty cpuset "); | 
 | 		pr_cont_cgroup_name(cs->css.cgroup); | 
 | 		pr_cont("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | hotplug_update_tasks_legacy(struct cpuset *cs, | 
 | 			    struct cpumask *new_cpus, nodemask_t *new_mems, | 
 | 			    bool cpus_updated, bool mems_updated) | 
 | { | 
 | 	bool is_empty; | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	cpumask_copy(cs->cpus_allowed, new_cpus); | 
 | 	cpumask_copy(cs->effective_cpus, new_cpus); | 
 | 	cs->mems_allowed = *new_mems; | 
 | 	cs->effective_mems = *new_mems; | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	/* | 
 | 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty, | 
 | 	 * as the tasks will be migratecd to an ancestor. | 
 | 	 */ | 
 | 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) | 
 | 		update_tasks_cpumask(cs); | 
 | 	if (mems_updated && !nodes_empty(cs->mems_allowed)) | 
 | 		update_tasks_nodemask(cs); | 
 |  | 
 | 	is_empty = cpumask_empty(cs->cpus_allowed) || | 
 | 		   nodes_empty(cs->mems_allowed); | 
 |  | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * Move tasks to the nearest ancestor with execution resources, | 
 | 	 * This is full cgroup operation which will also call back into | 
 | 	 * cpuset. Should be done outside any lock. | 
 | 	 */ | 
 | 	if (is_empty) | 
 | 		remove_tasks_in_empty_cpuset(cs); | 
 |  | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 | } | 
 |  | 
 | static void | 
 | hotplug_update_tasks(struct cpuset *cs, | 
 | 		     struct cpumask *new_cpus, nodemask_t *new_mems, | 
 | 		     bool cpus_updated, bool mems_updated) | 
 | { | 
 | 	if (cpumask_empty(new_cpus)) | 
 | 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); | 
 | 	if (nodes_empty(*new_mems)) | 
 | 		*new_mems = parent_cs(cs)->effective_mems; | 
 |  | 
 | 	spin_lock_irq(&callback_lock); | 
 | 	cpumask_copy(cs->effective_cpus, new_cpus); | 
 | 	cs->effective_mems = *new_mems; | 
 | 	spin_unlock_irq(&callback_lock); | 
 |  | 
 | 	if (cpus_updated) | 
 | 		update_tasks_cpumask(cs); | 
 | 	if (mems_updated) | 
 | 		update_tasks_nodemask(cs); | 
 | } | 
 |  | 
 | static bool force_rebuild; | 
 |  | 
 | void cpuset_force_rebuild(void) | 
 | { | 
 | 	force_rebuild = true; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug | 
 |  * @cs: cpuset in interest | 
 |  * @tmp: the tmpmasks structure pointer | 
 |  * | 
 |  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone | 
 |  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory, | 
 |  * all its tasks are moved to the nearest ancestor with both resources. | 
 |  */ | 
 | static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) | 
 | { | 
 | 	static cpumask_t new_cpus; | 
 | 	static nodemask_t new_mems; | 
 | 	bool cpus_updated; | 
 | 	bool mems_updated; | 
 | 	struct cpuset *parent; | 
 | retry: | 
 | 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); | 
 |  | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 |  | 
 | 	/* | 
 | 	 * We have raced with task attaching. We wait until attaching | 
 | 	 * is finished, so we won't attach a task to an empty cpuset. | 
 | 	 */ | 
 | 	if (cs->attach_in_progress) { | 
 | 		percpu_up_write(&cpuset_rwsem); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	parent =  parent_cs(cs); | 
 | 	compute_effective_cpumask(&new_cpus, cs, parent); | 
 | 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); | 
 |  | 
 | 	if (cs->nr_subparts_cpus) | 
 | 		/* | 
 | 		 * Make sure that CPUs allocated to child partitions | 
 | 		 * do not show up in effective_cpus. | 
 | 		 */ | 
 | 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); | 
 |  | 
 | 	if (!tmp || !cs->partition_root_state) | 
 | 		goto update_tasks; | 
 |  | 
 | 	/* | 
 | 	 * In the unlikely event that a partition root has empty | 
 | 	 * effective_cpus or its parent becomes erroneous, we have to | 
 | 	 * transition it to the erroneous state. | 
 | 	 */ | 
 | 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || | 
 | 	   (parent->partition_root_state == PRS_ERROR))) { | 
 | 		if (cs->nr_subparts_cpus) { | 
 | 			cs->nr_subparts_cpus = 0; | 
 | 			cpumask_clear(cs->subparts_cpus); | 
 | 			compute_effective_cpumask(&new_cpus, cs, parent); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the effective_cpus is empty because the child | 
 | 		 * partitions take away all the CPUs, we can keep | 
 | 		 * the current partition and let the child partitions | 
 | 		 * fight for available CPUs. | 
 | 		 */ | 
 | 		if ((parent->partition_root_state == PRS_ERROR) || | 
 | 		     cpumask_empty(&new_cpus)) { | 
 | 			update_parent_subparts_cpumask(cs, partcmd_disable, | 
 | 						       NULL, tmp); | 
 | 			cs->partition_root_state = PRS_ERROR; | 
 | 		} | 
 | 		cpuset_force_rebuild(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * On the other hand, an erroneous partition root may be transitioned | 
 | 	 * back to a regular one or a partition root with no CPU allocated | 
 | 	 * from the parent may change to erroneous. | 
 | 	 */ | 
 | 	if (is_partition_root(parent) && | 
 | 	   ((cs->partition_root_state == PRS_ERROR) || | 
 | 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && | 
 | 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) | 
 | 		cpuset_force_rebuild(); | 
 |  | 
 | update_tasks: | 
 | 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); | 
 | 	mems_updated = !nodes_equal(new_mems, cs->effective_mems); | 
 |  | 
 | 	if (is_in_v2_mode()) | 
 | 		hotplug_update_tasks(cs, &new_cpus, &new_mems, | 
 | 				     cpus_updated, mems_updated); | 
 | 	else | 
 | 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, | 
 | 					    cpus_updated, mems_updated); | 
 |  | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset | 
 |  * | 
 |  * This function is called after either CPU or memory configuration has | 
 |  * changed and updates cpuset accordingly.  The top_cpuset is always | 
 |  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in | 
 |  * order to make cpusets transparent (of no affect) on systems that are | 
 |  * actively using CPU hotplug but making no active use of cpusets. | 
 |  * | 
 |  * Non-root cpusets are only affected by offlining.  If any CPUs or memory | 
 |  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on | 
 |  * all descendants. | 
 |  * | 
 |  * Note that CPU offlining during suspend is ignored.  We don't modify | 
 |  * cpusets across suspend/resume cycles at all. | 
 |  */ | 
 | static void cpuset_hotplug_workfn(struct work_struct *work) | 
 | { | 
 | 	static cpumask_t new_cpus; | 
 | 	static nodemask_t new_mems; | 
 | 	bool cpus_updated, mems_updated; | 
 | 	bool on_dfl = is_in_v2_mode(); | 
 | 	struct tmpmasks tmp, *ptmp = NULL; | 
 |  | 
 | 	if (on_dfl && !alloc_cpumasks(NULL, &tmp)) | 
 | 		ptmp = &tmp; | 
 |  | 
 | 	percpu_down_write(&cpuset_rwsem); | 
 |  | 
 | 	/* fetch the available cpus/mems and find out which changed how */ | 
 | 	cpumask_copy(&new_cpus, cpu_active_mask); | 
 | 	new_mems = node_states[N_MEMORY]; | 
 |  | 
 | 	/* | 
 | 	 * If subparts_cpus is populated, it is likely that the check below | 
 | 	 * will produce a false positive on cpus_updated when the cpu list | 
 | 	 * isn't changed. It is extra work, but it is better to be safe. | 
 | 	 */ | 
 | 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); | 
 | 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); | 
 |  | 
 | 	/* | 
 | 	 * In the rare case that hotplug removes all the cpus in subparts_cpus, | 
 | 	 * we assumed that cpus are updated. | 
 | 	 */ | 
 | 	if (!cpus_updated && top_cpuset.nr_subparts_cpus) | 
 | 		cpus_updated = true; | 
 |  | 
 | 	/* synchronize cpus_allowed to cpu_active_mask */ | 
 | 	if (cpus_updated) { | 
 | 		spin_lock_irq(&callback_lock); | 
 | 		if (!on_dfl) | 
 | 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); | 
 | 		/* | 
 | 		 * Make sure that CPUs allocated to child partitions | 
 | 		 * do not show up in effective_cpus. If no CPU is left, | 
 | 		 * we clear the subparts_cpus & let the child partitions | 
 | 		 * fight for the CPUs again. | 
 | 		 */ | 
 | 		if (top_cpuset.nr_subparts_cpus) { | 
 | 			if (cpumask_subset(&new_cpus, | 
 | 					   top_cpuset.subparts_cpus)) { | 
 | 				top_cpuset.nr_subparts_cpus = 0; | 
 | 				cpumask_clear(top_cpuset.subparts_cpus); | 
 | 			} else { | 
 | 				cpumask_andnot(&new_cpus, &new_cpus, | 
 | 					       top_cpuset.subparts_cpus); | 
 | 			} | 
 | 		} | 
 | 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus); | 
 | 		spin_unlock_irq(&callback_lock); | 
 | 		/* we don't mess with cpumasks of tasks in top_cpuset */ | 
 | 	} | 
 |  | 
 | 	/* synchronize mems_allowed to N_MEMORY */ | 
 | 	if (mems_updated) { | 
 | 		spin_lock_irq(&callback_lock); | 
 | 		if (!on_dfl) | 
 | 			top_cpuset.mems_allowed = new_mems; | 
 | 		top_cpuset.effective_mems = new_mems; | 
 | 		spin_unlock_irq(&callback_lock); | 
 | 		update_tasks_nodemask(&top_cpuset); | 
 | 	} | 
 |  | 
 | 	percpu_up_write(&cpuset_rwsem); | 
 |  | 
 | 	/* if cpus or mems changed, we need to propagate to descendants */ | 
 | 	if (cpus_updated || mems_updated) { | 
 | 		struct cpuset *cs; | 
 | 		struct cgroup_subsys_state *pos_css; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { | 
 | 			if (cs == &top_cpuset || !css_tryget_online(&cs->css)) | 
 | 				continue; | 
 | 			rcu_read_unlock(); | 
 |  | 
 | 			cpuset_hotplug_update_tasks(cs, ptmp); | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			css_put(&cs->css); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	/* rebuild sched domains if cpus_allowed has changed */ | 
 | 	if (cpus_updated || force_rebuild) { | 
 | 		force_rebuild = false; | 
 | 		rebuild_sched_domains(); | 
 | 	} | 
 |  | 
 | 	free_cpumasks(NULL, ptmp); | 
 | } | 
 |  | 
 | void cpuset_update_active_cpus(void) | 
 | { | 
 | 	/* | 
 | 	 * We're inside cpu hotplug critical region which usually nests | 
 | 	 * inside cgroup synchronization.  Bounce actual hotplug processing | 
 | 	 * to a work item to avoid reverse locking order. | 
 | 	 */ | 
 | 	schedule_work(&cpuset_hotplug_work); | 
 | } | 
 |  | 
 | void cpuset_wait_for_hotplug(void) | 
 | { | 
 | 	flush_work(&cpuset_hotplug_work); | 
 | } | 
 |  | 
 | /* | 
 |  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. | 
 |  * Call this routine anytime after node_states[N_MEMORY] changes. | 
 |  * See cpuset_update_active_cpus() for CPU hotplug handling. | 
 |  */ | 
 | static int cpuset_track_online_nodes(struct notifier_block *self, | 
 | 				unsigned long action, void *arg) | 
 | { | 
 | 	schedule_work(&cpuset_hotplug_work); | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block cpuset_track_online_nodes_nb = { | 
 | 	.notifier_call = cpuset_track_online_nodes, | 
 | 	.priority = 10,		/* ??! */ | 
 | }; | 
 |  | 
 | /** | 
 |  * cpuset_init_smp - initialize cpus_allowed | 
 |  * | 
 |  * Description: Finish top cpuset after cpu, node maps are initialized | 
 |  */ | 
 | void __init cpuset_init_smp(void) | 
 | { | 
 | 	/* | 
 | 	 * cpus_allowd/mems_allowed set to v2 values in the initial | 
 | 	 * cpuset_bind() call will be reset to v1 values in another | 
 | 	 * cpuset_bind() call when v1 cpuset is mounted. | 
 | 	 */ | 
 | 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; | 
 |  | 
 | 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); | 
 | 	top_cpuset.effective_mems = node_states[N_MEMORY]; | 
 |  | 
 | 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb); | 
 |  | 
 | 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); | 
 | 	BUG_ON(!cpuset_migrate_mm_wq); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
 |  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
 |  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. | 
 |  * | 
 |  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset | 
 |  * attached to the specified @tsk.  Guaranteed to return some non-empty | 
 |  * subset of cpu_online_mask, even if this means going outside the | 
 |  * tasks cpuset. | 
 |  **/ | 
 |  | 
 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&callback_lock, flags); | 
 | 	rcu_read_lock(); | 
 | 	guarantee_online_cpus(task_cs(tsk), pmask); | 
 | 	rcu_read_unlock(); | 
 | 	spin_unlock_irqrestore(&callback_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. | 
 |  * @tsk: pointer to task_struct with which the scheduler is struggling | 
 |  * | 
 |  * Description: In the case that the scheduler cannot find an allowed cpu in | 
 |  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy | 
 |  * mode however, this value is the same as task_cs(tsk)->effective_cpus, | 
 |  * which will not contain a sane cpumask during cases such as cpu hotplugging. | 
 |  * This is the absolute last resort for the scheduler and it is only used if | 
 |  * _every_ other avenue has been traveled. | 
 |  **/ | 
 |  | 
 | void cpuset_cpus_allowed_fallback(struct task_struct *tsk) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	do_set_cpus_allowed(tsk, is_in_v2_mode() ? | 
 | 		task_cs(tsk)->cpus_allowed : cpu_possible_mask); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * We own tsk->cpus_allowed, nobody can change it under us. | 
 | 	 * | 
 | 	 * But we used cs && cs->cpus_allowed lockless and thus can | 
 | 	 * race with cgroup_attach_task() or update_cpumask() and get | 
 | 	 * the wrong tsk->cpus_allowed. However, both cases imply the | 
 | 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | 
 | 	 * which takes task_rq_lock(). | 
 | 	 * | 
 | 	 * If we are called after it dropped the lock we must see all | 
 | 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | 
 | 	 * set any mask even if it is not right from task_cs() pov, | 
 | 	 * the pending set_cpus_allowed_ptr() will fix things. | 
 | 	 * | 
 | 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask | 
 | 	 * if required. | 
 | 	 */ | 
 | } | 
 |  | 
 | void __init cpuset_init_current_mems_allowed(void) | 
 | { | 
 | 	nodes_setall(current->mems_allowed); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | 
 |  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | 
 |  * | 
 |  * Description: Returns the nodemask_t mems_allowed of the cpuset | 
 |  * attached to the specified @tsk.  Guaranteed to return some non-empty | 
 |  * subset of node_states[N_MEMORY], even if this means going outside the | 
 |  * tasks cpuset. | 
 |  **/ | 
 |  | 
 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | 
 | { | 
 | 	nodemask_t mask; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&callback_lock, flags); | 
 | 	rcu_read_lock(); | 
 | 	guarantee_online_mems(task_cs(tsk), &mask); | 
 | 	rcu_read_unlock(); | 
 | 	spin_unlock_irqrestore(&callback_lock, flags); | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed | 
 |  * @nodemask: the nodemask to be checked | 
 |  * | 
 |  * Are any of the nodes in the nodemask allowed in current->mems_allowed? | 
 |  */ | 
 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 
 | { | 
 | 	return nodes_intersects(*nodemask, current->mems_allowed); | 
 | } | 
 |  | 
 | /* | 
 |  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or | 
 |  * mem_hardwall ancestor to the specified cpuset.  Call holding | 
 |  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall | 
 |  * (an unusual configuration), then returns the root cpuset. | 
 |  */ | 
 | static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) | 
 | { | 
 | 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) | 
 | 		cs = parent_cs(cs); | 
 | 	return cs; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_node_allowed - Can we allocate on a memory node? | 
 |  * @node: is this an allowed node? | 
 |  * @gfp_mask: memory allocation flags | 
 |  * | 
 |  * If we're in interrupt, yes, we can always allocate.  If @node is set in | 
 |  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this | 
 |  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, | 
 |  * yes.  If current has access to memory reserves as an oom victim, yes. | 
 |  * Otherwise, no. | 
 |  * | 
 |  * GFP_USER allocations are marked with the __GFP_HARDWALL bit, | 
 |  * and do not allow allocations outside the current tasks cpuset | 
 |  * unless the task has been OOM killed. | 
 |  * GFP_KERNEL allocations are not so marked, so can escape to the | 
 |  * nearest enclosing hardwalled ancestor cpuset. | 
 |  * | 
 |  * Scanning up parent cpusets requires callback_lock.  The | 
 |  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | 
 |  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | 
 |  * current tasks mems_allowed came up empty on the first pass over | 
 |  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the | 
 |  * cpuset are short of memory, might require taking the callback_lock. | 
 |  * | 
 |  * The first call here from mm/page_alloc:get_page_from_freelist() | 
 |  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, | 
 |  * so no allocation on a node outside the cpuset is allowed (unless | 
 |  * in interrupt, of course). | 
 |  * | 
 |  * The second pass through get_page_from_freelist() doesn't even call | 
 |  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages() | 
 |  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | 
 |  * in alloc_flags.  That logic and the checks below have the combined | 
 |  * affect that: | 
 |  *	in_interrupt - any node ok (current task context irrelevant) | 
 |  *	GFP_ATOMIC   - any node ok | 
 |  *	tsk_is_oom_victim   - any node ok | 
 |  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok | 
 |  *	GFP_USER     - only nodes in current tasks mems allowed ok. | 
 |  */ | 
 | bool __cpuset_node_allowed(int node, gfp_t gfp_mask) | 
 | { | 
 | 	struct cpuset *cs;		/* current cpuset ancestors */ | 
 | 	int allowed;			/* is allocation in zone z allowed? */ | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (in_interrupt()) | 
 | 		return true; | 
 | 	if (node_isset(node, current->mems_allowed)) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Allow tasks that have access to memory reserves because they have | 
 | 	 * been OOM killed to get memory anywhere. | 
 | 	 */ | 
 | 	if (unlikely(tsk_is_oom_victim(current))) | 
 | 		return true; | 
 | 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */ | 
 | 		return false; | 
 |  | 
 | 	if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
 | 		return true; | 
 |  | 
 | 	/* Not hardwall and node outside mems_allowed: scan up cpusets */ | 
 | 	spin_lock_irqsave(&callback_lock, flags); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	cs = nearest_hardwall_ancestor(task_cs(current)); | 
 | 	allowed = node_isset(node, cs->mems_allowed); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	spin_unlock_irqrestore(&callback_lock, flags); | 
 | 	return allowed; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_mem_spread_node() - On which node to begin search for a file page | 
 |  * cpuset_slab_spread_node() - On which node to begin search for a slab page | 
 |  * | 
 |  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 
 |  * tasks in a cpuset with is_spread_page or is_spread_slab set), | 
 |  * and if the memory allocation used cpuset_mem_spread_node() | 
 |  * to determine on which node to start looking, as it will for | 
 |  * certain page cache or slab cache pages such as used for file | 
 |  * system buffers and inode caches, then instead of starting on the | 
 |  * local node to look for a free page, rather spread the starting | 
 |  * node around the tasks mems_allowed nodes. | 
 |  * | 
 |  * We don't have to worry about the returned node being offline | 
 |  * because "it can't happen", and even if it did, it would be ok. | 
 |  * | 
 |  * The routines calling guarantee_online_mems() are careful to | 
 |  * only set nodes in task->mems_allowed that are online.  So it | 
 |  * should not be possible for the following code to return an | 
 |  * offline node.  But if it did, that would be ok, as this routine | 
 |  * is not returning the node where the allocation must be, only | 
 |  * the node where the search should start.  The zonelist passed to | 
 |  * __alloc_pages() will include all nodes.  If the slab allocator | 
 |  * is passed an offline node, it will fall back to the local node. | 
 |  * See kmem_cache_alloc_node(). | 
 |  */ | 
 |  | 
 | static int cpuset_spread_node(int *rotor) | 
 | { | 
 | 	return *rotor = next_node_in(*rotor, current->mems_allowed); | 
 | } | 
 |  | 
 | int cpuset_mem_spread_node(void) | 
 | { | 
 | 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) | 
 | 		current->cpuset_mem_spread_rotor = | 
 | 			node_random(¤t->mems_allowed); | 
 |  | 
 | 	return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); | 
 | } | 
 |  | 
 | int cpuset_slab_spread_node(void) | 
 | { | 
 | 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) | 
 | 		current->cpuset_slab_spread_rotor = | 
 | 			node_random(¤t->mems_allowed); | 
 |  | 
 | 	return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 
 |  | 
 | /** | 
 |  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? | 
 |  * @tsk1: pointer to task_struct of some task. | 
 |  * @tsk2: pointer to task_struct of some other task. | 
 |  * | 
 |  * Description: Return true if @tsk1's mems_allowed intersects the | 
 |  * mems_allowed of @tsk2.  Used by the OOM killer to determine if | 
 |  * one of the task's memory usage might impact the memory available | 
 |  * to the other. | 
 |  **/ | 
 |  | 
 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
 | 				   const struct task_struct *tsk2) | 
 | { | 
 | 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed | 
 |  * | 
 |  * Description: Prints current's name, cpuset name, and cached copy of its | 
 |  * mems_allowed to the kernel log. | 
 |  */ | 
 | void cpuset_print_current_mems_allowed(void) | 
 | { | 
 | 	struct cgroup *cgrp; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	cgrp = task_cs(current)->css.cgroup; | 
 | 	pr_cont(",cpuset="); | 
 | 	pr_cont_cgroup_name(cgrp); | 
 | 	pr_cont(",mems_allowed=%*pbl", | 
 | 		nodemask_pr_args(¤t->mems_allowed)); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Collection of memory_pressure is suppressed unless | 
 |  * this flag is enabled by writing "1" to the special | 
 |  * cpuset file 'memory_pressure_enabled' in the root cpuset. | 
 |  */ | 
 |  | 
 | int cpuset_memory_pressure_enabled __read_mostly; | 
 |  | 
 | /** | 
 |  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | 
 |  * | 
 |  * Keep a running average of the rate of synchronous (direct) | 
 |  * page reclaim efforts initiated by tasks in each cpuset. | 
 |  * | 
 |  * This represents the rate at which some task in the cpuset | 
 |  * ran low on memory on all nodes it was allowed to use, and | 
 |  * had to enter the kernels page reclaim code in an effort to | 
 |  * create more free memory by tossing clean pages or swapping | 
 |  * or writing dirty pages. | 
 |  * | 
 |  * Display to user space in the per-cpuset read-only file | 
 |  * "memory_pressure".  Value displayed is an integer | 
 |  * representing the recent rate of entry into the synchronous | 
 |  * (direct) page reclaim by any task attached to the cpuset. | 
 |  **/ | 
 |  | 
 | void __cpuset_memory_pressure_bump(void) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	fmeter_markevent(&task_cs(current)->fmeter); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_PID_CPUSET | 
 | /* | 
 |  * proc_cpuset_show() | 
 |  *  - Print tasks cpuset path into seq_file. | 
 |  *  - Used for /proc/<pid>/cpuset. | 
 |  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 
 |  *    doesn't really matter if tsk->cpuset changes after we read it, | 
 |  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it | 
 |  *    anyway. | 
 |  */ | 
 | int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, | 
 | 		     struct pid *pid, struct task_struct *tsk) | 
 | { | 
 | 	char *buf; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	int retval; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	buf = kmalloc(PATH_MAX, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		goto out; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	spin_lock_irq(&css_set_lock); | 
 | 	css = task_css(tsk, cpuset_cgrp_id); | 
 | 	retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, | 
 | 				       current->nsproxy->cgroup_ns); | 
 | 	spin_unlock_irq(&css_set_lock); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (retval >= PATH_MAX) | 
 | 		retval = -ENAMETOOLONG; | 
 | 	if (retval < 0) | 
 | 		goto out_free; | 
 | 	seq_puts(m, buf); | 
 | 	seq_putc(m, '\n'); | 
 | 	retval = 0; | 
 | out_free: | 
 | 	kfree(buf); | 
 | out: | 
 | 	return retval; | 
 | } | 
 | #endif /* CONFIG_PROC_PID_CPUSET */ | 
 |  | 
 | /* Display task mems_allowed in /proc/<pid>/status file. */ | 
 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 
 | { | 
 | 	seq_printf(m, "Mems_allowed:\t%*pb\n", | 
 | 		   nodemask_pr_args(&task->mems_allowed)); | 
 | 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n", | 
 | 		   nodemask_pr_args(&task->mems_allowed)); | 
 | } |