| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Deadline Scheduling Class (SCHED_DEADLINE) | 
 |  * | 
 |  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). | 
 |  * | 
 |  * Tasks that periodically executes their instances for less than their | 
 |  * runtime won't miss any of their deadlines. | 
 |  * Tasks that are not periodic or sporadic or that tries to execute more | 
 |  * than their reserved bandwidth will be slowed down (and may potentially | 
 |  * miss some of their deadlines), and won't affect any other task. | 
 |  * | 
 |  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, | 
 |  *                    Juri Lelli <juri.lelli@gmail.com>, | 
 |  *                    Michael Trimarchi <michael@amarulasolutions.com>, | 
 |  *                    Fabio Checconi <fchecconi@gmail.com> | 
 |  */ | 
 | #include "sched.h" | 
 | #include "pelt.h" | 
 |  | 
 | struct dl_bandwidth def_dl_bandwidth; | 
 |  | 
 | static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return container_of(dl_se, struct task_struct, dl); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) | 
 | { | 
 | 	return container_of(dl_rq, struct rq, dl); | 
 | } | 
 |  | 
 | static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct task_struct *p = dl_task_of(dl_se); | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	return &rq->dl; | 
 | } | 
 |  | 
 | static inline int on_dl_rq(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return !RB_EMPTY_NODE(&dl_se->rb_node); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 | static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return dl_se->pi_se; | 
 | } | 
 |  | 
 | static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return pi_of(dl_se) != dl_se; | 
 | } | 
 | #else | 
 | static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return dl_se; | 
 | } | 
 |  | 
 | static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static inline struct dl_bw *dl_bw_of(int i) | 
 | { | 
 | 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
 | 			 "sched RCU must be held"); | 
 | 	return &cpu_rq(i)->rd->dl_bw; | 
 | } | 
 |  | 
 | static inline int dl_bw_cpus(int i) | 
 | { | 
 | 	struct root_domain *rd = cpu_rq(i)->rd; | 
 | 	int cpus = 0; | 
 |  | 
 | 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), | 
 | 			 "sched RCU must be held"); | 
 | 	for_each_cpu_and(i, rd->span, cpu_active_mask) | 
 | 		cpus++; | 
 |  | 
 | 	return cpus; | 
 | } | 
 | #else | 
 | static inline struct dl_bw *dl_bw_of(int i) | 
 | { | 
 | 	return &cpu_rq(i)->dl.dl_bw; | 
 | } | 
 |  | 
 | static inline int dl_bw_cpus(int i) | 
 | { | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | static inline | 
 | void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
 | { | 
 | 	u64 old = dl_rq->running_bw; | 
 |  | 
 | 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); | 
 | 	dl_rq->running_bw += dl_bw; | 
 | 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ | 
 | 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); | 
 | 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
 | 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); | 
 | } | 
 |  | 
 | static inline | 
 | void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
 | { | 
 | 	u64 old = dl_rq->running_bw; | 
 |  | 
 | 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); | 
 | 	dl_rq->running_bw -= dl_bw; | 
 | 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ | 
 | 	if (dl_rq->running_bw > old) | 
 | 		dl_rq->running_bw = 0; | 
 | 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
 | 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); | 
 | } | 
 |  | 
 | static inline | 
 | void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
 | { | 
 | 	u64 old = dl_rq->this_bw; | 
 |  | 
 | 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); | 
 | 	dl_rq->this_bw += dl_bw; | 
 | 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ | 
 | } | 
 |  | 
 | static inline | 
 | void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) | 
 | { | 
 | 	u64 old = dl_rq->this_bw; | 
 |  | 
 | 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); | 
 | 	dl_rq->this_bw -= dl_bw; | 
 | 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ | 
 | 	if (dl_rq->this_bw > old) | 
 | 		dl_rq->this_bw = 0; | 
 | 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); | 
 | } | 
 |  | 
 | static inline | 
 | void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	if (!dl_entity_is_special(dl_se)) | 
 | 		__add_rq_bw(dl_se->dl_bw, dl_rq); | 
 | } | 
 |  | 
 | static inline | 
 | void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	if (!dl_entity_is_special(dl_se)) | 
 | 		__sub_rq_bw(dl_se->dl_bw, dl_rq); | 
 | } | 
 |  | 
 | static inline | 
 | void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	if (!dl_entity_is_special(dl_se)) | 
 | 		__add_running_bw(dl_se->dl_bw, dl_rq); | 
 | } | 
 |  | 
 | static inline | 
 | void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	if (!dl_entity_is_special(dl_se)) | 
 | 		__sub_running_bw(dl_se->dl_bw, dl_rq); | 
 | } | 
 |  | 
 | void dl_change_utilization(struct task_struct *p, u64 new_bw) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); | 
 |  | 
 | 	if (task_on_rq_queued(p)) | 
 | 		return; | 
 |  | 
 | 	rq = task_rq(p); | 
 | 	if (p->dl.dl_non_contending) { | 
 | 		sub_running_bw(&p->dl, &rq->dl); | 
 | 		p->dl.dl_non_contending = 0; | 
 | 		/* | 
 | 		 * If the timer handler is currently running and the | 
 | 		 * timer cannot be cancelled, inactive_task_timer() | 
 | 		 * will see that dl_not_contending is not set, and | 
 | 		 * will not touch the rq's active utilization, | 
 | 		 * so we are still safe. | 
 | 		 */ | 
 | 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) | 
 | 			put_task_struct(p); | 
 | 	} | 
 | 	__sub_rq_bw(p->dl.dl_bw, &rq->dl); | 
 | 	__add_rq_bw(new_bw, &rq->dl); | 
 | } | 
 |  | 
 | /* | 
 |  * The utilization of a task cannot be immediately removed from | 
 |  * the rq active utilization (running_bw) when the task blocks. | 
 |  * Instead, we have to wait for the so called "0-lag time". | 
 |  * | 
 |  * If a task blocks before the "0-lag time", a timer (the inactive | 
 |  * timer) is armed, and running_bw is decreased when the timer | 
 |  * fires. | 
 |  * | 
 |  * If the task wakes up again before the inactive timer fires, | 
 |  * the timer is cancelled, whereas if the task wakes up after the | 
 |  * inactive timer fired (and running_bw has been decreased) the | 
 |  * task's utilization has to be added to running_bw again. | 
 |  * A flag in the deadline scheduling entity (dl_non_contending) | 
 |  * is used to avoid race conditions between the inactive timer handler | 
 |  * and task wakeups. | 
 |  * | 
 |  * The following diagram shows how running_bw is updated. A task is | 
 |  * "ACTIVE" when its utilization contributes to running_bw; an | 
 |  * "ACTIVE contending" task is in the TASK_RUNNING state, while an | 
 |  * "ACTIVE non contending" task is a blocked task for which the "0-lag time" | 
 |  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" | 
 |  * time already passed, which does not contribute to running_bw anymore. | 
 |  *                              +------------------+ | 
 |  *             wakeup           |    ACTIVE        | | 
 |  *          +------------------>+   contending     | | 
 |  *          | add_running_bw    |                  | | 
 |  *          |                   +----+------+------+ | 
 |  *          |                        |      ^ | 
 |  *          |                dequeue |      | | 
 |  * +--------+-------+                |      | | 
 |  * |                |   t >= 0-lag   |      | wakeup | 
 |  * |    INACTIVE    |<---------------+      | | 
 |  * |                | sub_running_bw |      | | 
 |  * +--------+-------+                |      | | 
 |  *          ^                        |      | | 
 |  *          |              t < 0-lag |      | | 
 |  *          |                        |      | | 
 |  *          |                        V      | | 
 |  *          |                   +----+------+------+ | 
 |  *          | sub_running_bw    |    ACTIVE        | | 
 |  *          +-------------------+                  | | 
 |  *            inactive timer    |  non contending  | | 
 |  *            fired             +------------------+ | 
 |  * | 
 |  * The task_non_contending() function is invoked when a task | 
 |  * blocks, and checks if the 0-lag time already passed or | 
 |  * not (in the first case, it directly updates running_bw; | 
 |  * in the second case, it arms the inactive timer). | 
 |  * | 
 |  * The task_contending() function is invoked when a task wakes | 
 |  * up, and checks if the task is still in the "ACTIVE non contending" | 
 |  * state or not (in the second case, it updates running_bw). | 
 |  */ | 
 | static void task_non_contending(struct task_struct *p) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 | 	struct hrtimer *timer = &dl_se->inactive_timer; | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq); | 
 | 	s64 zerolag_time; | 
 |  | 
 | 	/* | 
 | 	 * If this is a non-deadline task that has been boosted, | 
 | 	 * do nothing | 
 | 	 */ | 
 | 	if (dl_se->dl_runtime == 0) | 
 | 		return; | 
 |  | 
 | 	if (dl_entity_is_special(dl_se)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(dl_se->dl_non_contending); | 
 |  | 
 | 	zerolag_time = dl_se->deadline - | 
 | 		 div64_long((dl_se->runtime * dl_se->dl_period), | 
 | 			dl_se->dl_runtime); | 
 |  | 
 | 	/* | 
 | 	 * Using relative times instead of the absolute "0-lag time" | 
 | 	 * allows to simplify the code | 
 | 	 */ | 
 | 	zerolag_time -= rq_clock(rq); | 
 |  | 
 | 	/* | 
 | 	 * If the "0-lag time" already passed, decrease the active | 
 | 	 * utilization now, instead of starting a timer | 
 | 	 */ | 
 | 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { | 
 | 		if (dl_task(p)) | 
 | 			sub_running_bw(dl_se, dl_rq); | 
 | 		if (!dl_task(p) || p->state == TASK_DEAD) { | 
 | 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); | 
 |  | 
 | 			if (p->state == TASK_DEAD) | 
 | 				sub_rq_bw(&p->dl, &rq->dl); | 
 | 			raw_spin_lock(&dl_b->lock); | 
 | 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); | 
 | 			__dl_clear_params(p); | 
 | 			raw_spin_unlock(&dl_b->lock); | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dl_se->dl_non_contending = 1; | 
 | 	get_task_struct(p); | 
 | 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); | 
 | } | 
 |  | 
 | static void task_contending(struct sched_dl_entity *dl_se, int flags) | 
 | { | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 |  | 
 | 	/* | 
 | 	 * If this is a non-deadline task that has been boosted, | 
 | 	 * do nothing | 
 | 	 */ | 
 | 	if (dl_se->dl_runtime == 0) | 
 | 		return; | 
 |  | 
 | 	if (flags & ENQUEUE_MIGRATED) | 
 | 		add_rq_bw(dl_se, dl_rq); | 
 |  | 
 | 	if (dl_se->dl_non_contending) { | 
 | 		dl_se->dl_non_contending = 0; | 
 | 		/* | 
 | 		 * If the timer handler is currently running and the | 
 | 		 * timer cannot be cancelled, inactive_task_timer() | 
 | 		 * will see that dl_not_contending is not set, and | 
 | 		 * will not touch the rq's active utilization, | 
 | 		 * so we are still safe. | 
 | 		 */ | 
 | 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) | 
 | 			put_task_struct(dl_task_of(dl_se)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Since "dl_non_contending" is not set, the | 
 | 		 * task's utilization has already been removed from | 
 | 		 * active utilization (either when the task blocked, | 
 | 		 * when the "inactive timer" fired). | 
 | 		 * So, add it back. | 
 | 		 */ | 
 | 		add_running_bw(dl_se, dl_rq); | 
 | 	} | 
 | } | 
 |  | 
 | static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	return dl_rq->root.rb_leftmost == &dl_se->rb_node; | 
 | } | 
 |  | 
 | void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) | 
 | { | 
 | 	raw_spin_lock_init(&dl_b->dl_runtime_lock); | 
 | 	dl_b->dl_period = period; | 
 | 	dl_b->dl_runtime = runtime; | 
 | } | 
 |  | 
 | void init_dl_bw(struct dl_bw *dl_b) | 
 | { | 
 | 	raw_spin_lock_init(&dl_b->lock); | 
 | 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); | 
 | 	if (global_rt_runtime() == RUNTIME_INF) | 
 | 		dl_b->bw = -1; | 
 | 	else | 
 | 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); | 
 | 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); | 
 | 	dl_b->total_bw = 0; | 
 | } | 
 |  | 
 | void init_dl_rq(struct dl_rq *dl_rq) | 
 | { | 
 | 	dl_rq->root = RB_ROOT_CACHED; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* zero means no -deadline tasks */ | 
 | 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; | 
 |  | 
 | 	dl_rq->dl_nr_migratory = 0; | 
 | 	dl_rq->overloaded = 0; | 
 | 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; | 
 | #else | 
 | 	init_dl_bw(&dl_rq->dl_bw); | 
 | #endif | 
 |  | 
 | 	dl_rq->running_bw = 0; | 
 | 	dl_rq->this_bw = 0; | 
 | 	init_dl_rq_bw_ratio(dl_rq); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static inline int dl_overloaded(struct rq *rq) | 
 | { | 
 | 	return atomic_read(&rq->rd->dlo_count); | 
 | } | 
 |  | 
 | static inline void dl_set_overload(struct rq *rq) | 
 | { | 
 | 	if (!rq->online) | 
 | 		return; | 
 |  | 
 | 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); | 
 | 	/* | 
 | 	 * Must be visible before the overload count is | 
 | 	 * set (as in sched_rt.c). | 
 | 	 * | 
 | 	 * Matched by the barrier in pull_dl_task(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	atomic_inc(&rq->rd->dlo_count); | 
 | } | 
 |  | 
 | static inline void dl_clear_overload(struct rq *rq) | 
 | { | 
 | 	if (!rq->online) | 
 | 		return; | 
 |  | 
 | 	atomic_dec(&rq->rd->dlo_count); | 
 | 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); | 
 | } | 
 |  | 
 | static void update_dl_migration(struct dl_rq *dl_rq) | 
 | { | 
 | 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { | 
 | 		if (!dl_rq->overloaded) { | 
 | 			dl_set_overload(rq_of_dl_rq(dl_rq)); | 
 | 			dl_rq->overloaded = 1; | 
 | 		} | 
 | 	} else if (dl_rq->overloaded) { | 
 | 		dl_clear_overload(rq_of_dl_rq(dl_rq)); | 
 | 		dl_rq->overloaded = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	struct task_struct *p = dl_task_of(dl_se); | 
 |  | 
 | 	if (p->nr_cpus_allowed > 1) | 
 | 		dl_rq->dl_nr_migratory++; | 
 |  | 
 | 	update_dl_migration(dl_rq); | 
 | } | 
 |  | 
 | static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	struct task_struct *p = dl_task_of(dl_se); | 
 |  | 
 | 	if (p->nr_cpus_allowed > 1) | 
 | 		dl_rq->dl_nr_migratory--; | 
 |  | 
 | 	update_dl_migration(dl_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * The list of pushable -deadline task is not a plist, like in | 
 |  * sched_rt.c, it is an rb-tree with tasks ordered by deadline. | 
 |  */ | 
 | static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct dl_rq *dl_rq = &rq->dl; | 
 | 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct task_struct *entry; | 
 | 	bool leftmost = true; | 
 |  | 
 | 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); | 
 |  | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct task_struct, | 
 | 				 pushable_dl_tasks); | 
 | 		if (dl_entity_preempt(&p->dl, &entry->dl)) | 
 | 			link = &parent->rb_left; | 
 | 		else { | 
 | 			link = &parent->rb_right; | 
 | 			leftmost = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (leftmost) | 
 | 		dl_rq->earliest_dl.next = p->dl.deadline; | 
 |  | 
 | 	rb_link_node(&p->pushable_dl_tasks, parent, link); | 
 | 	rb_insert_color_cached(&p->pushable_dl_tasks, | 
 | 			       &dl_rq->pushable_dl_tasks_root, leftmost); | 
 | } | 
 |  | 
 | static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct dl_rq *dl_rq = &rq->dl; | 
 |  | 
 | 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) | 
 | 		return; | 
 |  | 
 | 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { | 
 | 		struct rb_node *next_node; | 
 |  | 
 | 		next_node = rb_next(&p->pushable_dl_tasks); | 
 | 		if (next_node) { | 
 | 			dl_rq->earliest_dl.next = rb_entry(next_node, | 
 | 				struct task_struct, pushable_dl_tasks)->dl.deadline; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); | 
 | 	RB_CLEAR_NODE(&p->pushable_dl_tasks); | 
 | } | 
 |  | 
 | static inline int has_pushable_dl_tasks(struct rq *rq) | 
 | { | 
 | 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); | 
 | } | 
 |  | 
 | static int push_dl_task(struct rq *rq); | 
 |  | 
 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	return dl_task(prev); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct callback_head, dl_push_head); | 
 | static DEFINE_PER_CPU(struct callback_head, dl_pull_head); | 
 |  | 
 | static void push_dl_tasks(struct rq *); | 
 | static void pull_dl_task(struct rq *); | 
 |  | 
 | static inline void deadline_queue_push_tasks(struct rq *rq) | 
 | { | 
 | 	if (!has_pushable_dl_tasks(rq)) | 
 | 		return; | 
 |  | 
 | 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); | 
 | } | 
 |  | 
 | static inline void deadline_queue_pull_task(struct rq *rq) | 
 | { | 
 | 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); | 
 | } | 
 |  | 
 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); | 
 |  | 
 | static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct rq *later_rq = NULL; | 
 | 	struct dl_bw *dl_b; | 
 |  | 
 | 	later_rq = find_lock_later_rq(p, rq); | 
 | 	if (!later_rq) { | 
 | 		int cpu; | 
 |  | 
 | 		/* | 
 | 		 * If we cannot preempt any rq, fall back to pick any | 
 | 		 * online CPU: | 
 | 		 */ | 
 | 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); | 
 | 		if (cpu >= nr_cpu_ids) { | 
 | 			/* | 
 | 			 * Failed to find any suitable CPU. | 
 | 			 * The task will never come back! | 
 | 			 */ | 
 | 			BUG_ON(dl_bandwidth_enabled()); | 
 |  | 
 | 			/* | 
 | 			 * If admission control is disabled we | 
 | 			 * try a little harder to let the task | 
 | 			 * run. | 
 | 			 */ | 
 | 			cpu = cpumask_any(cpu_active_mask); | 
 | 		} | 
 | 		later_rq = cpu_rq(cpu); | 
 | 		double_lock_balance(rq, later_rq); | 
 | 	} | 
 |  | 
 | 	if (p->dl.dl_non_contending || p->dl.dl_throttled) { | 
 | 		/* | 
 | 		 * Inactive timer is armed (or callback is running, but | 
 | 		 * waiting for us to release rq locks). In any case, when it | 
 | 		 * will fire (or continue), it will see running_bw of this | 
 | 		 * task migrated to later_rq (and correctly handle it). | 
 | 		 */ | 
 | 		sub_running_bw(&p->dl, &rq->dl); | 
 | 		sub_rq_bw(&p->dl, &rq->dl); | 
 |  | 
 | 		add_rq_bw(&p->dl, &later_rq->dl); | 
 | 		add_running_bw(&p->dl, &later_rq->dl); | 
 | 	} else { | 
 | 		sub_rq_bw(&p->dl, &rq->dl); | 
 | 		add_rq_bw(&p->dl, &later_rq->dl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * And we finally need to fixup root_domain(s) bandwidth accounting, | 
 | 	 * since p is still hanging out in the old (now moved to default) root | 
 | 	 * domain. | 
 | 	 */ | 
 | 	dl_b = &rq->rd->dl_bw; | 
 | 	raw_spin_lock(&dl_b->lock); | 
 | 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); | 
 | 	raw_spin_unlock(&dl_b->lock); | 
 |  | 
 | 	dl_b = &later_rq->rd->dl_bw; | 
 | 	raw_spin_lock(&dl_b->lock); | 
 | 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); | 
 | 	raw_spin_unlock(&dl_b->lock); | 
 |  | 
 | 	set_task_cpu(p, later_rq->cpu); | 
 | 	double_unlock_balance(later_rq, rq); | 
 |  | 
 | 	return later_rq; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline | 
 | void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void pull_dl_task(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void deadline_queue_push_tasks(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void deadline_queue_pull_task(struct rq *rq) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); | 
 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); | 
 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | /* | 
 |  * We are being explicitly informed that a new instance is starting, | 
 |  * and this means that: | 
 |  *  - the absolute deadline of the entity has to be placed at | 
 |  *    current time + relative deadline; | 
 |  *  - the runtime of the entity has to be set to the maximum value. | 
 |  * | 
 |  * The capability of specifying such event is useful whenever a -deadline | 
 |  * entity wants to (try to!) synchronize its behaviour with the scheduler's | 
 |  * one, and to (try to!) reconcile itself with its own scheduling | 
 |  * parameters. | 
 |  */ | 
 | static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq); | 
 |  | 
 | 	WARN_ON(is_dl_boosted(dl_se)); | 
 | 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); | 
 |  | 
 | 	/* | 
 | 	 * We are racing with the deadline timer. So, do nothing because | 
 | 	 * the deadline timer handler will take care of properly recharging | 
 | 	 * the runtime and postponing the deadline | 
 | 	 */ | 
 | 	if (dl_se->dl_throttled) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We use the regular wall clock time to set deadlines in the | 
 | 	 * future; in fact, we must consider execution overheads (time | 
 | 	 * spent on hardirq context, etc.). | 
 | 	 */ | 
 | 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; | 
 | 	dl_se->runtime = dl_se->dl_runtime; | 
 | } | 
 |  | 
 | /* | 
 |  * Pure Earliest Deadline First (EDF) scheduling does not deal with the | 
 |  * possibility of a entity lasting more than what it declared, and thus | 
 |  * exhausting its runtime. | 
 |  * | 
 |  * Here we are interested in making runtime overrun possible, but we do | 
 |  * not want a entity which is misbehaving to affect the scheduling of all | 
 |  * other entities. | 
 |  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) | 
 |  * is used, in order to confine each entity within its own bandwidth. | 
 |  * | 
 |  * This function deals exactly with that, and ensures that when the runtime | 
 |  * of a entity is replenished, its deadline is also postponed. That ensures | 
 |  * the overrunning entity can't interfere with other entity in the system and | 
 |  * can't make them miss their deadlines. Reasons why this kind of overruns | 
 |  * could happen are, typically, a entity voluntarily trying to overcome its | 
 |  * runtime, or it just underestimated it during sched_setattr(). | 
 |  */ | 
 | static void replenish_dl_entity(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq); | 
 |  | 
 | 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0); | 
 |  | 
 | 	/* | 
 | 	 * This could be the case for a !-dl task that is boosted. | 
 | 	 * Just go with full inherited parameters. | 
 | 	 */ | 
 | 	if (dl_se->dl_deadline == 0) { | 
 | 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; | 
 | 		dl_se->runtime = pi_of(dl_se)->dl_runtime; | 
 | 	} | 
 |  | 
 | 	if (dl_se->dl_yielded && dl_se->runtime > 0) | 
 | 		dl_se->runtime = 0; | 
 |  | 
 | 	/* | 
 | 	 * We keep moving the deadline away until we get some | 
 | 	 * available runtime for the entity. This ensures correct | 
 | 	 * handling of situations where the runtime overrun is | 
 | 	 * arbitrary large. | 
 | 	 */ | 
 | 	while (dl_se->runtime <= 0) { | 
 | 		dl_se->deadline += pi_of(dl_se)->dl_period; | 
 | 		dl_se->runtime += pi_of(dl_se)->dl_runtime; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this point, the deadline really should be "in | 
 | 	 * the future" with respect to rq->clock. If it's | 
 | 	 * not, we are, for some reason, lagging too much! | 
 | 	 * Anyway, after having warn userspace abut that, | 
 | 	 * we still try to keep the things running by | 
 | 	 * resetting the deadline and the budget of the | 
 | 	 * entity. | 
 | 	 */ | 
 | 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) { | 
 | 		printk_deferred_once("sched: DL replenish lagged too much\n"); | 
 | 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; | 
 | 		dl_se->runtime = pi_of(dl_se)->dl_runtime; | 
 | 	} | 
 |  | 
 | 	if (dl_se->dl_yielded) | 
 | 		dl_se->dl_yielded = 0; | 
 | 	if (dl_se->dl_throttled) | 
 | 		dl_se->dl_throttled = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Here we check if --at time t-- an entity (which is probably being | 
 |  * [re]activated or, in general, enqueued) can use its remaining runtime | 
 |  * and its current deadline _without_ exceeding the bandwidth it is | 
 |  * assigned (function returns true if it can't). We are in fact applying | 
 |  * one of the CBS rules: when a task wakes up, if the residual runtime | 
 |  * over residual deadline fits within the allocated bandwidth, then we | 
 |  * can keep the current (absolute) deadline and residual budget without | 
 |  * disrupting the schedulability of the system. Otherwise, we should | 
 |  * refill the runtime and set the deadline a period in the future, | 
 |  * because keeping the current (absolute) deadline of the task would | 
 |  * result in breaking guarantees promised to other tasks (refer to | 
 |  * Documentation/scheduler/sched-deadline.rst for more information). | 
 |  * | 
 |  * This function returns true if: | 
 |  * | 
 |  *   runtime / (deadline - t) > dl_runtime / dl_deadline , | 
 |  * | 
 |  * IOW we can't recycle current parameters. | 
 |  * | 
 |  * Notice that the bandwidth check is done against the deadline. For | 
 |  * task with deadline equal to period this is the same of using | 
 |  * dl_period instead of dl_deadline in the equation above. | 
 |  */ | 
 | static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) | 
 | { | 
 | 	u64 left, right; | 
 |  | 
 | 	/* | 
 | 	 * left and right are the two sides of the equation above, | 
 | 	 * after a bit of shuffling to use multiplications instead | 
 | 	 * of divisions. | 
 | 	 * | 
 | 	 * Note that none of the time values involved in the two | 
 | 	 * multiplications are absolute: dl_deadline and dl_runtime | 
 | 	 * are the relative deadline and the maximum runtime of each | 
 | 	 * instance, runtime is the runtime left for the last instance | 
 | 	 * and (deadline - t), since t is rq->clock, is the time left | 
 | 	 * to the (absolute) deadline. Even if overflowing the u64 type | 
 | 	 * is very unlikely to occur in both cases, here we scale down | 
 | 	 * as we want to avoid that risk at all. Scaling down by 10 | 
 | 	 * means that we reduce granularity to 1us. We are fine with it, | 
 | 	 * since this is only a true/false check and, anyway, thinking | 
 | 	 * of anything below microseconds resolution is actually fiction | 
 | 	 * (but still we want to give the user that illusion >;). | 
 | 	 */ | 
 | 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); | 
 | 	right = ((dl_se->deadline - t) >> DL_SCALE) * | 
 | 		(pi_of(dl_se)->dl_runtime >> DL_SCALE); | 
 |  | 
 | 	return dl_time_before(right, left); | 
 | } | 
 |  | 
 | /* | 
 |  * Revised wakeup rule [1]: For self-suspending tasks, rather then | 
 |  * re-initializing task's runtime and deadline, the revised wakeup | 
 |  * rule adjusts the task's runtime to avoid the task to overrun its | 
 |  * density. | 
 |  * | 
 |  * Reasoning: a task may overrun the density if: | 
 |  *    runtime / (deadline - t) > dl_runtime / dl_deadline | 
 |  * | 
 |  * Therefore, runtime can be adjusted to: | 
 |  *     runtime = (dl_runtime / dl_deadline) * (deadline - t) | 
 |  * | 
 |  * In such way that runtime will be equal to the maximum density | 
 |  * the task can use without breaking any rule. | 
 |  * | 
 |  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant | 
 |  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. | 
 |  */ | 
 | static void | 
 | update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) | 
 | { | 
 | 	u64 laxity = dl_se->deadline - rq_clock(rq); | 
 |  | 
 | 	/* | 
 | 	 * If the task has deadline < period, and the deadline is in the past, | 
 | 	 * it should already be throttled before this check. | 
 | 	 * | 
 | 	 * See update_dl_entity() comments for further details. | 
 | 	 */ | 
 | 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); | 
 |  | 
 | 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; | 
 | } | 
 |  | 
 | /* | 
 |  * Regarding the deadline, a task with implicit deadline has a relative | 
 |  * deadline == relative period. A task with constrained deadline has a | 
 |  * relative deadline <= relative period. | 
 |  * | 
 |  * We support constrained deadline tasks. However, there are some restrictions | 
 |  * applied only for tasks which do not have an implicit deadline. See | 
 |  * update_dl_entity() to know more about such restrictions. | 
 |  * | 
 |  * The dl_is_implicit() returns true if the task has an implicit deadline. | 
 |  */ | 
 | static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return dl_se->dl_deadline == dl_se->dl_period; | 
 | } | 
 |  | 
 | /* | 
 |  * When a deadline entity is placed in the runqueue, its runtime and deadline | 
 |  * might need to be updated. This is done by a CBS wake up rule. There are two | 
 |  * different rules: 1) the original CBS; and 2) the Revisited CBS. | 
 |  * | 
 |  * When the task is starting a new period, the Original CBS is used. In this | 
 |  * case, the runtime is replenished and a new absolute deadline is set. | 
 |  * | 
 |  * When a task is queued before the begin of the next period, using the | 
 |  * remaining runtime and deadline could make the entity to overflow, see | 
 |  * dl_entity_overflow() to find more about runtime overflow. When such case | 
 |  * is detected, the runtime and deadline need to be updated. | 
 |  * | 
 |  * If the task has an implicit deadline, i.e., deadline == period, the Original | 
 |  * CBS is applied. the runtime is replenished and a new absolute deadline is | 
 |  * set, as in the previous cases. | 
 |  * | 
 |  * However, the Original CBS does not work properly for tasks with | 
 |  * deadline < period, which are said to have a constrained deadline. By | 
 |  * applying the Original CBS, a constrained deadline task would be able to run | 
 |  * runtime/deadline in a period. With deadline < period, the task would | 
 |  * overrun the runtime/period allowed bandwidth, breaking the admission test. | 
 |  * | 
 |  * In order to prevent this misbehave, the Revisited CBS is used for | 
 |  * constrained deadline tasks when a runtime overflow is detected. In the | 
 |  * Revisited CBS, rather than replenishing & setting a new absolute deadline, | 
 |  * the remaining runtime of the task is reduced to avoid runtime overflow. | 
 |  * Please refer to the comments update_dl_revised_wakeup() function to find | 
 |  * more about the Revised CBS rule. | 
 |  */ | 
 | static void update_dl_entity(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq); | 
 |  | 
 | 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) || | 
 | 	    dl_entity_overflow(dl_se, rq_clock(rq))) { | 
 |  | 
 | 		if (unlikely(!dl_is_implicit(dl_se) && | 
 | 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) && | 
 | 			     !is_dl_boosted(dl_se))) { | 
 | 			update_dl_revised_wakeup(dl_se, rq); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; | 
 | 		dl_se->runtime = pi_of(dl_se)->dl_runtime; | 
 | 	} | 
 | } | 
 |  | 
 | static inline u64 dl_next_period(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; | 
 | } | 
 |  | 
 | /* | 
 |  * If the entity depleted all its runtime, and if we want it to sleep | 
 |  * while waiting for some new execution time to become available, we | 
 |  * set the bandwidth replenishment timer to the replenishment instant | 
 |  * and try to activate it. | 
 |  * | 
 |  * Notice that it is important for the caller to know if the timer | 
 |  * actually started or not (i.e., the replenishment instant is in | 
 |  * the future or in the past). | 
 |  */ | 
 | static int start_dl_timer(struct task_struct *p) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 | 	struct hrtimer *timer = &dl_se->dl_timer; | 
 | 	struct rq *rq = task_rq(p); | 
 | 	ktime_t now, act; | 
 | 	s64 delta; | 
 |  | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	/* | 
 | 	 * We want the timer to fire at the deadline, but considering | 
 | 	 * that it is actually coming from rq->clock and not from | 
 | 	 * hrtimer's time base reading. | 
 | 	 */ | 
 | 	act = ns_to_ktime(dl_next_period(dl_se)); | 
 | 	now = hrtimer_cb_get_time(timer); | 
 | 	delta = ktime_to_ns(now) - rq_clock(rq); | 
 | 	act = ktime_add_ns(act, delta); | 
 |  | 
 | 	/* | 
 | 	 * If the expiry time already passed, e.g., because the value | 
 | 	 * chosen as the deadline is too small, don't even try to | 
 | 	 * start the timer in the past! | 
 | 	 */ | 
 | 	if (ktime_us_delta(act, now) < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * !enqueued will guarantee another callback; even if one is already in | 
 | 	 * progress. This ensures a balanced {get,put}_task_struct(). | 
 | 	 * | 
 | 	 * The race against __run_timer() clearing the enqueued state is | 
 | 	 * harmless because we're holding task_rq()->lock, therefore the timer | 
 | 	 * expiring after we've done the check will wait on its task_rq_lock() | 
 | 	 * and observe our state. | 
 | 	 */ | 
 | 	if (!hrtimer_is_queued(timer)) { | 
 | 		get_task_struct(p); | 
 | 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the bandwidth enforcement timer callback. If here, we know | 
 |  * a task is not on its dl_rq, since the fact that the timer was running | 
 |  * means the task is throttled and needs a runtime replenishment. | 
 |  * | 
 |  * However, what we actually do depends on the fact the task is active, | 
 |  * (it is on its rq) or has been removed from there by a call to | 
 |  * dequeue_task_dl(). In the former case we must issue the runtime | 
 |  * replenishment and add the task back to the dl_rq; in the latter, we just | 
 |  * do nothing but clearing dl_throttled, so that runtime and deadline | 
 |  * updating (and the queueing back to dl_rq) will be done by the | 
 |  * next call to enqueue_task_dl(). | 
 |  */ | 
 | static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = container_of(timer, | 
 | 						     struct sched_dl_entity, | 
 | 						     dl_timer); | 
 | 	struct task_struct *p = dl_task_of(dl_se); | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(p, &rf); | 
 |  | 
 | 	/* | 
 | 	 * The task might have changed its scheduling policy to something | 
 | 	 * different than SCHED_DEADLINE (through switched_from_dl()). | 
 | 	 */ | 
 | 	if (!dl_task(p)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * The task might have been boosted by someone else and might be in the | 
 | 	 * boosting/deboosting path, its not throttled. | 
 | 	 */ | 
 | 	if (is_dl_boosted(dl_se)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * Spurious timer due to start_dl_timer() race; or we already received | 
 | 	 * a replenishment from rt_mutex_setprio(). | 
 | 	 */ | 
 | 	if (!dl_se->dl_throttled) | 
 | 		goto unlock; | 
 |  | 
 | 	sched_clock_tick(); | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	/* | 
 | 	 * If the throttle happened during sched-out; like: | 
 | 	 * | 
 | 	 *   schedule() | 
 | 	 *     deactivate_task() | 
 | 	 *       dequeue_task_dl() | 
 | 	 *         update_curr_dl() | 
 | 	 *           start_dl_timer() | 
 | 	 *         __dequeue_task_dl() | 
 | 	 *     prev->on_rq = 0; | 
 | 	 * | 
 | 	 * We can be both throttled and !queued. Replenish the counter | 
 | 	 * but do not enqueue -- wait for our wakeup to do that. | 
 | 	 */ | 
 | 	if (!task_on_rq_queued(p)) { | 
 | 		replenish_dl_entity(dl_se); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (unlikely(!rq->online)) { | 
 | 		/* | 
 | 		 * If the runqueue is no longer available, migrate the | 
 | 		 * task elsewhere. This necessarily changes rq. | 
 | 		 */ | 
 | 		lockdep_unpin_lock(&rq->lock, rf.cookie); | 
 | 		rq = dl_task_offline_migration(rq, p); | 
 | 		rf.cookie = lockdep_pin_lock(&rq->lock); | 
 | 		update_rq_clock(rq); | 
 |  | 
 | 		/* | 
 | 		 * Now that the task has been migrated to the new RQ and we | 
 | 		 * have that locked, proceed as normal and enqueue the task | 
 | 		 * there. | 
 | 		 */ | 
 | 	} | 
 | #endif | 
 |  | 
 | 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); | 
 | 	if (dl_task(rq->curr)) | 
 | 		check_preempt_curr_dl(rq, p, 0); | 
 | 	else | 
 | 		resched_curr(rq); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * Queueing this task back might have overloaded rq, check if we need | 
 | 	 * to kick someone away. | 
 | 	 */ | 
 | 	if (has_pushable_dl_tasks(rq)) { | 
 | 		/* | 
 | 		 * Nothing relies on rq->lock after this, so its safe to drop | 
 | 		 * rq->lock. | 
 | 		 */ | 
 | 		rq_unpin_lock(rq, &rf); | 
 | 		push_dl_task(rq); | 
 | 		rq_repin_lock(rq, &rf); | 
 | 	} | 
 | #endif | 
 |  | 
 | unlock: | 
 | 	task_rq_unlock(rq, p, &rf); | 
 |  | 
 | 	/* | 
 | 	 * This can free the task_struct, including this hrtimer, do not touch | 
 | 	 * anything related to that after this. | 
 | 	 */ | 
 | 	put_task_struct(p); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | void init_dl_task_timer(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct hrtimer *timer = &dl_se->dl_timer; | 
 |  | 
 | 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); | 
 | 	timer->function = dl_task_timer; | 
 | } | 
 |  | 
 | /* | 
 |  * During the activation, CBS checks if it can reuse the current task's | 
 |  * runtime and period. If the deadline of the task is in the past, CBS | 
 |  * cannot use the runtime, and so it replenishes the task. This rule | 
 |  * works fine for implicit deadline tasks (deadline == period), and the | 
 |  * CBS was designed for implicit deadline tasks. However, a task with | 
 |  * constrained deadline (deadine < period) might be awakened after the | 
 |  * deadline, but before the next period. In this case, replenishing the | 
 |  * task would allow it to run for runtime / deadline. As in this case | 
 |  * deadline < period, CBS enables a task to run for more than the | 
 |  * runtime / period. In a very loaded system, this can cause a domino | 
 |  * effect, making other tasks miss their deadlines. | 
 |  * | 
 |  * To avoid this problem, in the activation of a constrained deadline | 
 |  * task after the deadline but before the next period, throttle the | 
 |  * task and set the replenishing timer to the begin of the next period, | 
 |  * unless it is boosted. | 
 |  */ | 
 | static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct task_struct *p = dl_task_of(dl_se); | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); | 
 |  | 
 | 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) && | 
 | 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { | 
 | 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) | 
 | 			return; | 
 | 		dl_se->dl_throttled = 1; | 
 | 		if (dl_se->runtime > 0) | 
 | 			dl_se->runtime = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static | 
 | int dl_runtime_exceeded(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	return (dl_se->runtime <= 0); | 
 | } | 
 |  | 
 | extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); | 
 |  | 
 | /* | 
 |  * This function implements the GRUB accounting rule: | 
 |  * according to the GRUB reclaiming algorithm, the runtime is | 
 |  * not decreased as "dq = -dt", but as | 
 |  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", | 
 |  * where u is the utilization of the task, Umax is the maximum reclaimable | 
 |  * utilization, Uinact is the (per-runqueue) inactive utilization, computed | 
 |  * as the difference between the "total runqueue utilization" and the | 
 |  * runqueue active utilization, and Uextra is the (per runqueue) extra | 
 |  * reclaimable utilization. | 
 |  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations | 
 |  * multiplied by 2^BW_SHIFT, the result has to be shifted right by | 
 |  * BW_SHIFT. | 
 |  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, | 
 |  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. | 
 |  * Since delta is a 64 bit variable, to have an overflow its value | 
 |  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. | 
 |  * So, overflow is not an issue here. | 
 |  */ | 
 | static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) | 
 | { | 
 | 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ | 
 | 	u64 u_act; | 
 | 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, | 
 | 	 * we compare u_inact + rq->dl.extra_bw with | 
 | 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because | 
 | 	 * u_inact + rq->dl.extra_bw can be larger than | 
 | 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative | 
 | 	 * leading to wrong results) | 
 | 	 */ | 
 | 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) | 
 | 		u_act = u_act_min; | 
 | 	else | 
 | 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw; | 
 |  | 
 | 	return (delta * u_act) >> BW_SHIFT; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the current task's runtime statistics (provided it is still | 
 |  * a -deadline task and has not been removed from the dl_rq). | 
 |  */ | 
 | static void update_curr_dl(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct sched_dl_entity *dl_se = &curr->dl; | 
 | 	u64 delta_exec, scaled_delta_exec; | 
 | 	int cpu = cpu_of(rq); | 
 | 	u64 now; | 
 |  | 
 | 	if (!dl_task(curr) || !on_dl_rq(dl_se)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Consumed budget is computed considering the time as | 
 | 	 * observed by schedulable tasks (excluding time spent | 
 | 	 * in hardirq context, etc.). Deadlines are instead | 
 | 	 * computed using hard walltime. This seems to be the more | 
 | 	 * natural solution, but the full ramifications of this | 
 | 	 * approach need further study. | 
 | 	 */ | 
 | 	now = rq_clock_task(rq); | 
 | 	delta_exec = now - curr->se.exec_start; | 
 | 	if (unlikely((s64)delta_exec <= 0)) { | 
 | 		if (unlikely(dl_se->dl_yielded)) | 
 | 			goto throttle; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	schedstat_set(curr->se.statistics.exec_max, | 
 | 		      max(curr->se.statistics.exec_max, delta_exec)); | 
 |  | 
 | 	curr->se.sum_exec_runtime += delta_exec; | 
 | 	account_group_exec_runtime(curr, delta_exec); | 
 |  | 
 | 	curr->se.exec_start = now; | 
 | 	cgroup_account_cputime(curr, delta_exec); | 
 |  | 
 | 	if (dl_entity_is_special(dl_se)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * For tasks that participate in GRUB, we implement GRUB-PA: the | 
 | 	 * spare reclaimed bandwidth is used to clock down frequency. | 
 | 	 * | 
 | 	 * For the others, we still need to scale reservation parameters | 
 | 	 * according to current frequency and CPU maximum capacity. | 
 | 	 */ | 
 | 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { | 
 | 		scaled_delta_exec = grub_reclaim(delta_exec, | 
 | 						 rq, | 
 | 						 &curr->dl); | 
 | 	} else { | 
 | 		unsigned long scale_freq = arch_scale_freq_capacity(cpu); | 
 | 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); | 
 |  | 
 | 		scaled_delta_exec = cap_scale(delta_exec, scale_freq); | 
 | 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); | 
 | 	} | 
 |  | 
 | 	dl_se->runtime -= scaled_delta_exec; | 
 |  | 
 | throttle: | 
 | 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { | 
 | 		dl_se->dl_throttled = 1; | 
 |  | 
 | 		/* If requested, inform the user about runtime overruns. */ | 
 | 		if (dl_runtime_exceeded(dl_se) && | 
 | 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) | 
 | 			dl_se->dl_overrun = 1; | 
 |  | 
 | 		__dequeue_task_dl(rq, curr, 0); | 
 | 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) | 
 | 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); | 
 |  | 
 | 		if (!is_leftmost(curr, &rq->dl)) | 
 | 			resched_curr(rq); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Because -- for now -- we share the rt bandwidth, we need to | 
 | 	 * account our runtime there too, otherwise actual rt tasks | 
 | 	 * would be able to exceed the shared quota. | 
 | 	 * | 
 | 	 * Account to the root rt group for now. | 
 | 	 * | 
 | 	 * The solution we're working towards is having the RT groups scheduled | 
 | 	 * using deadline servers -- however there's a few nasties to figure | 
 | 	 * out before that can happen. | 
 | 	 */ | 
 | 	if (rt_bandwidth_enabled()) { | 
 | 		struct rt_rq *rt_rq = &rq->rt; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		/* | 
 | 		 * We'll let actual RT tasks worry about the overflow here, we | 
 | 		 * have our own CBS to keep us inline; only account when RT | 
 | 		 * bandwidth is relevant. | 
 | 		 */ | 
 | 		if (sched_rt_bandwidth_account(rt_rq)) | 
 | 			rt_rq->rt_time += delta_exec; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = container_of(timer, | 
 | 						     struct sched_dl_entity, | 
 | 						     inactive_timer); | 
 | 	struct task_struct *p = dl_task_of(dl_se); | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(p, &rf); | 
 |  | 
 | 	sched_clock_tick(); | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	if (!dl_task(p) || p->state == TASK_DEAD) { | 
 | 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); | 
 |  | 
 | 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) { | 
 | 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); | 
 | 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); | 
 | 			dl_se->dl_non_contending = 0; | 
 | 		} | 
 |  | 
 | 		raw_spin_lock(&dl_b->lock); | 
 | 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); | 
 | 		raw_spin_unlock(&dl_b->lock); | 
 | 		__dl_clear_params(p); | 
 |  | 
 | 		goto unlock; | 
 | 	} | 
 | 	if (dl_se->dl_non_contending == 0) | 
 | 		goto unlock; | 
 |  | 
 | 	sub_running_bw(dl_se, &rq->dl); | 
 | 	dl_se->dl_non_contending = 0; | 
 | unlock: | 
 | 	task_rq_unlock(rq, p, &rf); | 
 | 	put_task_struct(p); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct hrtimer *timer = &dl_se->inactive_timer; | 
 |  | 
 | 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); | 
 | 	timer->function = inactive_task_timer; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) | 
 | { | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq); | 
 |  | 
 | 	if (dl_rq->earliest_dl.curr == 0 || | 
 | 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) { | 
 | 		dl_rq->earliest_dl.curr = deadline; | 
 | 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); | 
 | 	} | 
 | } | 
 |  | 
 | static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) | 
 | { | 
 | 	struct rq *rq = rq_of_dl_rq(dl_rq); | 
 |  | 
 | 	/* | 
 | 	 * Since we may have removed our earliest (and/or next earliest) | 
 | 	 * task we must recompute them. | 
 | 	 */ | 
 | 	if (!dl_rq->dl_nr_running) { | 
 | 		dl_rq->earliest_dl.curr = 0; | 
 | 		dl_rq->earliest_dl.next = 0; | 
 | 		cpudl_clear(&rq->rd->cpudl, rq->cpu); | 
 | 	} else { | 
 | 		struct rb_node *leftmost = dl_rq->root.rb_leftmost; | 
 | 		struct sched_dl_entity *entry; | 
 |  | 
 | 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); | 
 | 		dl_rq->earliest_dl.curr = entry->deadline; | 
 | 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} | 
 | static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static inline | 
 | void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	int prio = dl_task_of(dl_se)->prio; | 
 | 	u64 deadline = dl_se->deadline; | 
 |  | 
 | 	WARN_ON(!dl_prio(prio)); | 
 | 	dl_rq->dl_nr_running++; | 
 | 	add_nr_running(rq_of_dl_rq(dl_rq), 1); | 
 |  | 
 | 	inc_dl_deadline(dl_rq, deadline); | 
 | 	inc_dl_migration(dl_se, dl_rq); | 
 | } | 
 |  | 
 | static inline | 
 | void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) | 
 | { | 
 | 	int prio = dl_task_of(dl_se)->prio; | 
 |  | 
 | 	WARN_ON(!dl_prio(prio)); | 
 | 	WARN_ON(!dl_rq->dl_nr_running); | 
 | 	dl_rq->dl_nr_running--; | 
 | 	sub_nr_running(rq_of_dl_rq(dl_rq), 1); | 
 |  | 
 | 	dec_dl_deadline(dl_rq, dl_se->deadline); | 
 | 	dec_dl_migration(dl_se, dl_rq); | 
 | } | 
 |  | 
 | static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 | 	struct rb_node **link = &dl_rq->root.rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sched_dl_entity *entry; | 
 | 	int leftmost = 1; | 
 |  | 
 | 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); | 
 |  | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct sched_dl_entity, rb_node); | 
 | 		if (dl_time_before(dl_se->deadline, entry->deadline)) | 
 | 			link = &parent->rb_left; | 
 | 		else { | 
 | 			link = &parent->rb_right; | 
 | 			leftmost = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&dl_se->rb_node, parent, link); | 
 | 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); | 
 |  | 
 | 	inc_dl_tasks(dl_se, dl_rq); | 
 | } | 
 |  | 
 | static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se); | 
 |  | 
 | 	if (RB_EMPTY_NODE(&dl_se->rb_node)) | 
 | 		return; | 
 |  | 
 | 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root); | 
 | 	RB_CLEAR_NODE(&dl_se->rb_node); | 
 |  | 
 | 	dec_dl_tasks(dl_se, dl_rq); | 
 | } | 
 |  | 
 | static void | 
 | enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) | 
 | { | 
 | 	BUG_ON(on_dl_rq(dl_se)); | 
 |  | 
 | 	/* | 
 | 	 * If this is a wakeup or a new instance, the scheduling | 
 | 	 * parameters of the task might need updating. Otherwise, | 
 | 	 * we want a replenishment of its runtime. | 
 | 	 */ | 
 | 	if (flags & ENQUEUE_WAKEUP) { | 
 | 		task_contending(dl_se, flags); | 
 | 		update_dl_entity(dl_se); | 
 | 	} else if (flags & ENQUEUE_REPLENISH) { | 
 | 		replenish_dl_entity(dl_se); | 
 | 	} else if ((flags & ENQUEUE_RESTORE) && | 
 | 		  dl_time_before(dl_se->deadline, | 
 | 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { | 
 | 		setup_new_dl_entity(dl_se); | 
 | 	} | 
 |  | 
 | 	__enqueue_dl_entity(dl_se); | 
 | } | 
 |  | 
 | static void dequeue_dl_entity(struct sched_dl_entity *dl_se) | 
 | { | 
 | 	__dequeue_dl_entity(dl_se); | 
 | } | 
 |  | 
 | static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	if (is_dl_boosted(&p->dl)) { | 
 | 		/* | 
 | 		 * Because of delays in the detection of the overrun of a | 
 | 		 * thread's runtime, it might be the case that a thread | 
 | 		 * goes to sleep in a rt mutex with negative runtime. As | 
 | 		 * a consequence, the thread will be throttled. | 
 | 		 * | 
 | 		 * While waiting for the mutex, this thread can also be | 
 | 		 * boosted via PI, resulting in a thread that is throttled | 
 | 		 * and boosted at the same time. | 
 | 		 * | 
 | 		 * In this case, the boost overrides the throttle. | 
 | 		 */ | 
 | 		if (p->dl.dl_throttled) { | 
 | 			/* | 
 | 			 * The replenish timer needs to be canceled. No | 
 | 			 * problem if it fires concurrently: boosted threads | 
 | 			 * are ignored in dl_task_timer(). | 
 | 			 */ | 
 | 			hrtimer_try_to_cancel(&p->dl.dl_timer); | 
 | 			p->dl.dl_throttled = 0; | 
 | 		} | 
 | 	} else if (!dl_prio(p->normal_prio)) { | 
 | 		/* | 
 | 		 * Special case in which we have a !SCHED_DEADLINE task that is going | 
 | 		 * to be deboosted, but exceeds its runtime while doing so. No point in | 
 | 		 * replenishing it, as it's going to return back to its original | 
 | 		 * scheduling class after this. If it has been throttled, we need to | 
 | 		 * clear the flag, otherwise the task may wake up as throttled after | 
 | 		 * being boosted again with no means to replenish the runtime and clear | 
 | 		 * the throttle. | 
 | 		 */ | 
 | 		p->dl.dl_throttled = 0; | 
 | 		BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if a constrained deadline task was activated | 
 | 	 * after the deadline but before the next period. | 
 | 	 * If that is the case, the task will be throttled and | 
 | 	 * the replenishment timer will be set to the next period. | 
 | 	 */ | 
 | 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) | 
 | 		dl_check_constrained_dl(&p->dl); | 
 |  | 
 | 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { | 
 | 		add_rq_bw(&p->dl, &rq->dl); | 
 | 		add_running_bw(&p->dl, &rq->dl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted | 
 | 	 * its budget it needs a replenishment and, since it now is on | 
 | 	 * its rq, the bandwidth timer callback (which clearly has not | 
 | 	 * run yet) will take care of this. | 
 | 	 * However, the active utilization does not depend on the fact | 
 | 	 * that the task is on the runqueue or not (but depends on the | 
 | 	 * task's state - in GRUB parlance, "inactive" vs "active contending"). | 
 | 	 * In other words, even if a task is throttled its utilization must | 
 | 	 * be counted in the active utilization; hence, we need to call | 
 | 	 * add_running_bw(). | 
 | 	 */ | 
 | 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { | 
 | 		if (flags & ENQUEUE_WAKEUP) | 
 | 			task_contending(&p->dl, flags); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	enqueue_dl_entity(&p->dl, flags); | 
 |  | 
 | 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1) | 
 | 		enqueue_pushable_dl_task(rq, p); | 
 | } | 
 |  | 
 | static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	dequeue_dl_entity(&p->dl); | 
 | 	dequeue_pushable_dl_task(rq, p); | 
 | } | 
 |  | 
 | static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	update_curr_dl(rq); | 
 | 	__dequeue_task_dl(rq, p, flags); | 
 |  | 
 | 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { | 
 | 		sub_running_bw(&p->dl, &rq->dl); | 
 | 		sub_rq_bw(&p->dl, &rq->dl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This check allows to start the inactive timer (or to immediately | 
 | 	 * decrease the active utilization, if needed) in two cases: | 
 | 	 * when the task blocks and when it is terminating | 
 | 	 * (p->state == TASK_DEAD). We can handle the two cases in the same | 
 | 	 * way, because from GRUB's point of view the same thing is happening | 
 | 	 * (the task moves from "active contending" to "active non contending" | 
 | 	 * or "inactive") | 
 | 	 */ | 
 | 	if (flags & DEQUEUE_SLEEP) | 
 | 		task_non_contending(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Yield task semantic for -deadline tasks is: | 
 |  * | 
 |  *   get off from the CPU until our next instance, with | 
 |  *   a new runtime. This is of little use now, since we | 
 |  *   don't have a bandwidth reclaiming mechanism. Anyway, | 
 |  *   bandwidth reclaiming is planned for the future, and | 
 |  *   yield_task_dl will indicate that some spare budget | 
 |  *   is available for other task instances to use it. | 
 |  */ | 
 | static void yield_task_dl(struct rq *rq) | 
 | { | 
 | 	/* | 
 | 	 * We make the task go to sleep until its current deadline by | 
 | 	 * forcing its runtime to zero. This way, update_curr_dl() stops | 
 | 	 * it and the bandwidth timer will wake it up and will give it | 
 | 	 * new scheduling parameters (thanks to dl_yielded=1). | 
 | 	 */ | 
 | 	rq->curr->dl.dl_yielded = 1; | 
 |  | 
 | 	update_rq_clock(rq); | 
 | 	update_curr_dl(rq); | 
 | 	/* | 
 | 	 * Tell update_rq_clock() that we've just updated, | 
 | 	 * so we don't do microscopic update in schedule() | 
 | 	 * and double the fastpath cost. | 
 | 	 */ | 
 | 	rq_clock_skip_update(rq); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static int find_later_rq(struct task_struct *task); | 
 |  | 
 | static int | 
 | select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) | 
 | { | 
 | 	struct task_struct *curr; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (sd_flag != SD_BALANCE_WAKE) | 
 | 		goto out; | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	curr = READ_ONCE(rq->curr); /* unlocked access */ | 
 |  | 
 | 	/* | 
 | 	 * If we are dealing with a -deadline task, we must | 
 | 	 * decide where to wake it up. | 
 | 	 * If it has a later deadline and the current task | 
 | 	 * on this rq can't move (provided the waking task | 
 | 	 * can!) we prefer to send it somewhere else. On the | 
 | 	 * other hand, if it has a shorter deadline, we | 
 | 	 * try to make it stay here, it might be important. | 
 | 	 */ | 
 | 	if (unlikely(dl_task(curr)) && | 
 | 	    (curr->nr_cpus_allowed < 2 || | 
 | 	     !dl_entity_preempt(&p->dl, &curr->dl)) && | 
 | 	    (p->nr_cpus_allowed > 1)) { | 
 | 		int target = find_later_rq(p); | 
 |  | 
 | 		if (target != -1 && | 
 | 				(dl_time_before(p->dl.deadline, | 
 | 					cpu_rq(target)->dl.earliest_dl.curr) || | 
 | 				(cpu_rq(target)->dl.dl_nr_running == 0))) | 
 | 			cpu = target; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | out: | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (p->state != TASK_WAKING) | 
 | 		return; | 
 |  | 
 | 	rq = task_rq(p); | 
 | 	/* | 
 | 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called | 
 | 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but | 
 | 	 * rq->lock is not... So, lock it | 
 | 	 */ | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	if (p->dl.dl_non_contending) { | 
 | 		update_rq_clock(rq); | 
 | 		sub_running_bw(&p->dl, &rq->dl); | 
 | 		p->dl.dl_non_contending = 0; | 
 | 		/* | 
 | 		 * If the timer handler is currently running and the | 
 | 		 * timer cannot be cancelled, inactive_task_timer() | 
 | 		 * will see that dl_not_contending is not set, and | 
 | 		 * will not touch the rq's active utilization, | 
 | 		 * so we are still safe. | 
 | 		 */ | 
 | 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) | 
 | 			put_task_struct(p); | 
 | 	} | 
 | 	sub_rq_bw(&p->dl, &rq->dl); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * Current can't be migrated, useless to reschedule, | 
 | 	 * let's hope p can move out. | 
 | 	 */ | 
 | 	if (rq->curr->nr_cpus_allowed == 1 || | 
 | 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * p is migratable, so let's not schedule it and | 
 | 	 * see if it is pushed or pulled somewhere else. | 
 | 	 */ | 
 | 	if (p->nr_cpus_allowed != 1 && | 
 | 	    cpudl_find(&rq->rd->cpudl, p, NULL)) | 
 | 		return; | 
 |  | 
 | 	resched_curr(rq); | 
 | } | 
 |  | 
 | static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) | 
 | { | 
 | 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { | 
 | 		/* | 
 | 		 * This is OK, because current is on_cpu, which avoids it being | 
 | 		 * picked for load-balance and preemption/IRQs are still | 
 | 		 * disabled avoiding further scheduler activity on it and we've | 
 | 		 * not yet started the picking loop. | 
 | 		 */ | 
 | 		rq_unpin_lock(rq, rf); | 
 | 		pull_dl_task(rq); | 
 | 		rq_repin_lock(rq, rf); | 
 | 	} | 
 |  | 
 | 	return sched_stop_runnable(rq) || sched_dl_runnable(rq); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * Only called when both the current and waking task are -deadline | 
 |  * tasks. | 
 |  */ | 
 | static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, | 
 | 				  int flags) | 
 | { | 
 | 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { | 
 | 		resched_curr(rq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * In the unlikely case current and p have the same deadline | 
 | 	 * let us try to decide what's the best thing to do... | 
 | 	 */ | 
 | 	if ((p->dl.deadline == rq->curr->dl.deadline) && | 
 | 	    !test_tsk_need_resched(rq->curr)) | 
 | 		check_preempt_equal_dl(rq, p); | 
 | #endif /* CONFIG_SMP */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | static void start_hrtick_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	hrtick_start(rq, p->dl.runtime); | 
 | } | 
 | #else /* !CONFIG_SCHED_HRTICK */ | 
 | static void start_hrtick_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) | 
 | { | 
 | 	p->se.exec_start = rq_clock_task(rq); | 
 |  | 
 | 	/* You can't push away the running task */ | 
 | 	dequeue_pushable_dl_task(rq, p); | 
 |  | 
 | 	if (!first) | 
 | 		return; | 
 |  | 
 | 	if (hrtick_enabled(rq)) | 
 | 		start_hrtick_dl(rq, p); | 
 |  | 
 | 	if (rq->curr->sched_class != &dl_sched_class) | 
 | 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); | 
 |  | 
 | 	deadline_queue_push_tasks(rq); | 
 | } | 
 |  | 
 | static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) | 
 | { | 
 | 	struct rb_node *left = rb_first_cached(&dl_rq->root); | 
 |  | 
 | 	if (!left) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(left, struct sched_dl_entity, rb_node); | 
 | } | 
 |  | 
 | static struct task_struct * | 
 | pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
 | { | 
 | 	struct sched_dl_entity *dl_se; | 
 | 	struct dl_rq *dl_rq = &rq->dl; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	WARN_ON_ONCE(prev || rf); | 
 |  | 
 | 	if (!sched_dl_runnable(rq)) | 
 | 		return NULL; | 
 |  | 
 | 	dl_se = pick_next_dl_entity(dl_rq); | 
 | 	BUG_ON(!dl_se); | 
 | 	p = dl_task_of(dl_se); | 
 | 	set_next_task_dl(rq, p, true); | 
 | 	return p; | 
 | } | 
 |  | 
 | static void put_prev_task_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	update_curr_dl(rq); | 
 |  | 
 | 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); | 
 | 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) | 
 | 		enqueue_pushable_dl_task(rq, p); | 
 | } | 
 |  | 
 | /* | 
 |  * scheduler tick hitting a task of our scheduling class. | 
 |  * | 
 |  * NOTE: This function can be called remotely by the tick offload that | 
 |  * goes along full dynticks. Therefore no local assumption can be made | 
 |  * and everything must be accessed through the @rq and @curr passed in | 
 |  * parameters. | 
 |  */ | 
 | static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) | 
 | { | 
 | 	update_curr_dl(rq); | 
 |  | 
 | 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); | 
 | 	/* | 
 | 	 * Even when we have runtime, update_curr_dl() might have resulted in us | 
 | 	 * not being the leftmost task anymore. In that case NEED_RESCHED will | 
 | 	 * be set and schedule() will start a new hrtick for the next task. | 
 | 	 */ | 
 | 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && | 
 | 	    is_leftmost(p, &rq->dl)) | 
 | 		start_hrtick_dl(rq, p); | 
 | } | 
 |  | 
 | static void task_fork_dl(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through | 
 | 	 * sched_fork() | 
 | 	 */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* Only try algorithms three times */ | 
 | #define DL_MAX_TRIES 3 | 
 |  | 
 | static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) | 
 | { | 
 | 	if (!task_running(rq, p) && | 
 | 	    cpumask_test_cpu(cpu, p->cpus_ptr)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the earliest pushable rq's task, which is suitable to be executed | 
 |  * on the CPU, NULL otherwise: | 
 |  */ | 
 | static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) | 
 | { | 
 | 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; | 
 | 	struct task_struct *p = NULL; | 
 |  | 
 | 	if (!has_pushable_dl_tasks(rq)) | 
 | 		return NULL; | 
 |  | 
 | next_node: | 
 | 	if (next_node) { | 
 | 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); | 
 |  | 
 | 		if (pick_dl_task(rq, p, cpu)) | 
 | 			return p; | 
 |  | 
 | 		next_node = rb_next(next_node); | 
 | 		goto next_node; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); | 
 |  | 
 | static int find_later_rq(struct task_struct *task) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	int cpu = task_cpu(task); | 
 |  | 
 | 	/* Make sure the mask is initialized first */ | 
 | 	if (unlikely(!later_mask)) | 
 | 		return -1; | 
 |  | 
 | 	if (task->nr_cpus_allowed == 1) | 
 | 		return -1; | 
 |  | 
 | 	/* | 
 | 	 * We have to consider system topology and task affinity | 
 | 	 * first, then we can look for a suitable CPU. | 
 | 	 */ | 
 | 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) | 
 | 		return -1; | 
 |  | 
 | 	/* | 
 | 	 * If we are here, some targets have been found, including | 
 | 	 * the most suitable which is, among the runqueues where the | 
 | 	 * current tasks have later deadlines than the task's one, the | 
 | 	 * rq with the latest possible one. | 
 | 	 * | 
 | 	 * Now we check how well this matches with task's | 
 | 	 * affinity and system topology. | 
 | 	 * | 
 | 	 * The last CPU where the task run is our first | 
 | 	 * guess, since it is most likely cache-hot there. | 
 | 	 */ | 
 | 	if (cpumask_test_cpu(cpu, later_mask)) | 
 | 		return cpu; | 
 | 	/* | 
 | 	 * Check if this_cpu is to be skipped (i.e., it is | 
 | 	 * not in the mask) or not. | 
 | 	 */ | 
 | 	if (!cpumask_test_cpu(this_cpu, later_mask)) | 
 | 		this_cpu = -1; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (sd->flags & SD_WAKE_AFFINE) { | 
 | 			int best_cpu; | 
 |  | 
 | 			/* | 
 | 			 * If possible, preempting this_cpu is | 
 | 			 * cheaper than migrating. | 
 | 			 */ | 
 | 			if (this_cpu != -1 && | 
 | 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { | 
 | 				rcu_read_unlock(); | 
 | 				return this_cpu; | 
 | 			} | 
 |  | 
 | 			best_cpu = cpumask_first_and(later_mask, | 
 | 							sched_domain_span(sd)); | 
 | 			/* | 
 | 			 * Last chance: if a CPU being in both later_mask | 
 | 			 * and current sd span is valid, that becomes our | 
 | 			 * choice. Of course, the latest possible CPU is | 
 | 			 * already under consideration through later_mask. | 
 | 			 */ | 
 | 			if (best_cpu < nr_cpu_ids) { | 
 | 				rcu_read_unlock(); | 
 | 				return best_cpu; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * At this point, all our guesses failed, we just return | 
 | 	 * 'something', and let the caller sort the things out. | 
 | 	 */ | 
 | 	if (this_cpu != -1) | 
 | 		return this_cpu; | 
 |  | 
 | 	cpu = cpumask_any(later_mask); | 
 | 	if (cpu < nr_cpu_ids) | 
 | 		return cpu; | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Locks the rq it finds */ | 
 | static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) | 
 | { | 
 | 	struct rq *later_rq = NULL; | 
 | 	int tries; | 
 | 	int cpu; | 
 |  | 
 | 	for (tries = 0; tries < DL_MAX_TRIES; tries++) { | 
 | 		cpu = find_later_rq(task); | 
 |  | 
 | 		if ((cpu == -1) || (cpu == rq->cpu)) | 
 | 			break; | 
 |  | 
 | 		later_rq = cpu_rq(cpu); | 
 |  | 
 | 		if (later_rq->dl.dl_nr_running && | 
 | 		    !dl_time_before(task->dl.deadline, | 
 | 					later_rq->dl.earliest_dl.curr)) { | 
 | 			/* | 
 | 			 * Target rq has tasks of equal or earlier deadline, | 
 | 			 * retrying does not release any lock and is unlikely | 
 | 			 * to yield a different result. | 
 | 			 */ | 
 | 			later_rq = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Retry if something changed. */ | 
 | 		if (double_lock_balance(rq, later_rq)) { | 
 | 			if (unlikely(task_rq(task) != rq || | 
 | 				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) || | 
 | 				     task_running(rq, task) || | 
 | 				     !dl_task(task) || | 
 | 				     !task_on_rq_queued(task))) { | 
 | 				double_unlock_balance(rq, later_rq); | 
 | 				later_rq = NULL; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the rq we found has no -deadline task, or | 
 | 		 * its earliest one has a later deadline than our | 
 | 		 * task, the rq is a good one. | 
 | 		 */ | 
 | 		if (!later_rq->dl.dl_nr_running || | 
 | 		    dl_time_before(task->dl.deadline, | 
 | 				   later_rq->dl.earliest_dl.curr)) | 
 | 			break; | 
 |  | 
 | 		/* Otherwise we try again. */ | 
 | 		double_unlock_balance(rq, later_rq); | 
 | 		later_rq = NULL; | 
 | 	} | 
 |  | 
 | 	return later_rq; | 
 | } | 
 |  | 
 | static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!has_pushable_dl_tasks(rq)) | 
 | 		return NULL; | 
 |  | 
 | 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, | 
 | 		     struct task_struct, pushable_dl_tasks); | 
 |  | 
 | 	BUG_ON(rq->cpu != task_cpu(p)); | 
 | 	BUG_ON(task_current(rq, p)); | 
 | 	BUG_ON(p->nr_cpus_allowed <= 1); | 
 |  | 
 | 	BUG_ON(!task_on_rq_queued(p)); | 
 | 	BUG_ON(!dl_task(p)); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * See if the non running -deadline tasks on this rq | 
 |  * can be sent to some other CPU where they can preempt | 
 |  * and start executing. | 
 |  */ | 
 | static int push_dl_task(struct rq *rq) | 
 | { | 
 | 	struct task_struct *next_task; | 
 | 	struct rq *later_rq; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!rq->dl.overloaded) | 
 | 		return 0; | 
 |  | 
 | 	next_task = pick_next_pushable_dl_task(rq); | 
 | 	if (!next_task) | 
 | 		return 0; | 
 |  | 
 | retry: | 
 | 	if (WARN_ON(next_task == rq->curr)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If next_task preempts rq->curr, and rq->curr | 
 | 	 * can move away, it makes sense to just reschedule | 
 | 	 * without going further in pushing next_task. | 
 | 	 */ | 
 | 	if (dl_task(rq->curr) && | 
 | 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && | 
 | 	    rq->curr->nr_cpus_allowed > 1) { | 
 | 		resched_curr(rq); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We might release rq lock */ | 
 | 	get_task_struct(next_task); | 
 |  | 
 | 	/* Will lock the rq it'll find */ | 
 | 	later_rq = find_lock_later_rq(next_task, rq); | 
 | 	if (!later_rq) { | 
 | 		struct task_struct *task; | 
 |  | 
 | 		/* | 
 | 		 * We must check all this again, since | 
 | 		 * find_lock_later_rq releases rq->lock and it is | 
 | 		 * then possible that next_task has migrated. | 
 | 		 */ | 
 | 		task = pick_next_pushable_dl_task(rq); | 
 | 		if (task == next_task) { | 
 | 			/* | 
 | 			 * The task is still there. We don't try | 
 | 			 * again, some other CPU will pull it when ready. | 
 | 			 */ | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (!task) | 
 | 			/* No more tasks */ | 
 | 			goto out; | 
 |  | 
 | 		put_task_struct(next_task); | 
 | 		next_task = task; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	deactivate_task(rq, next_task, 0); | 
 | 	set_task_cpu(next_task, later_rq->cpu); | 
 |  | 
 | 	/* | 
 | 	 * Update the later_rq clock here, because the clock is used | 
 | 	 * by the cpufreq_update_util() inside __add_running_bw(). | 
 | 	 */ | 
 | 	update_rq_clock(later_rq); | 
 | 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); | 
 | 	ret = 1; | 
 |  | 
 | 	resched_curr(later_rq); | 
 |  | 
 | 	double_unlock_balance(rq, later_rq); | 
 |  | 
 | out: | 
 | 	put_task_struct(next_task); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void push_dl_tasks(struct rq *rq) | 
 | { | 
 | 	/* push_dl_task() will return true if it moved a -deadline task */ | 
 | 	while (push_dl_task(rq)) | 
 | 		; | 
 | } | 
 |  | 
 | static void pull_dl_task(struct rq *this_rq) | 
 | { | 
 | 	int this_cpu = this_rq->cpu, cpu; | 
 | 	struct task_struct *p; | 
 | 	bool resched = false; | 
 | 	struct rq *src_rq; | 
 | 	u64 dmin = LONG_MAX; | 
 |  | 
 | 	if (likely(!dl_overloaded(this_rq))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Match the barrier from dl_set_overloaded; this guarantees that if we | 
 | 	 * see overloaded we must also see the dlo_mask bit. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	for_each_cpu(cpu, this_rq->rd->dlo_mask) { | 
 | 		if (this_cpu == cpu) | 
 | 			continue; | 
 |  | 
 | 		src_rq = cpu_rq(cpu); | 
 |  | 
 | 		/* | 
 | 		 * It looks racy, abd it is! However, as in sched_rt.c, | 
 | 		 * we are fine with this. | 
 | 		 */ | 
 | 		if (this_rq->dl.dl_nr_running && | 
 | 		    dl_time_before(this_rq->dl.earliest_dl.curr, | 
 | 				   src_rq->dl.earliest_dl.next)) | 
 | 			continue; | 
 |  | 
 | 		/* Might drop this_rq->lock */ | 
 | 		double_lock_balance(this_rq, src_rq); | 
 |  | 
 | 		/* | 
 | 		 * If there are no more pullable tasks on the | 
 | 		 * rq, we're done with it. | 
 | 		 */ | 
 | 		if (src_rq->dl.dl_nr_running <= 1) | 
 | 			goto skip; | 
 |  | 
 | 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu); | 
 |  | 
 | 		/* | 
 | 		 * We found a task to be pulled if: | 
 | 		 *  - it preempts our current (if there's one), | 
 | 		 *  - it will preempt the last one we pulled (if any). | 
 | 		 */ | 
 | 		if (p && dl_time_before(p->dl.deadline, dmin) && | 
 | 		    (!this_rq->dl.dl_nr_running || | 
 | 		     dl_time_before(p->dl.deadline, | 
 | 				    this_rq->dl.earliest_dl.curr))) { | 
 | 			WARN_ON(p == src_rq->curr); | 
 | 			WARN_ON(!task_on_rq_queued(p)); | 
 |  | 
 | 			/* | 
 | 			 * Then we pull iff p has actually an earlier | 
 | 			 * deadline than the current task of its runqueue. | 
 | 			 */ | 
 | 			if (dl_time_before(p->dl.deadline, | 
 | 					   src_rq->curr->dl.deadline)) | 
 | 				goto skip; | 
 |  | 
 | 			resched = true; | 
 |  | 
 | 			deactivate_task(src_rq, p, 0); | 
 | 			set_task_cpu(p, this_cpu); | 
 | 			activate_task(this_rq, p, 0); | 
 | 			dmin = p->dl.deadline; | 
 |  | 
 | 			/* Is there any other task even earlier? */ | 
 | 		} | 
 | skip: | 
 | 		double_unlock_balance(this_rq, src_rq); | 
 | 	} | 
 |  | 
 | 	if (resched) | 
 | 		resched_curr(this_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Since the task is not running and a reschedule is not going to happen | 
 |  * anytime soon on its runqueue, we try pushing it away now. | 
 |  */ | 
 | static void task_woken_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	if (!task_running(rq, p) && | 
 | 	    !test_tsk_need_resched(rq->curr) && | 
 | 	    p->nr_cpus_allowed > 1 && | 
 | 	    dl_task(rq->curr) && | 
 | 	    (rq->curr->nr_cpus_allowed < 2 || | 
 | 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) { | 
 | 		push_dl_tasks(rq); | 
 | 	} | 
 | } | 
 |  | 
 | static void set_cpus_allowed_dl(struct task_struct *p, | 
 | 				const struct cpumask *new_mask) | 
 | { | 
 | 	struct root_domain *src_rd; | 
 | 	struct rq *rq; | 
 |  | 
 | 	BUG_ON(!dl_task(p)); | 
 |  | 
 | 	rq = task_rq(p); | 
 | 	src_rd = rq->rd; | 
 | 	/* | 
 | 	 * Migrating a SCHED_DEADLINE task between exclusive | 
 | 	 * cpusets (different root_domains) entails a bandwidth | 
 | 	 * update. We already made space for us in the destination | 
 | 	 * domain (see cpuset_can_attach()). | 
 | 	 */ | 
 | 	if (!cpumask_intersects(src_rd->span, new_mask)) { | 
 | 		struct dl_bw *src_dl_b; | 
 |  | 
 | 		src_dl_b = dl_bw_of(cpu_of(rq)); | 
 | 		/* | 
 | 		 * We now free resources of the root_domain we are migrating | 
 | 		 * off. In the worst case, sched_setattr() may temporary fail | 
 | 		 * until we complete the update. | 
 | 		 */ | 
 | 		raw_spin_lock(&src_dl_b->lock); | 
 | 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); | 
 | 		raw_spin_unlock(&src_dl_b->lock); | 
 | 	} | 
 |  | 
 | 	set_cpus_allowed_common(p, new_mask); | 
 | } | 
 |  | 
 | /* Assumes rq->lock is held */ | 
 | static void rq_online_dl(struct rq *rq) | 
 | { | 
 | 	if (rq->dl.overloaded) | 
 | 		dl_set_overload(rq); | 
 |  | 
 | 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); | 
 | 	if (rq->dl.dl_nr_running > 0) | 
 | 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); | 
 | } | 
 |  | 
 | /* Assumes rq->lock is held */ | 
 | static void rq_offline_dl(struct rq *rq) | 
 | { | 
 | 	if (rq->dl.overloaded) | 
 | 		dl_clear_overload(rq); | 
 |  | 
 | 	cpudl_clear(&rq->rd->cpudl, rq->cpu); | 
 | 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); | 
 | } | 
 |  | 
 | void __init init_sched_dl_class(void) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), | 
 | 					GFP_KERNEL, cpu_to_node(i)); | 
 | } | 
 |  | 
 | void dl_add_task_root_domain(struct task_struct *p) | 
 | { | 
 | 	struct rq_flags rf; | 
 | 	struct rq *rq; | 
 | 	struct dl_bw *dl_b; | 
 |  | 
 | 	rq = task_rq_lock(p, &rf); | 
 | 	if (!dl_task(p)) | 
 | 		goto unlock; | 
 |  | 
 | 	dl_b = &rq->rd->dl_bw; | 
 | 	raw_spin_lock(&dl_b->lock); | 
 |  | 
 | 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); | 
 |  | 
 | 	raw_spin_unlock(&dl_b->lock); | 
 |  | 
 | unlock: | 
 | 	task_rq_unlock(rq, p, &rf); | 
 | } | 
 |  | 
 | void dl_clear_root_domain(struct root_domain *rd) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); | 
 | 	rd->dl_bw.total_bw = 0; | 
 | 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void switched_from_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * task_non_contending() can start the "inactive timer" (if the 0-lag | 
 | 	 * time is in the future). If the task switches back to dl before | 
 | 	 * the "inactive timer" fires, it can continue to consume its current | 
 | 	 * runtime using its current deadline. If it stays outside of | 
 | 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() | 
 | 	 * will reset the task parameters. | 
 | 	 */ | 
 | 	if (task_on_rq_queued(p) && p->dl.dl_runtime) | 
 | 		task_non_contending(p); | 
 |  | 
 | 	if (!task_on_rq_queued(p)) { | 
 | 		/* | 
 | 		 * Inactive timer is armed. However, p is leaving DEADLINE and | 
 | 		 * might migrate away from this rq while continuing to run on | 
 | 		 * some other class. We need to remove its contribution from | 
 | 		 * this rq running_bw now, or sub_rq_bw (below) will complain. | 
 | 		 */ | 
 | 		if (p->dl.dl_non_contending) | 
 | 			sub_running_bw(&p->dl, &rq->dl); | 
 | 		sub_rq_bw(&p->dl, &rq->dl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We cannot use inactive_task_timer() to invoke sub_running_bw() | 
 | 	 * at the 0-lag time, because the task could have been migrated | 
 | 	 * while SCHED_OTHER in the meanwhile. | 
 | 	 */ | 
 | 	if (p->dl.dl_non_contending) | 
 | 		p->dl.dl_non_contending = 0; | 
 |  | 
 | 	/* | 
 | 	 * Since this might be the only -deadline task on the rq, | 
 | 	 * this is the right place to try to pull some other one | 
 | 	 * from an overloaded CPU, if any. | 
 | 	 */ | 
 | 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) | 
 | 		return; | 
 |  | 
 | 	deadline_queue_pull_task(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * When switching to -deadline, we may overload the rq, then | 
 |  * we try to push someone off, if possible. | 
 |  */ | 
 | static void switched_to_dl(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) | 
 | 		put_task_struct(p); | 
 |  | 
 | 	/* If p is not queued we will update its parameters at next wakeup. */ | 
 | 	if (!task_on_rq_queued(p)) { | 
 | 		add_rq_bw(&p->dl, &rq->dl); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (rq->curr != p) { | 
 | #ifdef CONFIG_SMP | 
 | 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) | 
 | 			deadline_queue_push_tasks(rq); | 
 | #endif | 
 | 		if (dl_task(rq->curr)) | 
 | 			check_preempt_curr_dl(rq, p, 0); | 
 | 		else | 
 | 			resched_curr(rq); | 
 | 	} else { | 
 | 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If the scheduling parameters of a -deadline task changed, | 
 |  * a push or pull operation might be needed. | 
 |  */ | 
 | static void prio_changed_dl(struct rq *rq, struct task_struct *p, | 
 | 			    int oldprio) | 
 | { | 
 | 	if (task_on_rq_queued(p) || rq->curr == p) { | 
 | #ifdef CONFIG_SMP | 
 | 		/* | 
 | 		 * This might be too much, but unfortunately | 
 | 		 * we don't have the old deadline value, and | 
 | 		 * we can't argue if the task is increasing | 
 | 		 * or lowering its prio, so... | 
 | 		 */ | 
 | 		if (!rq->dl.overloaded) | 
 | 			deadline_queue_pull_task(rq); | 
 |  | 
 | 		/* | 
 | 		 * If we now have a earlier deadline task than p, | 
 | 		 * then reschedule, provided p is still on this | 
 | 		 * runqueue. | 
 | 		 */ | 
 | 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) | 
 | 			resched_curr(rq); | 
 | #else | 
 | 		/* | 
 | 		 * Again, we don't know if p has a earlier | 
 | 		 * or later deadline, so let's blindly set a | 
 | 		 * (maybe not needed) rescheduling point. | 
 | 		 */ | 
 | 		resched_curr(rq); | 
 | #endif /* CONFIG_SMP */ | 
 | 	} | 
 | } | 
 |  | 
 | const struct sched_class dl_sched_class = { | 
 | 	.next			= &rt_sched_class, | 
 | 	.enqueue_task		= enqueue_task_dl, | 
 | 	.dequeue_task		= dequeue_task_dl, | 
 | 	.yield_task		= yield_task_dl, | 
 |  | 
 | 	.check_preempt_curr	= check_preempt_curr_dl, | 
 |  | 
 | 	.pick_next_task		= pick_next_task_dl, | 
 | 	.put_prev_task		= put_prev_task_dl, | 
 | 	.set_next_task		= set_next_task_dl, | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	.balance		= balance_dl, | 
 | 	.select_task_rq		= select_task_rq_dl, | 
 | 	.migrate_task_rq	= migrate_task_rq_dl, | 
 | 	.set_cpus_allowed       = set_cpus_allowed_dl, | 
 | 	.rq_online              = rq_online_dl, | 
 | 	.rq_offline             = rq_offline_dl, | 
 | 	.task_woken		= task_woken_dl, | 
 | #endif | 
 |  | 
 | 	.task_tick		= task_tick_dl, | 
 | 	.task_fork              = task_fork_dl, | 
 |  | 
 | 	.prio_changed           = prio_changed_dl, | 
 | 	.switched_from		= switched_from_dl, | 
 | 	.switched_to		= switched_to_dl, | 
 |  | 
 | 	.update_curr		= update_curr_dl, | 
 | }; | 
 |  | 
 | int sched_dl_global_validate(void) | 
 | { | 
 | 	u64 runtime = global_rt_runtime(); | 
 | 	u64 period = global_rt_period(); | 
 | 	u64 new_bw = to_ratio(period, runtime); | 
 | 	struct dl_bw *dl_b; | 
 | 	int cpu, cpus, ret = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Here we want to check the bandwidth not being set to some | 
 | 	 * value smaller than the currently allocated bandwidth in | 
 | 	 * any of the root_domains. | 
 | 	 * | 
 | 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than | 
 | 	 * cycling on root_domains... Discussion on different/better | 
 | 	 * solutions is welcome! | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		rcu_read_lock_sched(); | 
 | 		dl_b = dl_bw_of(cpu); | 
 | 		cpus = dl_bw_cpus(cpu); | 
 |  | 
 | 		raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 		if (new_bw * cpus < dl_b->total_bw) | 
 | 			ret = -EBUSY; | 
 | 		raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 |  | 
 | 		rcu_read_unlock_sched(); | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) | 
 | { | 
 | 	if (global_rt_runtime() == RUNTIME_INF) { | 
 | 		dl_rq->bw_ratio = 1 << RATIO_SHIFT; | 
 | 		dl_rq->extra_bw = 1 << BW_SHIFT; | 
 | 	} else { | 
 | 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(), | 
 | 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); | 
 | 		dl_rq->extra_bw = to_ratio(global_rt_period(), | 
 | 						    global_rt_runtime()); | 
 | 	} | 
 | } | 
 |  | 
 | void sched_dl_do_global(void) | 
 | { | 
 | 	u64 new_bw = -1; | 
 | 	struct dl_bw *dl_b; | 
 | 	int cpu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	def_dl_bandwidth.dl_period = global_rt_period(); | 
 | 	def_dl_bandwidth.dl_runtime = global_rt_runtime(); | 
 |  | 
 | 	if (global_rt_runtime() != RUNTIME_INF) | 
 | 		new_bw = to_ratio(global_rt_period(), global_rt_runtime()); | 
 |  | 
 | 	/* | 
 | 	 * FIXME: As above... | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		rcu_read_lock_sched(); | 
 | 		dl_b = dl_bw_of(cpu); | 
 |  | 
 | 		raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 		dl_b->bw = new_bw; | 
 | 		raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 |  | 
 | 		rcu_read_unlock_sched(); | 
 | 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We must be sure that accepting a new task (or allowing changing the | 
 |  * parameters of an existing one) is consistent with the bandwidth | 
 |  * constraints. If yes, this function also accordingly updates the currently | 
 |  * allocated bandwidth to reflect the new situation. | 
 |  * | 
 |  * This function is called while holding p's rq->lock. | 
 |  */ | 
 | int sched_dl_overflow(struct task_struct *p, int policy, | 
 | 		      const struct sched_attr *attr) | 
 | { | 
 | 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); | 
 | 	u64 period = attr->sched_period ?: attr->sched_deadline; | 
 | 	u64 runtime = attr->sched_runtime; | 
 | 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; | 
 | 	int cpus, err = -1; | 
 |  | 
 | 	if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
 | 		return 0; | 
 |  | 
 | 	/* !deadline task may carry old deadline bandwidth */ | 
 | 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Either if a task, enters, leave, or stays -deadline but changes | 
 | 	 * its parameters, we may need to update accordingly the total | 
 | 	 * allocated bandwidth of the container. | 
 | 	 */ | 
 | 	raw_spin_lock(&dl_b->lock); | 
 | 	cpus = dl_bw_cpus(task_cpu(p)); | 
 | 	if (dl_policy(policy) && !task_has_dl_policy(p) && | 
 | 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) { | 
 | 		if (hrtimer_active(&p->dl.inactive_timer)) | 
 | 			__dl_sub(dl_b, p->dl.dl_bw, cpus); | 
 | 		__dl_add(dl_b, new_bw, cpus); | 
 | 		err = 0; | 
 | 	} else if (dl_policy(policy) && task_has_dl_policy(p) && | 
 | 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { | 
 | 		/* | 
 | 		 * XXX this is slightly incorrect: when the task | 
 | 		 * utilization decreases, we should delay the total | 
 | 		 * utilization change until the task's 0-lag point. | 
 | 		 * But this would require to set the task's "inactive | 
 | 		 * timer" when the task is not inactive. | 
 | 		 */ | 
 | 		__dl_sub(dl_b, p->dl.dl_bw, cpus); | 
 | 		__dl_add(dl_b, new_bw, cpus); | 
 | 		dl_change_utilization(p, new_bw); | 
 | 		err = 0; | 
 | 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) { | 
 | 		/* | 
 | 		 * Do not decrease the total deadline utilization here, | 
 | 		 * switched_from_dl() will take care to do it at the correct | 
 | 		 * (0-lag) time. | 
 | 		 */ | 
 | 		err = 0; | 
 | 	} | 
 | 	raw_spin_unlock(&dl_b->lock); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * This function initializes the sched_dl_entity of a newly becoming | 
 |  * SCHED_DEADLINE task. | 
 |  * | 
 |  * Only the static values are considered here, the actual runtime and the | 
 |  * absolute deadline will be properly calculated when the task is enqueued | 
 |  * for the first time with its new policy. | 
 |  */ | 
 | void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	dl_se->dl_runtime = attr->sched_runtime; | 
 | 	dl_se->dl_deadline = attr->sched_deadline; | 
 | 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; | 
 | 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; | 
 | 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); | 
 | 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); | 
 | } | 
 |  | 
 | void __getparam_dl(struct task_struct *p, struct sched_attr *attr) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	attr->sched_priority = p->rt_priority; | 
 | 	attr->sched_runtime = dl_se->dl_runtime; | 
 | 	attr->sched_deadline = dl_se->dl_deadline; | 
 | 	attr->sched_period = dl_se->dl_period; | 
 | 	attr->sched_flags &= ~SCHED_DL_FLAGS; | 
 | 	attr->sched_flags |= dl_se->flags; | 
 | } | 
 |  | 
 | /* | 
 |  * This function validates the new parameters of a -deadline task. | 
 |  * We ask for the deadline not being zero, and greater or equal | 
 |  * than the runtime, as well as the period of being zero or | 
 |  * greater than deadline. Furthermore, we have to be sure that | 
 |  * user parameters are above the internal resolution of 1us (we | 
 |  * check sched_runtime only since it is always the smaller one) and | 
 |  * below 2^63 ns (we have to check both sched_deadline and | 
 |  * sched_period, as the latter can be zero). | 
 |  */ | 
 | bool __checkparam_dl(const struct sched_attr *attr) | 
 | { | 
 | 	/* special dl tasks don't actually use any parameter */ | 
 | 	if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
 | 		return true; | 
 |  | 
 | 	/* deadline != 0 */ | 
 | 	if (attr->sched_deadline == 0) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Since we truncate DL_SCALE bits, make sure we're at least | 
 | 	 * that big. | 
 | 	 */ | 
 | 	if (attr->sched_runtime < (1ULL << DL_SCALE)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Since we use the MSB for wrap-around and sign issues, make | 
 | 	 * sure it's not set (mind that period can be equal to zero). | 
 | 	 */ | 
 | 	if (attr->sched_deadline & (1ULL << 63) || | 
 | 	    attr->sched_period & (1ULL << 63)) | 
 | 		return false; | 
 |  | 
 | 	/* runtime <= deadline <= period (if period != 0) */ | 
 | 	if ((attr->sched_period != 0 && | 
 | 	     attr->sched_period < attr->sched_deadline) || | 
 | 	    attr->sched_deadline < attr->sched_runtime) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * This function clears the sched_dl_entity static params. | 
 |  */ | 
 | void __dl_clear_params(struct task_struct *p) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	dl_se->dl_runtime		= 0; | 
 | 	dl_se->dl_deadline		= 0; | 
 | 	dl_se->dl_period		= 0; | 
 | 	dl_se->flags			= 0; | 
 | 	dl_se->dl_bw			= 0; | 
 | 	dl_se->dl_density		= 0; | 
 |  | 
 | 	dl_se->dl_throttled		= 0; | 
 | 	dl_se->dl_yielded		= 0; | 
 | 	dl_se->dl_non_contending	= 0; | 
 | 	dl_se->dl_overrun		= 0; | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 | 	dl_se->pi_se			= dl_se; | 
 | #endif | 
 | } | 
 |  | 
 | bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	if (dl_se->dl_runtime != attr->sched_runtime || | 
 | 	    dl_se->dl_deadline != attr->sched_deadline || | 
 | 	    dl_se->dl_period != attr->sched_period || | 
 | 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) | 
 | { | 
 | 	unsigned int dest_cpu; | 
 | 	struct dl_bw *dl_b; | 
 | 	bool overflow; | 
 | 	int cpus, ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); | 
 |  | 
 | 	rcu_read_lock_sched(); | 
 | 	dl_b = dl_bw_of(dest_cpu); | 
 | 	raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 	cpus = dl_bw_cpus(dest_cpu); | 
 | 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); | 
 | 	if (overflow) { | 
 | 		ret = -EBUSY; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We reserve space for this task in the destination | 
 | 		 * root_domain, as we can't fail after this point. | 
 | 		 * We will free resources in the source root_domain | 
 | 		 * later on (see set_cpus_allowed_dl()). | 
 | 		 */ | 
 | 		__dl_add(dl_b, p->dl.dl_bw, cpus); | 
 | 		ret = 0; | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 | 	rcu_read_unlock_sched(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, | 
 | 				 const struct cpumask *trial) | 
 | { | 
 | 	int ret = 1, trial_cpus; | 
 | 	struct dl_bw *cur_dl_b; | 
 | 	unsigned long flags; | 
 |  | 
 | 	rcu_read_lock_sched(); | 
 | 	cur_dl_b = dl_bw_of(cpumask_any(cur)); | 
 | 	trial_cpus = cpumask_weight(trial); | 
 |  | 
 | 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags); | 
 | 	if (cur_dl_b->bw != -1 && | 
 | 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) | 
 | 		ret = 0; | 
 | 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); | 
 | 	rcu_read_unlock_sched(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool dl_cpu_busy(unsigned int cpu) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct dl_bw *dl_b; | 
 | 	bool overflow; | 
 | 	int cpus; | 
 |  | 
 | 	rcu_read_lock_sched(); | 
 | 	dl_b = dl_bw_of(cpu); | 
 | 	raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 	cpus = dl_bw_cpus(cpu); | 
 | 	overflow = __dl_overflow(dl_b, cpus, 0, 0); | 
 | 	raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 | 	rcu_read_unlock_sched(); | 
 |  | 
 | 	return overflow; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | void print_dl_stats(struct seq_file *m, int cpu) | 
 | { | 
 | 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); | 
 | } | 
 | #endif /* CONFIG_SCHED_DEBUG */ |