| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* memcontrol.c - Memory Controller | 
 |  * | 
 |  * Copyright IBM Corporation, 2007 | 
 |  * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
 |  * | 
 |  * Copyright 2007 OpenVZ SWsoft Inc | 
 |  * Author: Pavel Emelianov <xemul@openvz.org> | 
 |  * | 
 |  * Memory thresholds | 
 |  * Copyright (C) 2009 Nokia Corporation | 
 |  * Author: Kirill A. Shutemov | 
 |  * | 
 |  * Kernel Memory Controller | 
 |  * Copyright (C) 2012 Parallels Inc. and Google Inc. | 
 |  * Authors: Glauber Costa and Suleiman Souhlal | 
 |  * | 
 |  * Native page reclaim | 
 |  * Charge lifetime sanitation | 
 |  * Lockless page tracking & accounting | 
 |  * Unified hierarchy configuration model | 
 |  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | 
 |  */ | 
 |  | 
 | #include <linux/page_counter.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/pagewalk.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/vm_event_item.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/limits.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/eventfd.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/vmpressure.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/swap_cgroup.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/lockdep.h> | 
 | #include <linux/file.h> | 
 | #include <linux/tracehook.h> | 
 | #include <linux/psi.h> | 
 | #include <linux/seq_buf.h> | 
 | #include "internal.h" | 
 | #include <net/sock.h> | 
 | #include <net/ip.h> | 
 | #include "slab.h" | 
 |  | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include <trace/events/vmscan.h> | 
 |  | 
 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | 
 | EXPORT_SYMBOL(memory_cgrp_subsys); | 
 |  | 
 | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
 |  | 
 | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
 |  | 
 | /* Socket memory accounting disabled? */ | 
 | static bool cgroup_memory_nosocket; | 
 |  | 
 | /* Kernel memory accounting disabled? */ | 
 | static bool cgroup_memory_nokmem; | 
 |  | 
 | /* Whether the swap controller is active */ | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | int do_swap_account __read_mostly; | 
 | #else | 
 | #define do_swap_account		0 | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CGROUP_WRITEBACK | 
 | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); | 
 | #endif | 
 |  | 
 | /* Whether legacy memory+swap accounting is active */ | 
 | static bool do_memsw_account(void) | 
 | { | 
 | 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; | 
 | } | 
 |  | 
 | static const char *const mem_cgroup_lru_names[] = { | 
 | 	"inactive_anon", | 
 | 	"active_anon", | 
 | 	"inactive_file", | 
 | 	"active_file", | 
 | 	"unevictable", | 
 | }; | 
 |  | 
 | #define THRESHOLDS_EVENTS_TARGET 128 | 
 | #define SOFTLIMIT_EVENTS_TARGET 1024 | 
 | #define NUMAINFO_EVENTS_TARGET	1024 | 
 |  | 
 | /* | 
 |  * Cgroups above their limits are maintained in a RB-Tree, independent of | 
 |  * their hierarchy representation | 
 |  */ | 
 |  | 
 | struct mem_cgroup_tree_per_node { | 
 | 	struct rb_root rb_root; | 
 | 	struct rb_node *rb_rightmost; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | struct mem_cgroup_tree { | 
 | 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
 |  | 
 | /* for OOM */ | 
 | struct mem_cgroup_eventfd_list { | 
 | 	struct list_head list; | 
 | 	struct eventfd_ctx *eventfd; | 
 | }; | 
 |  | 
 | /* | 
 |  * cgroup_event represents events which userspace want to receive. | 
 |  */ | 
 | struct mem_cgroup_event { | 
 | 	/* | 
 | 	 * memcg which the event belongs to. | 
 | 	 */ | 
 | 	struct mem_cgroup *memcg; | 
 | 	/* | 
 | 	 * eventfd to signal userspace about the event. | 
 | 	 */ | 
 | 	struct eventfd_ctx *eventfd; | 
 | 	/* | 
 | 	 * Each of these stored in a list by the cgroup. | 
 | 	 */ | 
 | 	struct list_head list; | 
 | 	/* | 
 | 	 * register_event() callback will be used to add new userspace | 
 | 	 * waiter for changes related to this event.  Use eventfd_signal() | 
 | 	 * on eventfd to send notification to userspace. | 
 | 	 */ | 
 | 	int (*register_event)(struct mem_cgroup *memcg, | 
 | 			      struct eventfd_ctx *eventfd, const char *args); | 
 | 	/* | 
 | 	 * unregister_event() callback will be called when userspace closes | 
 | 	 * the eventfd or on cgroup removing.  This callback must be set, | 
 | 	 * if you want provide notification functionality. | 
 | 	 */ | 
 | 	void (*unregister_event)(struct mem_cgroup *memcg, | 
 | 				 struct eventfd_ctx *eventfd); | 
 | 	/* | 
 | 	 * All fields below needed to unregister event when | 
 | 	 * userspace closes eventfd. | 
 | 	 */ | 
 | 	poll_table pt; | 
 | 	wait_queue_head_t *wqh; | 
 | 	wait_queue_entry_t wait; | 
 | 	struct work_struct remove; | 
 | }; | 
 |  | 
 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | 
 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | 
 |  | 
 | /* Stuffs for move charges at task migration. */ | 
 | /* | 
 |  * Types of charges to be moved. | 
 |  */ | 
 | #define MOVE_ANON	0x1U | 
 | #define MOVE_FILE	0x2U | 
 | #define MOVE_MASK	(MOVE_ANON | MOVE_FILE) | 
 |  | 
 | /* "mc" and its members are protected by cgroup_mutex */ | 
 | static struct move_charge_struct { | 
 | 	spinlock_t	  lock; /* for from, to */ | 
 | 	struct mm_struct  *mm; | 
 | 	struct mem_cgroup *from; | 
 | 	struct mem_cgroup *to; | 
 | 	unsigned long flags; | 
 | 	unsigned long precharge; | 
 | 	unsigned long moved_charge; | 
 | 	unsigned long moved_swap; | 
 | 	struct task_struct *moving_task;	/* a task moving charges */ | 
 | 	wait_queue_head_t waitq;		/* a waitq for other context */ | 
 | } mc = { | 
 | 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 
 | 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 
 | }; | 
 |  | 
 | /* | 
 |  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
 |  * limit reclaim to prevent infinite loops, if they ever occur. | 
 |  */ | 
 | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 | 
 | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2 | 
 |  | 
 | enum charge_type { | 
 | 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
 | 	MEM_CGROUP_CHARGE_TYPE_ANON, | 
 | 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
 | 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
 | 	NR_CHARGE_TYPE, | 
 | }; | 
 |  | 
 | /* for encoding cft->private value on file */ | 
 | enum res_type { | 
 | 	_MEM, | 
 | 	_MEMSWAP, | 
 | 	_OOM_TYPE, | 
 | 	_KMEM, | 
 | 	_TCP, | 
 | }; | 
 |  | 
 | #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) | 
 | #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff) | 
 | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
 | /* Used for OOM nofiier */ | 
 | #define OOM_CONTROL		(0) | 
 |  | 
 | /* | 
 |  * Iteration constructs for visiting all cgroups (under a tree).  If | 
 |  * loops are exited prematurely (break), mem_cgroup_iter_break() must | 
 |  * be used for reference counting. | 
 |  */ | 
 | #define for_each_mem_cgroup_tree(iter, root)		\ | 
 | 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\ | 
 | 	     iter != NULL;				\ | 
 | 	     iter = mem_cgroup_iter(root, iter, NULL)) | 
 |  | 
 | #define for_each_mem_cgroup(iter)			\ | 
 | 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\ | 
 | 	     iter != NULL;				\ | 
 | 	     iter = mem_cgroup_iter(NULL, iter, NULL)) | 
 |  | 
 | static inline bool should_force_charge(void) | 
 | { | 
 | 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) || | 
 | 		(current->flags & PF_EXITING); | 
 | } | 
 |  | 
 | /* Some nice accessors for the vmpressure. */ | 
 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (!memcg) | 
 | 		memcg = root_mem_cgroup; | 
 | 	return &memcg->vmpressure; | 
 | } | 
 |  | 
 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | 
 | { | 
 | 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | /* | 
 |  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. | 
 |  * The main reason for not using cgroup id for this: | 
 |  *  this works better in sparse environments, where we have a lot of memcgs, | 
 |  *  but only a few kmem-limited. Or also, if we have, for instance, 200 | 
 |  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a | 
 |  *  200 entry array for that. | 
 |  * | 
 |  * The current size of the caches array is stored in memcg_nr_cache_ids. It | 
 |  * will double each time we have to increase it. | 
 |  */ | 
 | static DEFINE_IDA(memcg_cache_ida); | 
 | int memcg_nr_cache_ids; | 
 |  | 
 | /* Protects memcg_nr_cache_ids */ | 
 | static DECLARE_RWSEM(memcg_cache_ids_sem); | 
 |  | 
 | void memcg_get_cache_ids(void) | 
 | { | 
 | 	down_read(&memcg_cache_ids_sem); | 
 | } | 
 |  | 
 | void memcg_put_cache_ids(void) | 
 | { | 
 | 	up_read(&memcg_cache_ids_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * MIN_SIZE is different than 1, because we would like to avoid going through | 
 |  * the alloc/free process all the time. In a small machine, 4 kmem-limited | 
 |  * cgroups is a reasonable guess. In the future, it could be a parameter or | 
 |  * tunable, but that is strictly not necessary. | 
 |  * | 
 |  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | 
 |  * this constant directly from cgroup, but it is understandable that this is | 
 |  * better kept as an internal representation in cgroup.c. In any case, the | 
 |  * cgrp_id space is not getting any smaller, and we don't have to necessarily | 
 |  * increase ours as well if it increases. | 
 |  */ | 
 | #define MEMCG_CACHES_MIN_SIZE 4 | 
 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | 
 |  | 
 | /* | 
 |  * A lot of the calls to the cache allocation functions are expected to be | 
 |  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | 
 |  * conditional to this static branch, we'll have to allow modules that does | 
 |  * kmem_cache_alloc and the such to see this symbol as well | 
 |  */ | 
 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); | 
 | EXPORT_SYMBOL(memcg_kmem_enabled_key); | 
 |  | 
 | struct workqueue_struct *memcg_kmem_cache_wq; | 
 | #endif | 
 |  | 
 | static int memcg_shrinker_map_size; | 
 | static DEFINE_MUTEX(memcg_shrinker_map_mutex); | 
 |  | 
 | static void memcg_free_shrinker_map_rcu(struct rcu_head *head) | 
 | { | 
 | 	kvfree(container_of(head, struct memcg_shrinker_map, rcu)); | 
 | } | 
 |  | 
 | static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, | 
 | 					 int size, int old_size) | 
 | { | 
 | 	struct memcg_shrinker_map *new, *old; | 
 | 	int nid; | 
 |  | 
 | 	lockdep_assert_held(&memcg_shrinker_map_mutex); | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		old = rcu_dereference_protected( | 
 | 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); | 
 | 		/* Not yet online memcg */ | 
 | 		if (!old) | 
 | 			return 0; | 
 |  | 
 | 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); | 
 | 		if (!new) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		/* Set all old bits, clear all new bits */ | 
 | 		memset(new->map, (int)0xff, old_size); | 
 | 		memset((void *)new->map + old_size, 0, size - old_size); | 
 |  | 
 | 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); | 
 | 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_per_node *pn; | 
 | 	struct memcg_shrinker_map *map; | 
 | 	int nid; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return; | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		pn = mem_cgroup_nodeinfo(memcg, nid); | 
 | 		map = rcu_dereference_protected(pn->shrinker_map, true); | 
 | 		if (map) | 
 | 			kvfree(map); | 
 | 		rcu_assign_pointer(pn->shrinker_map, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct memcg_shrinker_map *map; | 
 | 	int nid, size, ret = 0; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&memcg_shrinker_map_mutex); | 
 | 	size = memcg_shrinker_map_size; | 
 | 	for_each_node(nid) { | 
 | 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); | 
 | 		if (!map) { | 
 | 			memcg_free_shrinker_maps(memcg); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); | 
 | 	} | 
 | 	mutex_unlock(&memcg_shrinker_map_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int memcg_expand_shrinker_maps(int new_id) | 
 | { | 
 | 	int size, old_size, ret = 0; | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); | 
 | 	old_size = memcg_shrinker_map_size; | 
 | 	if (size <= old_size) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&memcg_shrinker_map_mutex); | 
 | 	if (!root_mem_cgroup) | 
 | 		goto unlock; | 
 |  | 
 | 	for_each_mem_cgroup(memcg) { | 
 | 		if (mem_cgroup_is_root(memcg)) | 
 | 			continue; | 
 | 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size); | 
 | 		if (ret) { | 
 | 			mem_cgroup_iter_break(NULL, memcg); | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 | unlock: | 
 | 	if (!ret) | 
 | 		memcg_shrinker_map_size = size; | 
 | 	mutex_unlock(&memcg_shrinker_map_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) | 
 | { | 
 | 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { | 
 | 		struct memcg_shrinker_map *map; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); | 
 | 		/* Pairs with smp mb in shrink_slab() */ | 
 | 		smp_mb__before_atomic(); | 
 | 		set_bit(shrinker_id, map->map); | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_css_from_page - css of the memcg associated with a page | 
 |  * @page: page of interest | 
 |  * | 
 |  * If memcg is bound to the default hierarchy, css of the memcg associated | 
 |  * with @page is returned.  The returned css remains associated with @page | 
 |  * until it is released. | 
 |  * | 
 |  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | 
 |  * is returned. | 
 |  */ | 
 | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	memcg = page->mem_cgroup; | 
 |  | 
 | 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		memcg = root_mem_cgroup; | 
 |  | 
 | 	return &memcg->css; | 
 | } | 
 |  | 
 | /** | 
 |  * page_cgroup_ino - return inode number of the memcg a page is charged to | 
 |  * @page: the page | 
 |  * | 
 |  * Look up the closest online ancestor of the memory cgroup @page is charged to | 
 |  * and return its inode number or 0 if @page is not charged to any cgroup. It | 
 |  * is safe to call this function without holding a reference to @page. | 
 |  * | 
 |  * Note, this function is inherently racy, because there is nothing to prevent | 
 |  * the cgroup inode from getting torn down and potentially reallocated a moment | 
 |  * after page_cgroup_ino() returns, so it only should be used by callers that | 
 |  * do not care (such as procfs interfaces). | 
 |  */ | 
 | ino_t page_cgroup_ino(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned long ino = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (PageSlab(page) && !PageTail(page)) | 
 | 		memcg = memcg_from_slab_page(page); | 
 | 	else | 
 | 		memcg = READ_ONCE(page->mem_cgroup); | 
 | 	while (memcg && !(memcg->css.flags & CSS_ONLINE)) | 
 | 		memcg = parent_mem_cgroup(memcg); | 
 | 	if (memcg) | 
 | 		ino = cgroup_ino(memcg->css.cgroup); | 
 | 	rcu_read_unlock(); | 
 | 	return ino; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_node * | 
 | mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 |  | 
 | 	return memcg->nodeinfo[nid]; | 
 | } | 
 |  | 
 | static struct mem_cgroup_tree_per_node * | 
 | soft_limit_tree_node(int nid) | 
 | { | 
 | 	return soft_limit_tree.rb_tree_per_node[nid]; | 
 | } | 
 |  | 
 | static struct mem_cgroup_tree_per_node * | 
 | soft_limit_tree_from_page(struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 |  | 
 | 	return soft_limit_tree.rb_tree_per_node[nid]; | 
 | } | 
 |  | 
 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, | 
 | 					 struct mem_cgroup_tree_per_node *mctz, | 
 | 					 unsigned long new_usage_in_excess) | 
 | { | 
 | 	struct rb_node **p = &mctz->rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct mem_cgroup_per_node *mz_node; | 
 | 	bool rightmost = true; | 
 |  | 
 | 	if (mz->on_tree) | 
 | 		return; | 
 |  | 
 | 	mz->usage_in_excess = new_usage_in_excess; | 
 | 	if (!mz->usage_in_excess) | 
 | 		return; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		mz_node = rb_entry(parent, struct mem_cgroup_per_node, | 
 | 					tree_node); | 
 | 		if (mz->usage_in_excess < mz_node->usage_in_excess) { | 
 | 			p = &(*p)->rb_left; | 
 | 			rightmost = false; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can't avoid mem cgroups that are over their soft | 
 | 		 * limit by the same amount | 
 | 		 */ | 
 | 		else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 |  | 
 | 	if (rightmost) | 
 | 		mctz->rb_rightmost = &mz->tree_node; | 
 |  | 
 | 	rb_link_node(&mz->tree_node, parent, p); | 
 | 	rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = true; | 
 | } | 
 |  | 
 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
 | 					 struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	if (!mz->on_tree) | 
 | 		return; | 
 |  | 
 | 	if (&mz->tree_node == mctz->rb_rightmost) | 
 | 		mctz->rb_rightmost = rb_prev(&mz->tree_node); | 
 |  | 
 | 	rb_erase(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = false; | 
 | } | 
 |  | 
 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
 | 				       struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&mctz->lock, flags); | 
 | 	__mem_cgroup_remove_exceeded(mz, mctz); | 
 | 	spin_unlock_irqrestore(&mctz->lock, flags); | 
 | } | 
 |  | 
 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long nr_pages = page_counter_read(&memcg->memory); | 
 | 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | 
 | 	unsigned long excess = 0; | 
 |  | 
 | 	if (nr_pages > soft_limit) | 
 | 		excess = nr_pages - soft_limit; | 
 |  | 
 | 	return excess; | 
 | } | 
 |  | 
 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | 
 | { | 
 | 	unsigned long excess; | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	struct mem_cgroup_tree_per_node *mctz; | 
 |  | 
 | 	mctz = soft_limit_tree_from_page(page); | 
 | 	if (!mctz) | 
 | 		return; | 
 | 	/* | 
 | 	 * Necessary to update all ancestors when hierarchy is used. | 
 | 	 * because their event counter is not touched. | 
 | 	 */ | 
 | 	for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
 | 		mz = mem_cgroup_page_nodeinfo(memcg, page); | 
 | 		excess = soft_limit_excess(memcg); | 
 | 		/* | 
 | 		 * We have to update the tree if mz is on RB-tree or | 
 | 		 * mem is over its softlimit. | 
 | 		 */ | 
 | 		if (excess || mz->on_tree) { | 
 | 			unsigned long flags; | 
 |  | 
 | 			spin_lock_irqsave(&mctz->lock, flags); | 
 | 			/* if on-tree, remove it */ | 
 | 			if (mz->on_tree) | 
 | 				__mem_cgroup_remove_exceeded(mz, mctz); | 
 | 			/* | 
 | 			 * Insert again. mz->usage_in_excess will be updated. | 
 | 			 * If excess is 0, no tree ops. | 
 | 			 */ | 
 | 			__mem_cgroup_insert_exceeded(mz, mctz, excess); | 
 | 			spin_unlock_irqrestore(&mctz->lock, flags); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_tree_per_node *mctz; | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	int nid; | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		mz = mem_cgroup_nodeinfo(memcg, nid); | 
 | 		mctz = soft_limit_tree_node(nid); | 
 | 		if (mctz) | 
 | 			mem_cgroup_remove_exceeded(mz, mctz); | 
 | 	} | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_node * | 
 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	struct mem_cgroup_per_node *mz; | 
 |  | 
 | retry: | 
 | 	mz = NULL; | 
 | 	if (!mctz->rb_rightmost) | 
 | 		goto done;		/* Nothing to reclaim from */ | 
 |  | 
 | 	mz = rb_entry(mctz->rb_rightmost, | 
 | 		      struct mem_cgroup_per_node, tree_node); | 
 | 	/* | 
 | 	 * Remove the node now but someone else can add it back, | 
 | 	 * we will to add it back at the end of reclaim to its correct | 
 | 	 * position in the tree. | 
 | 	 */ | 
 | 	__mem_cgroup_remove_exceeded(mz, mctz); | 
 | 	if (!soft_limit_excess(mz->memcg) || | 
 | 	    !css_tryget_online(&mz->memcg->css)) | 
 | 		goto retry; | 
 | done: | 
 | 	return mz; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_node * | 
 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
 | { | 
 | 	struct mem_cgroup_per_node *mz; | 
 |  | 
 | 	spin_lock_irq(&mctz->lock); | 
 | 	mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
 | 	spin_unlock_irq(&mctz->lock); | 
 | 	return mz; | 
 | } | 
 |  | 
 | /** | 
 |  * __mod_memcg_state - update cgroup memory statistics | 
 |  * @memcg: the memory cgroup | 
 |  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item | 
 |  * @val: delta to add to the counter, can be negative | 
 |  */ | 
 | void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) | 
 | { | 
 | 	long x; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); | 
 | 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { | 
 | 		struct mem_cgroup *mi; | 
 |  | 
 | 		/* | 
 | 		 * Batch local counters to keep them in sync with | 
 | 		 * the hierarchical ones. | 
 | 		 */ | 
 | 		__this_cpu_add(memcg->vmstats_local->stat[idx], x); | 
 | 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
 | 			atomic_long_add(x, &mi->vmstats[idx]); | 
 | 		x = 0; | 
 | 	} | 
 | 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x); | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_node * | 
 | parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) | 
 | { | 
 | 	struct mem_cgroup *parent; | 
 |  | 
 | 	parent = parent_mem_cgroup(pn->memcg); | 
 | 	if (!parent) | 
 | 		return NULL; | 
 | 	return mem_cgroup_nodeinfo(parent, nid); | 
 | } | 
 |  | 
 | /** | 
 |  * __mod_lruvec_state - update lruvec memory statistics | 
 |  * @lruvec: the lruvec | 
 |  * @idx: the stat item | 
 |  * @val: delta to add to the counter, can be negative | 
 |  * | 
 |  * The lruvec is the intersection of the NUMA node and a cgroup. This | 
 |  * function updates the all three counters that are affected by a | 
 |  * change of state at this level: per-node, per-cgroup, per-lruvec. | 
 |  */ | 
 | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, | 
 | 			int val) | 
 | { | 
 | 	pg_data_t *pgdat = lruvec_pgdat(lruvec); | 
 | 	struct mem_cgroup_per_node *pn; | 
 | 	struct mem_cgroup *memcg; | 
 | 	long x; | 
 |  | 
 | 	/* Update node */ | 
 | 	__mod_node_page_state(pgdat, idx, val); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
 | 	memcg = pn->memcg; | 
 |  | 
 | 	/* Update memcg */ | 
 | 	__mod_memcg_state(memcg, idx, val); | 
 |  | 
 | 	/* Update lruvec */ | 
 | 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val); | 
 |  | 
 | 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); | 
 | 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { | 
 | 		struct mem_cgroup_per_node *pi; | 
 |  | 
 | 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) | 
 | 			atomic_long_add(x, &pi->lruvec_stat[idx]); | 
 | 		x = 0; | 
 | 	} | 
 | 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); | 
 | } | 
 |  | 
 | void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) | 
 | { | 
 | 	struct page *page = virt_to_head_page(p); | 
 | 	pg_data_t *pgdat = page_pgdat(page); | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = memcg_from_slab_page(page); | 
 |  | 
 | 	/* | 
 | 	 * Untracked pages have no memcg, no lruvec. Update only the | 
 | 	 * node. If we reparent the slab objects to the root memcg, | 
 | 	 * when we free the slab object, we need to update the per-memcg | 
 | 	 * vmstats to keep it correct for the root memcg. | 
 | 	 */ | 
 | 	if (!memcg) { | 
 | 		__mod_node_page_state(pgdat, idx, val); | 
 | 	} else { | 
 | 		lruvec = mem_cgroup_lruvec(pgdat, memcg); | 
 | 		__mod_lruvec_state(lruvec, idx, val); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void mod_memcg_obj_state(void *p, int idx, int val) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_obj(p); | 
 | 	if (memcg) | 
 | 		mod_memcg_state(memcg, idx, val); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /** | 
 |  * __count_memcg_events - account VM events in a cgroup | 
 |  * @memcg: the memory cgroup | 
 |  * @idx: the event item | 
 |  * @count: the number of events that occured | 
 |  */ | 
 | void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, | 
 | 			  unsigned long count) | 
 | { | 
 | 	unsigned long x; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); | 
 | 	if (unlikely(x > MEMCG_CHARGE_BATCH)) { | 
 | 		struct mem_cgroup *mi; | 
 |  | 
 | 		/* | 
 | 		 * Batch local counters to keep them in sync with | 
 | 		 * the hierarchical ones. | 
 | 		 */ | 
 | 		__this_cpu_add(memcg->vmstats_local->events[idx], x); | 
 | 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
 | 			atomic_long_add(x, &mi->vmevents[idx]); | 
 | 		x = 0; | 
 | 	} | 
 | 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x); | 
 | } | 
 |  | 
 | static unsigned long memcg_events(struct mem_cgroup *memcg, int event) | 
 | { | 
 | 	return atomic_long_read(&memcg->vmevents[event]); | 
 | } | 
 |  | 
 | static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) | 
 | { | 
 | 	long x = 0; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		x += per_cpu(memcg->vmstats_local->events[event], cpu); | 
 | 	return x; | 
 | } | 
 |  | 
 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | 
 | 					 struct page *page, | 
 | 					 bool compound, int nr_pages) | 
 | { | 
 | 	/* | 
 | 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | 
 | 	 * counted as CACHE even if it's on ANON LRU. | 
 | 	 */ | 
 | 	if (PageAnon(page)) | 
 | 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages); | 
 | 	else { | 
 | 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); | 
 | 		if (PageSwapBacked(page)) | 
 | 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages); | 
 | 	} | 
 |  | 
 | 	if (compound) { | 
 | 		VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
 | 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); | 
 | 	} | 
 |  | 
 | 	/* pagein of a big page is an event. So, ignore page size */ | 
 | 	if (nr_pages > 0) | 
 | 		__count_memcg_events(memcg, PGPGIN, 1); | 
 | 	else { | 
 | 		__count_memcg_events(memcg, PGPGOUT, 1); | 
 | 		nr_pages = -nr_pages; /* for event */ | 
 | 	} | 
 |  | 
 | 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); | 
 | } | 
 |  | 
 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | 
 | 				       enum mem_cgroup_events_target target) | 
 | { | 
 | 	unsigned long val, next; | 
 |  | 
 | 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); | 
 | 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); | 
 | 	/* from time_after() in jiffies.h */ | 
 | 	if ((long)(next - val) < 0) { | 
 | 		switch (target) { | 
 | 		case MEM_CGROUP_TARGET_THRESH: | 
 | 			next = val + THRESHOLDS_EVENTS_TARGET; | 
 | 			break; | 
 | 		case MEM_CGROUP_TARGET_SOFTLIMIT: | 
 | 			next = val + SOFTLIMIT_EVENTS_TARGET; | 
 | 			break; | 
 | 		case MEM_CGROUP_TARGET_NUMAINFO: | 
 | 			next = val + NUMAINFO_EVENTS_TARGET; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Check events in order. | 
 |  * | 
 |  */ | 
 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | 
 | { | 
 | 	/* threshold event is triggered in finer grain than soft limit */ | 
 | 	if (unlikely(mem_cgroup_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_THRESH))) { | 
 | 		bool do_softlimit; | 
 | 		bool do_numainfo __maybe_unused; | 
 |  | 
 | 		do_softlimit = mem_cgroup_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_SOFTLIMIT); | 
 | #if MAX_NUMNODES > 1 | 
 | 		do_numainfo = mem_cgroup_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_NUMAINFO); | 
 | #endif | 
 | 		mem_cgroup_threshold(memcg); | 
 | 		if (unlikely(do_softlimit)) | 
 | 			mem_cgroup_update_tree(memcg, page); | 
 | #if MAX_NUMNODES > 1 | 
 | 		if (unlikely(do_numainfo)) | 
 | 			atomic_inc(&memcg->numainfo_events); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * mm_update_next_owner() may clear mm->owner to NULL | 
 | 	 * if it races with swapoff, page migration, etc. | 
 | 	 * So this can be called with p == NULL. | 
 | 	 */ | 
 | 	if (unlikely(!p)) | 
 | 		return NULL; | 
 |  | 
 | 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | 
 | } | 
 | EXPORT_SYMBOL(mem_cgroup_from_task); | 
 |  | 
 | /** | 
 |  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. | 
 |  * @mm: mm from which memcg should be extracted. It can be NULL. | 
 |  * | 
 |  * Obtain a reference on mm->memcg and returns it if successful. Otherwise | 
 |  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is | 
 |  * returned. | 
 |  */ | 
 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	do { | 
 | 		/* | 
 | 		 * Page cache insertions can happen withou an | 
 | 		 * actual mm context, e.g. during disk probing | 
 | 		 * on boot, loopback IO, acct() writes etc. | 
 | 		 */ | 
 | 		if (unlikely(!mm)) | 
 | 			memcg = root_mem_cgroup; | 
 | 		else { | 
 | 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
 | 			if (unlikely(!memcg)) | 
 | 				memcg = root_mem_cgroup; | 
 | 		} | 
 | 	} while (!css_tryget(&memcg->css)); | 
 | 	rcu_read_unlock(); | 
 | 	return memcg; | 
 | } | 
 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); | 
 |  | 
 | /** | 
 |  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. | 
 |  * @page: page from which memcg should be extracted. | 
 |  * | 
 |  * Obtain a reference on page->memcg and returns it if successful. Otherwise | 
 |  * root_mem_cgroup is returned. | 
 |  */ | 
 | struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *memcg = page->mem_cgroup; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!memcg || !css_tryget_online(&memcg->css)) | 
 | 		memcg = root_mem_cgroup; | 
 | 	rcu_read_unlock(); | 
 | 	return memcg; | 
 | } | 
 | EXPORT_SYMBOL(get_mem_cgroup_from_page); | 
 |  | 
 | /** | 
 |  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. | 
 |  */ | 
 | static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) | 
 | { | 
 | 	if (unlikely(current->active_memcg)) { | 
 | 		struct mem_cgroup *memcg = root_mem_cgroup; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		if (css_tryget_online(¤t->active_memcg->css)) | 
 | 			memcg = current->active_memcg; | 
 | 		rcu_read_unlock(); | 
 | 		return memcg; | 
 | 	} | 
 | 	return get_mem_cgroup_from_mm(current->mm); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_iter - iterate over memory cgroup hierarchy | 
 |  * @root: hierarchy root | 
 |  * @prev: previously returned memcg, NULL on first invocation | 
 |  * @reclaim: cookie for shared reclaim walks, NULL for full walks | 
 |  * | 
 |  * Returns references to children of the hierarchy below @root, or | 
 |  * @root itself, or %NULL after a full round-trip. | 
 |  * | 
 |  * Caller must pass the return value in @prev on subsequent | 
 |  * invocations for reference counting, or use mem_cgroup_iter_break() | 
 |  * to cancel a hierarchy walk before the round-trip is complete. | 
 |  * | 
 |  * Reclaimers can specify a node and a priority level in @reclaim to | 
 |  * divide up the memcgs in the hierarchy among all concurrent | 
 |  * reclaimers operating on the same node and priority. | 
 |  */ | 
 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 
 | 				   struct mem_cgroup *prev, | 
 | 				   struct mem_cgroup_reclaim_cookie *reclaim) | 
 | { | 
 | 	struct mem_cgroup_reclaim_iter *iter; | 
 | 	struct cgroup_subsys_state *css = NULL; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	struct mem_cgroup *pos = NULL; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	if (!root) | 
 | 		root = root_mem_cgroup; | 
 |  | 
 | 	if (prev && !reclaim) | 
 | 		pos = prev; | 
 |  | 
 | 	if (!root->use_hierarchy && root != root_mem_cgroup) { | 
 | 		if (prev) | 
 | 			goto out; | 
 | 		return root; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	if (reclaim) { | 
 | 		struct mem_cgroup_per_node *mz; | 
 |  | 
 | 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); | 
 | 		iter = &mz->iter[reclaim->priority]; | 
 |  | 
 | 		if (prev && reclaim->generation != iter->generation) | 
 | 			goto out_unlock; | 
 |  | 
 | 		while (1) { | 
 | 			pos = READ_ONCE(iter->position); | 
 | 			if (!pos || css_tryget(&pos->css)) | 
 | 				break; | 
 | 			/* | 
 | 			 * css reference reached zero, so iter->position will | 
 | 			 * be cleared by ->css_released. However, we should not | 
 | 			 * rely on this happening soon, because ->css_released | 
 | 			 * is called from a work queue, and by busy-waiting we | 
 | 			 * might block it. So we clear iter->position right | 
 | 			 * away. | 
 | 			 */ | 
 | 			(void)cmpxchg(&iter->position, pos, NULL); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pos) | 
 | 		css = &pos->css; | 
 |  | 
 | 	for (;;) { | 
 | 		css = css_next_descendant_pre(css, &root->css); | 
 | 		if (!css) { | 
 | 			/* | 
 | 			 * Reclaimers share the hierarchy walk, and a | 
 | 			 * new one might jump in right at the end of | 
 | 			 * the hierarchy - make sure they see at least | 
 | 			 * one group and restart from the beginning. | 
 | 			 */ | 
 | 			if (!prev) | 
 | 				continue; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Verify the css and acquire a reference.  The root | 
 | 		 * is provided by the caller, so we know it's alive | 
 | 		 * and kicking, and don't take an extra reference. | 
 | 		 */ | 
 | 		memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 		if (css == &root->css) | 
 | 			break; | 
 |  | 
 | 		if (css_tryget(css)) | 
 | 			break; | 
 |  | 
 | 		memcg = NULL; | 
 | 	} | 
 |  | 
 | 	if (reclaim) { | 
 | 		/* | 
 | 		 * The position could have already been updated by a competing | 
 | 		 * thread, so check that the value hasn't changed since we read | 
 | 		 * it to avoid reclaiming from the same cgroup twice. | 
 | 		 */ | 
 | 		(void)cmpxchg(&iter->position, pos, memcg); | 
 |  | 
 | 		if (pos) | 
 | 			css_put(&pos->css); | 
 |  | 
 | 		if (!memcg) | 
 | 			iter->generation++; | 
 | 		else if (!prev) | 
 | 			reclaim->generation = iter->generation; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | out: | 
 | 	if (prev && prev != root) | 
 | 		css_put(&prev->css); | 
 |  | 
 | 	return memcg; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 
 |  * @root: hierarchy root | 
 |  * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 
 |  */ | 
 | void mem_cgroup_iter_break(struct mem_cgroup *root, | 
 | 			   struct mem_cgroup *prev) | 
 | { | 
 | 	if (!root) | 
 | 		root = root_mem_cgroup; | 
 | 	if (prev && prev != root) | 
 | 		css_put(&prev->css); | 
 | } | 
 |  | 
 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, | 
 | 					struct mem_cgroup *dead_memcg) | 
 | { | 
 | 	struct mem_cgroup_reclaim_iter *iter; | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	int nid; | 
 | 	int i; | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		mz = mem_cgroup_nodeinfo(from, nid); | 
 | 		for (i = 0; i <= DEF_PRIORITY; i++) { | 
 | 			iter = &mz->iter[i]; | 
 | 			cmpxchg(&iter->position, | 
 | 				dead_memcg, NULL); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | 
 | { | 
 | 	struct mem_cgroup *memcg = dead_memcg; | 
 | 	struct mem_cgroup *last; | 
 |  | 
 | 	do { | 
 | 		__invalidate_reclaim_iterators(memcg, dead_memcg); | 
 | 		last = memcg; | 
 | 	} while ((memcg = parent_mem_cgroup(memcg))); | 
 |  | 
 | 	/* | 
 | 	 * When cgruop1 non-hierarchy mode is used, | 
 | 	 * parent_mem_cgroup() does not walk all the way up to the | 
 | 	 * cgroup root (root_mem_cgroup). So we have to handle | 
 | 	 * dead_memcg from cgroup root separately. | 
 | 	 */ | 
 | 	if (last != root_mem_cgroup) | 
 | 		__invalidate_reclaim_iterators(root_mem_cgroup, | 
 | 						dead_memcg); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | 
 |  * @memcg: hierarchy root | 
 |  * @fn: function to call for each task | 
 |  * @arg: argument passed to @fn | 
 |  * | 
 |  * This function iterates over tasks attached to @memcg or to any of its | 
 |  * descendants and calls @fn for each task. If @fn returns a non-zero | 
 |  * value, the function breaks the iteration loop and returns the value. | 
 |  * Otherwise, it will iterate over all tasks and return 0. | 
 |  * | 
 |  * This function must not be called for the root memory cgroup. | 
 |  */ | 
 | int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, | 
 | 			  int (*fn)(struct task_struct *, void *), void *arg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(memcg == root_mem_cgroup); | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		struct css_task_iter it; | 
 | 		struct task_struct *task; | 
 |  | 
 | 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); | 
 | 		while (!ret && (task = css_task_iter_next(&it))) | 
 | 			ret = fn(task, arg); | 
 | 		css_task_iter_end(&it); | 
 | 		if (ret) { | 
 | 			mem_cgroup_iter_break(memcg, iter); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page | 
 |  * @page: the page | 
 |  * @pgdat: pgdat of the page | 
 |  * | 
 |  * This function is only safe when following the LRU page isolation | 
 |  * and putback protocol: the LRU lock must be held, and the page must | 
 |  * either be PageLRU() or the caller must have isolated/allocated it. | 
 |  */ | 
 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) | 
 | { | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	if (mem_cgroup_disabled()) { | 
 | 		lruvec = &pgdat->lruvec; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memcg = page->mem_cgroup; | 
 | 	/* | 
 | 	 * Swapcache readahead pages are added to the LRU - and | 
 | 	 * possibly migrated - before they are charged. | 
 | 	 */ | 
 | 	if (!memcg) | 
 | 		memcg = root_mem_cgroup; | 
 |  | 
 | 	mz = mem_cgroup_page_nodeinfo(memcg, page); | 
 | 	lruvec = &mz->lruvec; | 
 | out: | 
 | 	/* | 
 | 	 * Since a node can be onlined after the mem_cgroup was created, | 
 | 	 * we have to be prepared to initialize lruvec->zone here; | 
 | 	 * and if offlined then reonlined, we need to reinitialize it. | 
 | 	 */ | 
 | 	if (unlikely(lruvec->pgdat != pgdat)) | 
 | 		lruvec->pgdat = pgdat; | 
 | 	return lruvec; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_update_lru_size - account for adding or removing an lru page | 
 |  * @lruvec: mem_cgroup per zone lru vector | 
 |  * @lru: index of lru list the page is sitting on | 
 |  * @zid: zone id of the accounted pages | 
 |  * @nr_pages: positive when adding or negative when removing | 
 |  * | 
 |  * This function must be called under lru_lock, just before a page is added | 
 |  * to or just after a page is removed from an lru list (that ordering being | 
 |  * so as to allow it to check that lru_size 0 is consistent with list_empty). | 
 |  */ | 
 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
 | 				int zid, int nr_pages) | 
 | { | 
 | 	struct mem_cgroup_per_node *mz; | 
 | 	unsigned long *lru_size; | 
 | 	long size; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
 | 	lru_size = &mz->lru_zone_size[zid][lru]; | 
 |  | 
 | 	if (nr_pages < 0) | 
 | 		*lru_size += nr_pages; | 
 |  | 
 | 	size = *lru_size; | 
 | 	if (WARN_ONCE(size < 0, | 
 | 		"%s(%p, %d, %d): lru_size %ld\n", | 
 | 		__func__, lruvec, lru, nr_pages, size)) { | 
 | 		VM_BUG_ON(1); | 
 | 		*lru_size = 0; | 
 | 	} | 
 |  | 
 | 	if (nr_pages > 0) | 
 | 		*lru_size += nr_pages; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 
 |  * @memcg: the memory cgroup | 
 |  * | 
 |  * Returns the maximum amount of memory @mem can be charged with, in | 
 |  * pages. | 
 |  */ | 
 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long margin = 0; | 
 | 	unsigned long count; | 
 | 	unsigned long limit; | 
 |  | 
 | 	count = page_counter_read(&memcg->memory); | 
 | 	limit = READ_ONCE(memcg->memory.max); | 
 | 	if (count < limit) | 
 | 		margin = limit - count; | 
 |  | 
 | 	if (do_memsw_account()) { | 
 | 		count = page_counter_read(&memcg->memsw); | 
 | 		limit = READ_ONCE(memcg->memsw.max); | 
 | 		if (count <= limit) | 
 | 			margin = min(margin, limit - count); | 
 | 		else | 
 | 			margin = 0; | 
 | 	} | 
 |  | 
 | 	return margin; | 
 | } | 
 |  | 
 | /* | 
 |  * A routine for checking "mem" is under move_account() or not. | 
 |  * | 
 |  * Checking a cgroup is mc.from or mc.to or under hierarchy of | 
 |  * moving cgroups. This is for waiting at high-memory pressure | 
 |  * caused by "move". | 
 |  */ | 
 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *from; | 
 | 	struct mem_cgroup *to; | 
 | 	bool ret = false; | 
 | 	/* | 
 | 	 * Unlike task_move routines, we access mc.to, mc.from not under | 
 | 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 
 | 	 */ | 
 | 	spin_lock(&mc.lock); | 
 | 	from = mc.from; | 
 | 	to = mc.to; | 
 | 	if (!from) | 
 | 		goto unlock; | 
 |  | 
 | 	ret = mem_cgroup_is_descendant(from, memcg) || | 
 | 		mem_cgroup_is_descendant(to, memcg); | 
 | unlock: | 
 | 	spin_unlock(&mc.lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (mc.moving_task && current != mc.moving_task) { | 
 | 		if (mem_cgroup_under_move(memcg)) { | 
 | 			DEFINE_WAIT(wait); | 
 | 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 
 | 			/* moving charge context might have finished. */ | 
 | 			if (mc.moving_task) | 
 | 				schedule(); | 
 | 			finish_wait(&mc.waitq, &wait); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static char *memory_stat_format(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct seq_buf s; | 
 | 	int i; | 
 |  | 
 | 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); | 
 | 	if (!s.buffer) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Provide statistics on the state of the memory subsystem as | 
 | 	 * well as cumulative event counters that show past behavior. | 
 | 	 * | 
 | 	 * This list is ordered following a combination of these gradients: | 
 | 	 * 1) generic big picture -> specifics and details | 
 | 	 * 2) reflecting userspace activity -> reflecting kernel heuristics | 
 | 	 * | 
 | 	 * Current memory state: | 
 | 	 */ | 
 |  | 
 | 	seq_buf_printf(&s, "anon %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, MEMCG_RSS) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "file %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "kernel_stack %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * | 
 | 		       1024); | 
 | 	seq_buf_printf(&s, "slab %llu\n", | 
 | 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + | 
 | 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "sock %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) * | 
 | 		       PAGE_SIZE); | 
 |  | 
 | 	seq_buf_printf(&s, "shmem %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, NR_SHMEM) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "file_mapped %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "file_dirty %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "file_writeback %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) * | 
 | 		       PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter | 
 | 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the | 
 | 	 * arse because it requires migrating the work out of rmap to a place | 
 | 	 * where the page->mem_cgroup is set up and stable. | 
 | 	 */ | 
 | 	seq_buf_printf(&s, "anon_thp %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * | 
 | 		       PAGE_SIZE); | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i], | 
 | 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * | 
 | 			       PAGE_SIZE); | 
 |  | 
 | 	seq_buf_printf(&s, "slab_reclaimable %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * | 
 | 		       PAGE_SIZE); | 
 | 	seq_buf_printf(&s, "slab_unreclaimable %llu\n", | 
 | 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * | 
 | 		       PAGE_SIZE); | 
 |  | 
 | 	/* Accumulated memory events */ | 
 |  | 
 | 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT)); | 
 | 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT)); | 
 |  | 
 | 	seq_buf_printf(&s, "workingset_refault %lu\n", | 
 | 		       memcg_page_state(memcg, WORKINGSET_REFAULT)); | 
 | 	seq_buf_printf(&s, "workingset_activate %lu\n", | 
 | 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE)); | 
 | 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n", | 
 | 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); | 
 |  | 
 | 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL)); | 
 | 	seq_buf_printf(&s, "pgscan %lu\n", | 
 | 		       memcg_events(memcg, PGSCAN_KSWAPD) + | 
 | 		       memcg_events(memcg, PGSCAN_DIRECT)); | 
 | 	seq_buf_printf(&s, "pgsteal %lu\n", | 
 | 		       memcg_events(memcg, PGSTEAL_KSWAPD) + | 
 | 		       memcg_events(memcg, PGSTEAL_DIRECT)); | 
 | 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE)); | 
 | 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE)); | 
 | 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE)); | 
 | 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED)); | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	seq_buf_printf(&s, "thp_fault_alloc %lu\n", | 
 | 		       memcg_events(memcg, THP_FAULT_ALLOC)); | 
 | 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n", | 
 | 		       memcg_events(memcg, THP_COLLAPSE_ALLOC)); | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | 	/* The above should easily fit into one page */ | 
 | 	WARN_ON_ONCE(seq_buf_has_overflowed(&s)); | 
 |  | 
 | 	return s.buffer; | 
 | } | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 | /** | 
 |  * mem_cgroup_print_oom_context: Print OOM information relevant to | 
 |  * memory controller. | 
 |  * @memcg: The memory cgroup that went over limit | 
 |  * @p: Task that is going to be killed | 
 |  * | 
 |  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
 |  * enabled | 
 |  */ | 
 | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) | 
 | { | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	if (memcg) { | 
 | 		pr_cont(",oom_memcg="); | 
 | 		pr_cont_cgroup_path(memcg->css.cgroup); | 
 | 	} else | 
 | 		pr_cont(",global_oom"); | 
 | 	if (p) { | 
 | 		pr_cont(",task_memcg="); | 
 | 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to | 
 |  * memory controller. | 
 |  * @memcg: The memory cgroup that went over limit | 
 |  */ | 
 | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) | 
 | { | 
 | 	char *buf; | 
 |  | 
 | 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | 
 | 		K((u64)page_counter_read(&memcg->memory)), | 
 | 		K((u64)memcg->memory.max), memcg->memory.failcnt); | 
 | 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
 | 			K((u64)page_counter_read(&memcg->swap)), | 
 | 			K((u64)memcg->swap.max), memcg->swap.failcnt); | 
 | 	else { | 
 | 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
 | 			K((u64)page_counter_read(&memcg->memsw)), | 
 | 			K((u64)memcg->memsw.max), memcg->memsw.failcnt); | 
 | 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | 
 | 			K((u64)page_counter_read(&memcg->kmem)), | 
 | 			K((u64)memcg->kmem.max), memcg->kmem.failcnt); | 
 | 	} | 
 |  | 
 | 	pr_info("Memory cgroup stats for "); | 
 | 	pr_cont_cgroup_path(memcg->css.cgroup); | 
 | 	pr_cont(":"); | 
 | 	buf = memory_stat_format(memcg); | 
 | 	if (!buf) | 
 | 		return; | 
 | 	pr_info("%s", buf); | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the memory (and swap, if configured) limit for a memcg. | 
 |  */ | 
 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long max; | 
 |  | 
 | 	max = memcg->memory.max; | 
 | 	if (mem_cgroup_swappiness(memcg)) { | 
 | 		unsigned long memsw_max; | 
 | 		unsigned long swap_max; | 
 |  | 
 | 		memsw_max = memcg->memsw.max; | 
 | 		swap_max = memcg->swap.max; | 
 | 		swap_max = min(swap_max, (unsigned long)total_swap_pages); | 
 | 		max = min(max + swap_max, memsw_max); | 
 | 	} | 
 | 	return max; | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) | 
 | { | 
 | 	return page_counter_read(&memcg->memory); | 
 | } | 
 |  | 
 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
 | 				     int order) | 
 | { | 
 | 	struct oom_control oc = { | 
 | 		.zonelist = NULL, | 
 | 		.nodemask = NULL, | 
 | 		.memcg = memcg, | 
 | 		.gfp_mask = gfp_mask, | 
 | 		.order = order, | 
 | 	}; | 
 | 	bool ret; | 
 |  | 
 | 	if (mutex_lock_killable(&oom_lock)) | 
 | 		return true; | 
 | 	/* | 
 | 	 * A few threads which were not waiting at mutex_lock_killable() can | 
 | 	 * fail to bail out. Therefore, check again after holding oom_lock. | 
 | 	 */ | 
 | 	ret = should_force_charge() || out_of_memory(&oc); | 
 | 	mutex_unlock(&oom_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 |  | 
 | /** | 
 |  * test_mem_cgroup_node_reclaimable | 
 |  * @memcg: the target memcg | 
 |  * @nid: the node ID to be checked. | 
 |  * @noswap : specify true here if the user wants flle only information. | 
 |  * | 
 |  * This function returns whether the specified memcg contains any | 
 |  * reclaimable pages on a node. Returns true if there are any reclaimable | 
 |  * pages in the node. | 
 |  */ | 
 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | 
 | 		int nid, bool noswap) | 
 | { | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); | 
 |  | 
 | 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || | 
 | 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE)) | 
 | 		return true; | 
 | 	if (noswap || !total_swap_pages) | 
 | 		return false; | 
 | 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || | 
 | 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON)) | 
 | 		return true; | 
 | 	return false; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Always updating the nodemask is not very good - even if we have an empty | 
 |  * list or the wrong list here, we can start from some node and traverse all | 
 |  * nodes based on the zonelist. So update the list loosely once per 10 secs. | 
 |  * | 
 |  */ | 
 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nid; | 
 | 	/* | 
 | 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | 
 | 	 * pagein/pageout changes since the last update. | 
 | 	 */ | 
 | 	if (!atomic_read(&memcg->numainfo_events)) | 
 | 		return; | 
 | 	if (atomic_inc_return(&memcg->numainfo_updating) > 1) | 
 | 		return; | 
 |  | 
 | 	/* make a nodemask where this memcg uses memory from */ | 
 | 	memcg->scan_nodes = node_states[N_MEMORY]; | 
 |  | 
 | 	for_each_node_mask(nid, node_states[N_MEMORY]) { | 
 |  | 
 | 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | 
 | 			node_clear(nid, memcg->scan_nodes); | 
 | 	} | 
 |  | 
 | 	atomic_set(&memcg->numainfo_events, 0); | 
 | 	atomic_set(&memcg->numainfo_updating, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Selecting a node where we start reclaim from. Because what we need is just | 
 |  * reducing usage counter, start from anywhere is O,K. Considering | 
 |  * memory reclaim from current node, there are pros. and cons. | 
 |  * | 
 |  * Freeing memory from current node means freeing memory from a node which | 
 |  * we'll use or we've used. So, it may make LRU bad. And if several threads | 
 |  * hit limits, it will see a contention on a node. But freeing from remote | 
 |  * node means more costs for memory reclaim because of memory latency. | 
 |  * | 
 |  * Now, we use round-robin. Better algorithm is welcomed. | 
 |  */ | 
 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	mem_cgroup_may_update_nodemask(memcg); | 
 | 	node = memcg->last_scanned_node; | 
 |  | 
 | 	node = next_node_in(node, memcg->scan_nodes); | 
 | 	/* | 
 | 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages | 
 | 	 * last time it really checked all the LRUs due to rate limiting. | 
 | 	 * Fallback to the current node in that case for simplicity. | 
 | 	 */ | 
 | 	if (unlikely(node == MAX_NUMNODES)) | 
 | 		node = numa_node_id(); | 
 |  | 
 | 	memcg->last_scanned_node = node; | 
 | 	return node; | 
 | } | 
 | #else | 
 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 
 | 				   pg_data_t *pgdat, | 
 | 				   gfp_t gfp_mask, | 
 | 				   unsigned long *total_scanned) | 
 | { | 
 | 	struct mem_cgroup *victim = NULL; | 
 | 	int total = 0; | 
 | 	int loop = 0; | 
 | 	unsigned long excess; | 
 | 	unsigned long nr_scanned; | 
 | 	struct mem_cgroup_reclaim_cookie reclaim = { | 
 | 		.pgdat = pgdat, | 
 | 		.priority = 0, | 
 | 	}; | 
 |  | 
 | 	excess = soft_limit_excess(root_memcg); | 
 |  | 
 | 	while (1) { | 
 | 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 
 | 		if (!victim) { | 
 | 			loop++; | 
 | 			if (loop >= 2) { | 
 | 				/* | 
 | 				 * If we have not been able to reclaim | 
 | 				 * anything, it might because there are | 
 | 				 * no reclaimable pages under this hierarchy | 
 | 				 */ | 
 | 				if (!total) | 
 | 					break; | 
 | 				/* | 
 | 				 * We want to do more targeted reclaim. | 
 | 				 * excess >> 2 is not to excessive so as to | 
 | 				 * reclaim too much, nor too less that we keep | 
 | 				 * coming back to reclaim from this cgroup | 
 | 				 */ | 
 | 				if (total >= (excess >> 2) || | 
 | 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 
 | 					break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		total += mem_cgroup_shrink_node(victim, gfp_mask, false, | 
 | 					pgdat, &nr_scanned); | 
 | 		*total_scanned += nr_scanned; | 
 | 		if (!soft_limit_excess(root_memcg)) | 
 | 			break; | 
 | 	} | 
 | 	mem_cgroup_iter_break(root_memcg, victim); | 
 | 	return total; | 
 | } | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 | static struct lockdep_map memcg_oom_lock_dep_map = { | 
 | 	.name = "memcg_oom_lock", | 
 | }; | 
 | #endif | 
 |  | 
 | static DEFINE_SPINLOCK(memcg_oom_lock); | 
 |  | 
 | /* | 
 |  * Check OOM-Killer is already running under our hierarchy. | 
 |  * If someone is running, return false. | 
 |  */ | 
 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter, *failed = NULL; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		if (iter->oom_lock) { | 
 | 			/* | 
 | 			 * this subtree of our hierarchy is already locked | 
 | 			 * so we cannot give a lock. | 
 | 			 */ | 
 | 			failed = iter; | 
 | 			mem_cgroup_iter_break(memcg, iter); | 
 | 			break; | 
 | 		} else | 
 | 			iter->oom_lock = true; | 
 | 	} | 
 |  | 
 | 	if (failed) { | 
 | 		/* | 
 | 		 * OK, we failed to lock the whole subtree so we have | 
 | 		 * to clean up what we set up to the failing subtree | 
 | 		 */ | 
 | 		for_each_mem_cgroup_tree(iter, memcg) { | 
 | 			if (iter == failed) { | 
 | 				mem_cgroup_iter_break(memcg, iter); | 
 | 				break; | 
 | 			} | 
 | 			iter->oom_lock = false; | 
 | 		} | 
 | 	} else | 
 | 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	return !failed; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		iter->oom_lock = false; | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		iter->under_oom++; | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	/* | 
 | 	 * When a new child is created while the hierarchy is under oom, | 
 | 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow. | 
 | 	 */ | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		if (iter->under_oom > 0) | 
 | 			iter->under_oom--; | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
 |  | 
 | struct oom_wait_info { | 
 | 	struct mem_cgroup *memcg; | 
 | 	wait_queue_entry_t	wait; | 
 | }; | 
 |  | 
 | static int memcg_oom_wake_function(wait_queue_entry_t *wait, | 
 | 	unsigned mode, int sync, void *arg) | 
 | { | 
 | 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 
 | 	struct mem_cgroup *oom_wait_memcg; | 
 | 	struct oom_wait_info *oom_wait_info; | 
 |  | 
 | 	oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
 | 	oom_wait_memcg = oom_wait_info->memcg; | 
 |  | 
 | 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | 
 | 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | 
 | 		return 0; | 
 | 	return autoremove_wake_function(wait, mode, sync, arg); | 
 | } | 
 |  | 
 | static void memcg_oom_recover(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* | 
 | 	 * For the following lockless ->under_oom test, the only required | 
 | 	 * guarantee is that it must see the state asserted by an OOM when | 
 | 	 * this function is called as a result of userland actions | 
 | 	 * triggered by the notification of the OOM.  This is trivially | 
 | 	 * achieved by invoking mem_cgroup_mark_under_oom() before | 
 | 	 * triggering notification. | 
 | 	 */ | 
 | 	if (memcg && memcg->under_oom) | 
 | 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 
 | } | 
 |  | 
 | enum oom_status { | 
 | 	OOM_SUCCESS, | 
 | 	OOM_FAILED, | 
 | 	OOM_ASYNC, | 
 | 	OOM_SKIPPED | 
 | }; | 
 |  | 
 | static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | 
 | { | 
 | 	enum oom_status ret; | 
 | 	bool locked; | 
 |  | 
 | 	if (order > PAGE_ALLOC_COSTLY_ORDER) | 
 | 		return OOM_SKIPPED; | 
 |  | 
 | 	memcg_memory_event(memcg, MEMCG_OOM); | 
 |  | 
 | 	/* | 
 | 	 * We are in the middle of the charge context here, so we | 
 | 	 * don't want to block when potentially sitting on a callstack | 
 | 	 * that holds all kinds of filesystem and mm locks. | 
 | 	 * | 
 | 	 * cgroup1 allows disabling the OOM killer and waiting for outside | 
 | 	 * handling until the charge can succeed; remember the context and put | 
 | 	 * the task to sleep at the end of the page fault when all locks are | 
 | 	 * released. | 
 | 	 * | 
 | 	 * On the other hand, in-kernel OOM killer allows for an async victim | 
 | 	 * memory reclaim (oom_reaper) and that means that we are not solely | 
 | 	 * relying on the oom victim to make a forward progress and we can | 
 | 	 * invoke the oom killer here. | 
 | 	 * | 
 | 	 * Please note that mem_cgroup_out_of_memory might fail to find a | 
 | 	 * victim and then we have to bail out from the charge path. | 
 | 	 */ | 
 | 	if (memcg->oom_kill_disable) { | 
 | 		if (!current->in_user_fault) | 
 | 			return OOM_SKIPPED; | 
 | 		css_get(&memcg->css); | 
 | 		current->memcg_in_oom = memcg; | 
 | 		current->memcg_oom_gfp_mask = mask; | 
 | 		current->memcg_oom_order = order; | 
 |  | 
 | 		return OOM_ASYNC; | 
 | 	} | 
 |  | 
 | 	mem_cgroup_mark_under_oom(memcg); | 
 |  | 
 | 	locked = mem_cgroup_oom_trylock(memcg); | 
 |  | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_notify(memcg); | 
 |  | 
 | 	mem_cgroup_unmark_under_oom(memcg); | 
 | 	if (mem_cgroup_out_of_memory(memcg, mask, order)) | 
 | 		ret = OOM_SUCCESS; | 
 | 	else | 
 | 		ret = OOM_FAILED; | 
 |  | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_unlock(memcg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_oom_synchronize - complete memcg OOM handling | 
 |  * @handle: actually kill/wait or just clean up the OOM state | 
 |  * | 
 |  * This has to be called at the end of a page fault if the memcg OOM | 
 |  * handler was enabled. | 
 |  * | 
 |  * Memcg supports userspace OOM handling where failed allocations must | 
 |  * sleep on a waitqueue until the userspace task resolves the | 
 |  * situation.  Sleeping directly in the charge context with all kinds | 
 |  * of locks held is not a good idea, instead we remember an OOM state | 
 |  * in the task and mem_cgroup_oom_synchronize() has to be called at | 
 |  * the end of the page fault to complete the OOM handling. | 
 |  * | 
 |  * Returns %true if an ongoing memcg OOM situation was detected and | 
 |  * completed, %false otherwise. | 
 |  */ | 
 | bool mem_cgroup_oom_synchronize(bool handle) | 
 | { | 
 | 	struct mem_cgroup *memcg = current->memcg_in_oom; | 
 | 	struct oom_wait_info owait; | 
 | 	bool locked; | 
 |  | 
 | 	/* OOM is global, do not handle */ | 
 | 	if (!memcg) | 
 | 		return false; | 
 |  | 
 | 	if (!handle) | 
 | 		goto cleanup; | 
 |  | 
 | 	owait.memcg = memcg; | 
 | 	owait.wait.flags = 0; | 
 | 	owait.wait.func = memcg_oom_wake_function; | 
 | 	owait.wait.private = current; | 
 | 	INIT_LIST_HEAD(&owait.wait.entry); | 
 |  | 
 | 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
 | 	mem_cgroup_mark_under_oom(memcg); | 
 |  | 
 | 	locked = mem_cgroup_oom_trylock(memcg); | 
 |  | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_notify(memcg); | 
 |  | 
 | 	if (locked && !memcg->oom_kill_disable) { | 
 | 		mem_cgroup_unmark_under_oom(memcg); | 
 | 		finish_wait(&memcg_oom_waitq, &owait.wait); | 
 | 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, | 
 | 					 current->memcg_oom_order); | 
 | 	} else { | 
 | 		schedule(); | 
 | 		mem_cgroup_unmark_under_oom(memcg); | 
 | 		finish_wait(&memcg_oom_waitq, &owait.wait); | 
 | 	} | 
 |  | 
 | 	if (locked) { | 
 | 		mem_cgroup_oom_unlock(memcg); | 
 | 		/* | 
 | 		 * There is no guarantee that an OOM-lock contender | 
 | 		 * sees the wakeups triggered by the OOM kill | 
 | 		 * uncharges.  Wake any sleepers explicitely. | 
 | 		 */ | 
 | 		memcg_oom_recover(memcg); | 
 | 	} | 
 | cleanup: | 
 | 	current->memcg_in_oom = NULL; | 
 | 	css_put(&memcg->css); | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM | 
 |  * @victim: task to be killed by the OOM killer | 
 |  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM | 
 |  * | 
 |  * Returns a pointer to a memory cgroup, which has to be cleaned up | 
 |  * by killing all belonging OOM-killable tasks. | 
 |  * | 
 |  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. | 
 |  */ | 
 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, | 
 | 					    struct mem_cgroup *oom_domain) | 
 | { | 
 | 	struct mem_cgroup *oom_group = NULL; | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!oom_domain) | 
 | 		oom_domain = root_mem_cgroup; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	memcg = mem_cgroup_from_task(victim); | 
 | 	if (memcg == root_mem_cgroup) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Traverse the memory cgroup hierarchy from the victim task's | 
 | 	 * cgroup up to the OOMing cgroup (or root) to find the | 
 | 	 * highest-level memory cgroup with oom.group set. | 
 | 	 */ | 
 | 	for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
 | 		if (memcg->oom_group) | 
 | 			oom_group = memcg; | 
 |  | 
 | 		if (memcg == oom_domain) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (oom_group) | 
 | 		css_get(&oom_group->css); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return oom_group; | 
 | } | 
 |  | 
 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) | 
 | { | 
 | 	pr_info("Tasks in "); | 
 | 	pr_cont_cgroup_path(memcg->css.cgroup); | 
 | 	pr_cont(" are going to be killed due to memory.oom.group set\n"); | 
 | } | 
 |  | 
 | /** | 
 |  * lock_page_memcg - lock a page->mem_cgroup binding | 
 |  * @page: the page | 
 |  * | 
 |  * This function protects unlocked LRU pages from being moved to | 
 |  * another cgroup. | 
 |  * | 
 |  * It ensures lifetime of the returned memcg. Caller is responsible | 
 |  * for the lifetime of the page; __unlock_page_memcg() is available | 
 |  * when @page might get freed inside the locked section. | 
 |  */ | 
 | struct mem_cgroup *lock_page_memcg(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * The RCU lock is held throughout the transaction.  The fast | 
 | 	 * path can get away without acquiring the memcg->move_lock | 
 | 	 * because page moving starts with an RCU grace period. | 
 | 	 * | 
 | 	 * The RCU lock also protects the memcg from being freed when | 
 | 	 * the page state that is going to change is the only thing | 
 | 	 * preventing the page itself from being freed. E.g. writeback | 
 | 	 * doesn't hold a page reference and relies on PG_writeback to | 
 | 	 * keep off truncation, migration and so forth. | 
 |          */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 | again: | 
 | 	memcg = page->mem_cgroup; | 
 | 	if (unlikely(!memcg)) | 
 | 		return NULL; | 
 |  | 
 | 	if (atomic_read(&memcg->moving_account) <= 0) | 
 | 		return memcg; | 
 |  | 
 | 	spin_lock_irqsave(&memcg->move_lock, flags); | 
 | 	if (memcg != page->mem_cgroup) { | 
 | 		spin_unlock_irqrestore(&memcg->move_lock, flags); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When charge migration first begins, we can have locked and | 
 | 	 * unlocked page stat updates happening concurrently.  Track | 
 | 	 * the task who has the lock for unlock_page_memcg(). | 
 | 	 */ | 
 | 	memcg->move_lock_task = current; | 
 | 	memcg->move_lock_flags = flags; | 
 |  | 
 | 	return memcg; | 
 | } | 
 | EXPORT_SYMBOL(lock_page_memcg); | 
 |  | 
 | /** | 
 |  * __unlock_page_memcg - unlock and unpin a memcg | 
 |  * @memcg: the memcg | 
 |  * | 
 |  * Unlock and unpin a memcg returned by lock_page_memcg(). | 
 |  */ | 
 | void __unlock_page_memcg(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (memcg && memcg->move_lock_task == current) { | 
 | 		unsigned long flags = memcg->move_lock_flags; | 
 |  | 
 | 		memcg->move_lock_task = NULL; | 
 | 		memcg->move_lock_flags = 0; | 
 |  | 
 | 		spin_unlock_irqrestore(&memcg->move_lock, flags); | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /** | 
 |  * unlock_page_memcg - unlock a page->mem_cgroup binding | 
 |  * @page: the page | 
 |  */ | 
 | void unlock_page_memcg(struct page *page) | 
 | { | 
 | 	__unlock_page_memcg(page->mem_cgroup); | 
 | } | 
 | EXPORT_SYMBOL(unlock_page_memcg); | 
 |  | 
 | struct memcg_stock_pcp { | 
 | 	struct mem_cgroup *cached; /* this never be root cgroup */ | 
 | 	unsigned int nr_pages; | 
 | 	struct work_struct work; | 
 | 	unsigned long flags; | 
 | #define FLUSHING_CACHED_CHARGE	0 | 
 | }; | 
 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
 | static DEFINE_MUTEX(percpu_charge_mutex); | 
 |  | 
 | /** | 
 |  * consume_stock: Try to consume stocked charge on this cpu. | 
 |  * @memcg: memcg to consume from. | 
 |  * @nr_pages: how many pages to charge. | 
 |  * | 
 |  * The charges will only happen if @memcg matches the current cpu's memcg | 
 |  * stock, and at least @nr_pages are available in that stock.  Failure to | 
 |  * service an allocation will refill the stock. | 
 |  * | 
 |  * returns true if successful, false otherwise. | 
 |  */ | 
 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	unsigned long flags; | 
 | 	bool ret = false; | 
 |  | 
 | 	if (nr_pages > MEMCG_CHARGE_BATCH) | 
 | 		return ret; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	stock = this_cpu_ptr(&memcg_stock); | 
 | 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | 
 | 		stock->nr_pages -= nr_pages; | 
 | 		ret = true; | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns stocks cached in percpu and reset cached information. | 
 |  */ | 
 | static void drain_stock(struct memcg_stock_pcp *stock) | 
 | { | 
 | 	struct mem_cgroup *old = stock->cached; | 
 |  | 
 | 	if (!old) | 
 | 		return; | 
 |  | 
 | 	if (stock->nr_pages) { | 
 | 		page_counter_uncharge(&old->memory, stock->nr_pages); | 
 | 		if (do_memsw_account()) | 
 | 			page_counter_uncharge(&old->memsw, stock->nr_pages); | 
 | 		css_put_many(&old->css, stock->nr_pages); | 
 | 		stock->nr_pages = 0; | 
 | 	} | 
 |  | 
 | 	css_put(&old->css); | 
 | 	stock->cached = NULL; | 
 | } | 
 |  | 
 | static void drain_local_stock(struct work_struct *dummy) | 
 | { | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * The only protection from memory hotplug vs. drain_stock races is | 
 | 	 * that we always operate on local CPU stock here with IRQ disabled | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	stock = this_cpu_ptr(&memcg_stock); | 
 | 	drain_stock(stock); | 
 | 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Cache charges(val) to local per_cpu area. | 
 |  * This will be consumed by consume_stock() function, later. | 
 |  */ | 
 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	stock = this_cpu_ptr(&memcg_stock); | 
 | 	if (stock->cached != memcg) { /* reset if necessary */ | 
 | 		drain_stock(stock); | 
 | 		css_get(&memcg->css); | 
 | 		stock->cached = memcg; | 
 | 	} | 
 | 	stock->nr_pages += nr_pages; | 
 |  | 
 | 	if (stock->nr_pages > MEMCG_CHARGE_BATCH) | 
 | 		drain_stock(stock); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Drains all per-CPU charge caches for given root_memcg resp. subtree | 
 |  * of the hierarchy under it. | 
 |  */ | 
 | static void drain_all_stock(struct mem_cgroup *root_memcg) | 
 | { | 
 | 	int cpu, curcpu; | 
 |  | 
 | 	/* If someone's already draining, avoid adding running more workers. */ | 
 | 	if (!mutex_trylock(&percpu_charge_mutex)) | 
 | 		return; | 
 | 	/* | 
 | 	 * Notify other cpus that system-wide "drain" is running | 
 | 	 * We do not care about races with the cpu hotplug because cpu down | 
 | 	 * as well as workers from this path always operate on the local | 
 | 	 * per-cpu data. CPU up doesn't touch memcg_stock at all. | 
 | 	 */ | 
 | 	curcpu = get_cpu(); | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
 | 		struct mem_cgroup *memcg; | 
 | 		bool flush = false; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		memcg = stock->cached; | 
 | 		if (memcg && stock->nr_pages && | 
 | 		    mem_cgroup_is_descendant(memcg, root_memcg)) | 
 | 			flush = true; | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (flush && | 
 | 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | 
 | 			if (cpu == curcpu) | 
 | 				drain_local_stock(&stock->work); | 
 | 			else | 
 | 				schedule_work_on(cpu, &stock->work); | 
 | 		} | 
 | 	} | 
 | 	put_cpu(); | 
 | 	mutex_unlock(&percpu_charge_mutex); | 
 | } | 
 |  | 
 | static int memcg_hotplug_cpu_dead(unsigned int cpu) | 
 | { | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	struct mem_cgroup *memcg, *mi; | 
 |  | 
 | 	stock = &per_cpu(memcg_stock, cpu); | 
 | 	drain_stock(stock); | 
 |  | 
 | 	for_each_mem_cgroup(memcg) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < MEMCG_NR_STAT; i++) { | 
 | 			int nid; | 
 | 			long x; | 
 |  | 
 | 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); | 
 | 			if (x) | 
 | 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
 | 					atomic_long_add(x, &memcg->vmstats[i]); | 
 |  | 
 | 			if (i >= NR_VM_NODE_STAT_ITEMS) | 
 | 				continue; | 
 |  | 
 | 			for_each_node(nid) { | 
 | 				struct mem_cgroup_per_node *pn; | 
 |  | 
 | 				pn = mem_cgroup_nodeinfo(memcg, nid); | 
 | 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); | 
 | 				if (x) | 
 | 					do { | 
 | 						atomic_long_add(x, &pn->lruvec_stat[i]); | 
 | 					} while ((pn = parent_nodeinfo(pn, nid))); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | 
 | 			long x; | 
 |  | 
 | 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); | 
 | 			if (x) | 
 | 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
 | 					atomic_long_add(x, &memcg->vmevents[i]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void reclaim_high(struct mem_cgroup *memcg, | 
 | 			 unsigned int nr_pages, | 
 | 			 gfp_t gfp_mask) | 
 | { | 
 | 	do { | 
 | 		if (page_counter_read(&memcg->memory) <= memcg->high) | 
 | 			continue; | 
 | 		memcg_memory_event(memcg, MEMCG_HIGH); | 
 | 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); | 
 | 	} while ((memcg = parent_mem_cgroup(memcg))); | 
 | } | 
 |  | 
 | static void high_work_func(struct work_struct *work) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	memcg = container_of(work, struct mem_cgroup, high_work); | 
 | 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); | 
 | } | 
 |  | 
 | /* | 
 |  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is | 
 |  * enough to still cause a significant slowdown in most cases, while still | 
 |  * allowing diagnostics and tracing to proceed without becoming stuck. | 
 |  */ | 
 | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) | 
 |  | 
 | /* | 
 |  * When calculating the delay, we use these either side of the exponentiation to | 
 |  * maintain precision and scale to a reasonable number of jiffies (see the table | 
 |  * below. | 
 |  * | 
 |  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the | 
 |  *   overage ratio to a delay. | 
 |  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the | 
 |  *   proposed penalty in order to reduce to a reasonable number of jiffies, and | 
 |  *   to produce a reasonable delay curve. | 
 |  * | 
 |  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a | 
 |  * reasonable delay curve compared to precision-adjusted overage, not | 
 |  * penalising heavily at first, but still making sure that growth beyond the | 
 |  * limit penalises misbehaviour cgroups by slowing them down exponentially. For | 
 |  * example, with a high of 100 megabytes: | 
 |  * | 
 |  *  +-------+------------------------+ | 
 |  *  | usage | time to allocate in ms | | 
 |  *  +-------+------------------------+ | 
 |  *  | 100M  |                      0 | | 
 |  *  | 101M  |                      6 | | 
 |  *  | 102M  |                     25 | | 
 |  *  | 103M  |                     57 | | 
 |  *  | 104M  |                    102 | | 
 |  *  | 105M  |                    159 | | 
 |  *  | 106M  |                    230 | | 
 |  *  | 107M  |                    313 | | 
 |  *  | 108M  |                    409 | | 
 |  *  | 109M  |                    518 | | 
 |  *  | 110M  |                    639 | | 
 |  *  | 111M  |                    774 | | 
 |  *  | 112M  |                    921 | | 
 |  *  | 113M  |                   1081 | | 
 |  *  | 114M  |                   1254 | | 
 |  *  | 115M  |                   1439 | | 
 |  *  | 116M  |                   1638 | | 
 |  *  | 117M  |                   1849 | | 
 |  *  | 118M  |                   2000 | | 
 |  *  | 119M  |                   2000 | | 
 |  *  | 120M  |                   2000 | | 
 |  *  +-------+------------------------+ | 
 |  */ | 
 |  #define MEMCG_DELAY_PRECISION_SHIFT 20 | 
 |  #define MEMCG_DELAY_SCALING_SHIFT 14 | 
 |  | 
 | /* | 
 |  * Get the number of jiffies that we should penalise a mischievous cgroup which | 
 |  * is exceeding its memory.high by checking both it and its ancestors. | 
 |  */ | 
 | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, | 
 | 					  unsigned int nr_pages) | 
 | { | 
 | 	unsigned long penalty_jiffies; | 
 | 	u64 max_overage = 0; | 
 |  | 
 | 	do { | 
 | 		unsigned long usage, high; | 
 | 		u64 overage; | 
 |  | 
 | 		usage = page_counter_read(&memcg->memory); | 
 | 		high = READ_ONCE(memcg->high); | 
 |  | 
 | 		if (usage <= high) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Prevent division by 0 in overage calculation by acting as if | 
 | 		 * it was a threshold of 1 page | 
 | 		 */ | 
 | 		high = max(high, 1UL); | 
 |  | 
 | 		overage = usage - high; | 
 | 		overage <<= MEMCG_DELAY_PRECISION_SHIFT; | 
 | 		overage = div64_u64(overage, high); | 
 |  | 
 | 		if (overage > max_overage) | 
 | 			max_overage = overage; | 
 | 	} while ((memcg = parent_mem_cgroup(memcg)) && | 
 | 		 !mem_cgroup_is_root(memcg)); | 
 |  | 
 | 	if (!max_overage) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We use overage compared to memory.high to calculate the number of | 
 | 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be | 
 | 	 * fairly lenient on small overages, and increasingly harsh when the | 
 | 	 * memcg in question makes it clear that it has no intention of stopping | 
 | 	 * its crazy behaviour, so we exponentially increase the delay based on | 
 | 	 * overage amount. | 
 | 	 */ | 
 | 	penalty_jiffies = max_overage * max_overage * HZ; | 
 | 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; | 
 | 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Factor in the task's own contribution to the overage, such that four | 
 | 	 * N-sized allocations are throttled approximately the same as one | 
 | 	 * 4N-sized allocation. | 
 | 	 * | 
 | 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or | 
 | 	 * larger the current charge patch is than that. | 
 | 	 */ | 
 | 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; | 
 |  | 
 | 	/* | 
 | 	 * Clamp the max delay per usermode return so as to still keep the | 
 | 	 * application moving forwards and also permit diagnostics, albeit | 
 | 	 * extremely slowly. | 
 | 	 */ | 
 | 	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); | 
 | } | 
 |  | 
 | /* | 
 |  * Scheduled by try_charge() to be executed from the userland return path | 
 |  * and reclaims memory over the high limit. | 
 |  */ | 
 | void mem_cgroup_handle_over_high(void) | 
 | { | 
 | 	unsigned long penalty_jiffies; | 
 | 	unsigned long pflags; | 
 | 	unsigned int nr_pages = current->memcg_nr_pages_over_high; | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	if (likely(!nr_pages)) | 
 | 		return; | 
 |  | 
 | 	memcg = get_mem_cgroup_from_mm(current->mm); | 
 | 	reclaim_high(memcg, nr_pages, GFP_KERNEL); | 
 | 	current->memcg_nr_pages_over_high = 0; | 
 |  | 
 | 	/* | 
 | 	 * memory.high is breached and reclaim is unable to keep up. Throttle | 
 | 	 * allocators proactively to slow down excessive growth. | 
 | 	 */ | 
 | 	penalty_jiffies = calculate_high_delay(memcg, nr_pages); | 
 |  | 
 | 	/* | 
 | 	 * Don't sleep if the amount of jiffies this memcg owes us is so low | 
 | 	 * that it's not even worth doing, in an attempt to be nice to those who | 
 | 	 * go only a small amount over their memory.high value and maybe haven't | 
 | 	 * been aggressively reclaimed enough yet. | 
 | 	 */ | 
 | 	if (penalty_jiffies <= HZ / 100) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If we exit early, we're guaranteed to die (since | 
 | 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't | 
 | 	 * need to account for any ill-begotten jiffies to pay them off later. | 
 | 	 */ | 
 | 	psi_memstall_enter(&pflags); | 
 | 	schedule_timeout_killable(penalty_jiffies); | 
 | 	psi_memstall_leave(&pflags); | 
 |  | 
 | out: | 
 | 	css_put(&memcg->css); | 
 | } | 
 |  | 
 | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
 | 		      unsigned int nr_pages) | 
 | { | 
 | 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); | 
 | 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	struct mem_cgroup *mem_over_limit; | 
 | 	struct page_counter *counter; | 
 | 	unsigned long nr_reclaimed; | 
 | 	bool may_swap = true; | 
 | 	bool drained = false; | 
 | 	enum oom_status oom_status; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return 0; | 
 | retry: | 
 | 	if (consume_stock(memcg, nr_pages)) | 
 | 		return 0; | 
 |  | 
 | 	if (!do_memsw_account() || | 
 | 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) { | 
 | 		if (page_counter_try_charge(&memcg->memory, batch, &counter)) | 
 | 			goto done_restock; | 
 | 		if (do_memsw_account()) | 
 | 			page_counter_uncharge(&memcg->memsw, batch); | 
 | 		mem_over_limit = mem_cgroup_from_counter(counter, memory); | 
 | 	} else { | 
 | 		mem_over_limit = mem_cgroup_from_counter(counter, memsw); | 
 | 		may_swap = false; | 
 | 	} | 
 |  | 
 | 	if (batch > nr_pages) { | 
 | 		batch = nr_pages; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Memcg doesn't have a dedicated reserve for atomic | 
 | 	 * allocations. But like the global atomic pool, we need to | 
 | 	 * put the burden of reclaim on regular allocation requests | 
 | 	 * and let these go through as privileged allocations. | 
 | 	 */ | 
 | 	if (gfp_mask & __GFP_ATOMIC) | 
 | 		goto force; | 
 |  | 
 | 	/* | 
 | 	 * Unlike in global OOM situations, memcg is not in a physical | 
 | 	 * memory shortage.  Allow dying and OOM-killed tasks to | 
 | 	 * bypass the last charges so that they can exit quickly and | 
 | 	 * free their memory. | 
 | 	 */ | 
 | 	if (unlikely(should_force_charge())) | 
 | 		goto force; | 
 |  | 
 | 	/* | 
 | 	 * Prevent unbounded recursion when reclaim operations need to | 
 | 	 * allocate memory. This might exceed the limits temporarily, | 
 | 	 * but we prefer facilitating memory reclaim and getting back | 
 | 	 * under the limit over triggering OOM kills in these cases. | 
 | 	 */ | 
 | 	if (unlikely(current->flags & PF_MEMALLOC)) | 
 | 		goto force; | 
 |  | 
 | 	if (unlikely(task_in_memcg_oom(current))) | 
 | 		goto nomem; | 
 |  | 
 | 	if (!gfpflags_allow_blocking(gfp_mask)) | 
 | 		goto nomem; | 
 |  | 
 | 	memcg_memory_event(mem_over_limit, MEMCG_MAX); | 
 |  | 
 | 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | 
 | 						    gfp_mask, may_swap); | 
 |  | 
 | 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 
 | 		goto retry; | 
 |  | 
 | 	if (!drained) { | 
 | 		drain_all_stock(mem_over_limit); | 
 | 		drained = true; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (gfp_mask & __GFP_NORETRY) | 
 | 		goto nomem; | 
 | 	/* | 
 | 	 * Even though the limit is exceeded at this point, reclaim | 
 | 	 * may have been able to free some pages.  Retry the charge | 
 | 	 * before killing the task. | 
 | 	 * | 
 | 	 * Only for regular pages, though: huge pages are rather | 
 | 	 * unlikely to succeed so close to the limit, and we fall back | 
 | 	 * to regular pages anyway in case of failure. | 
 | 	 */ | 
 | 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | 
 | 		goto retry; | 
 | 	/* | 
 | 	 * At task move, charge accounts can be doubly counted. So, it's | 
 | 	 * better to wait until the end of task_move if something is going on. | 
 | 	 */ | 
 | 	if (mem_cgroup_wait_acct_move(mem_over_limit)) | 
 | 		goto retry; | 
 |  | 
 | 	if (nr_retries--) | 
 | 		goto retry; | 
 |  | 
 | 	if (gfp_mask & __GFP_RETRY_MAYFAIL) | 
 | 		goto nomem; | 
 |  | 
 | 	if (gfp_mask & __GFP_NOFAIL) | 
 | 		goto force; | 
 |  | 
 | 	if (fatal_signal_pending(current)) | 
 | 		goto force; | 
 |  | 
 | 	/* | 
 | 	 * keep retrying as long as the memcg oom killer is able to make | 
 | 	 * a forward progress or bypass the charge if the oom killer | 
 | 	 * couldn't make any progress. | 
 | 	 */ | 
 | 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, | 
 | 		       get_order(nr_pages * PAGE_SIZE)); | 
 | 	switch (oom_status) { | 
 | 	case OOM_SUCCESS: | 
 | 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 		goto retry; | 
 | 	case OOM_FAILED: | 
 | 		goto force; | 
 | 	default: | 
 | 		goto nomem; | 
 | 	} | 
 | nomem: | 
 | 	if (!(gfp_mask & __GFP_NOFAIL)) | 
 | 		return -ENOMEM; | 
 | force: | 
 | 	/* | 
 | 	 * The allocation either can't fail or will lead to more memory | 
 | 	 * being freed very soon.  Allow memory usage go over the limit | 
 | 	 * temporarily by force charging it. | 
 | 	 */ | 
 | 	page_counter_charge(&memcg->memory, nr_pages); | 
 | 	if (do_memsw_account()) | 
 | 		page_counter_charge(&memcg->memsw, nr_pages); | 
 | 	css_get_many(&memcg->css, nr_pages); | 
 |  | 
 | 	return 0; | 
 |  | 
 | done_restock: | 
 | 	css_get_many(&memcg->css, batch); | 
 | 	if (batch > nr_pages) | 
 | 		refill_stock(memcg, batch - nr_pages); | 
 |  | 
 | 	/* | 
 | 	 * If the hierarchy is above the normal consumption range, schedule | 
 | 	 * reclaim on returning to userland.  We can perform reclaim here | 
 | 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that | 
 | 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is | 
 | 	 * not recorded as it most likely matches current's and won't | 
 | 	 * change in the meantime.  As high limit is checked again before | 
 | 	 * reclaim, the cost of mismatch is negligible. | 
 | 	 */ | 
 | 	do { | 
 | 		if (page_counter_read(&memcg->memory) > memcg->high) { | 
 | 			/* Don't bother a random interrupted task */ | 
 | 			if (in_interrupt()) { | 
 | 				schedule_work(&memcg->high_work); | 
 | 				break; | 
 | 			} | 
 | 			current->memcg_nr_pages_over_high += batch; | 
 | 			set_notify_resume(current); | 
 | 			break; | 
 | 		} | 
 | 	} while ((memcg = parent_mem_cgroup(memcg))); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return; | 
 |  | 
 | 	page_counter_uncharge(&memcg->memory, nr_pages); | 
 | 	if (do_memsw_account()) | 
 | 		page_counter_uncharge(&memcg->memsw, nr_pages); | 
 |  | 
 | 	css_put_many(&memcg->css, nr_pages); | 
 | } | 
 |  | 
 | static void lock_page_lru(struct page *page, int *isolated) | 
 | { | 
 | 	pg_data_t *pgdat = page_pgdat(page); | 
 |  | 
 | 	spin_lock_irq(&pgdat->lru_lock); | 
 | 	if (PageLRU(page)) { | 
 | 		struct lruvec *lruvec; | 
 |  | 
 | 		lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
 | 		ClearPageLRU(page); | 
 | 		del_page_from_lru_list(page, lruvec, page_lru(page)); | 
 | 		*isolated = 1; | 
 | 	} else | 
 | 		*isolated = 0; | 
 | } | 
 |  | 
 | static void unlock_page_lru(struct page *page, int isolated) | 
 | { | 
 | 	pg_data_t *pgdat = page_pgdat(page); | 
 |  | 
 | 	if (isolated) { | 
 | 		struct lruvec *lruvec; | 
 |  | 
 | 		lruvec = mem_cgroup_page_lruvec(page, pgdat); | 
 | 		VM_BUG_ON_PAGE(PageLRU(page), page); | 
 | 		SetPageLRU(page); | 
 | 		add_page_to_lru_list(page, lruvec, page_lru(page)); | 
 | 	} | 
 | 	spin_unlock_irq(&pgdat->lru_lock); | 
 | } | 
 |  | 
 | static void commit_charge(struct page *page, struct mem_cgroup *memcg, | 
 | 			  bool lrucare) | 
 | { | 
 | 	int isolated; | 
 |  | 
 | 	VM_BUG_ON_PAGE(page->mem_cgroup, page); | 
 |  | 
 | 	/* | 
 | 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | 
 | 	 * may already be on some other mem_cgroup's LRU.  Take care of it. | 
 | 	 */ | 
 | 	if (lrucare) | 
 | 		lock_page_lru(page, &isolated); | 
 |  | 
 | 	/* | 
 | 	 * Nobody should be changing or seriously looking at | 
 | 	 * page->mem_cgroup at this point: | 
 | 	 * | 
 | 	 * - the page is uncharged | 
 | 	 * | 
 | 	 * - the page is off-LRU | 
 | 	 * | 
 | 	 * - an anonymous fault has exclusive page access, except for | 
 | 	 *   a locked page table | 
 | 	 * | 
 | 	 * - a page cache insertion, a swapin fault, or a migration | 
 | 	 *   have the page locked | 
 | 	 */ | 
 | 	page->mem_cgroup = memcg; | 
 |  | 
 | 	if (lrucare) | 
 | 		unlock_page_lru(page, isolated); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | /* | 
 |  * Returns a pointer to the memory cgroup to which the kernel object is charged. | 
 |  * | 
 |  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), | 
 |  * cgroup_mutex, etc. | 
 |  */ | 
 | struct mem_cgroup *mem_cgroup_from_obj(void *p) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	page = virt_to_head_page(p); | 
 |  | 
 | 	/* | 
 | 	 * Slab pages don't have page->mem_cgroup set because corresponding | 
 | 	 * kmem caches can be reparented during the lifetime. That's why | 
 | 	 * memcg_from_slab_page() should be used instead. | 
 | 	 */ | 
 | 	if (PageSlab(page)) | 
 | 		return memcg_from_slab_page(page); | 
 |  | 
 | 	/* All other pages use page->mem_cgroup */ | 
 | 	return page->mem_cgroup; | 
 | } | 
 |  | 
 | static int memcg_alloc_cache_id(void) | 
 | { | 
 | 	int id, size; | 
 | 	int err; | 
 |  | 
 | 	id = ida_simple_get(&memcg_cache_ida, | 
 | 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | 
 | 	if (id < 0) | 
 | 		return id; | 
 |  | 
 | 	if (id < memcg_nr_cache_ids) | 
 | 		return id; | 
 |  | 
 | 	/* | 
 | 	 * There's no space for the new id in memcg_caches arrays, | 
 | 	 * so we have to grow them. | 
 | 	 */ | 
 | 	down_write(&memcg_cache_ids_sem); | 
 |  | 
 | 	size = 2 * (id + 1); | 
 | 	if (size < MEMCG_CACHES_MIN_SIZE) | 
 | 		size = MEMCG_CACHES_MIN_SIZE; | 
 | 	else if (size > MEMCG_CACHES_MAX_SIZE) | 
 | 		size = MEMCG_CACHES_MAX_SIZE; | 
 |  | 
 | 	err = memcg_update_all_caches(size); | 
 | 	if (!err) | 
 | 		err = memcg_update_all_list_lrus(size); | 
 | 	if (!err) | 
 | 		memcg_nr_cache_ids = size; | 
 |  | 
 | 	up_write(&memcg_cache_ids_sem); | 
 |  | 
 | 	if (err) { | 
 | 		ida_simple_remove(&memcg_cache_ida, id); | 
 | 		return err; | 
 | 	} | 
 | 	return id; | 
 | } | 
 |  | 
 | static void memcg_free_cache_id(int id) | 
 | { | 
 | 	ida_simple_remove(&memcg_cache_ida, id); | 
 | } | 
 |  | 
 | struct memcg_kmem_cache_create_work { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct kmem_cache *cachep; | 
 | 	struct work_struct work; | 
 | }; | 
 |  | 
 | static void memcg_kmem_cache_create_func(struct work_struct *w) | 
 | { | 
 | 	struct memcg_kmem_cache_create_work *cw = | 
 | 		container_of(w, struct memcg_kmem_cache_create_work, work); | 
 | 	struct mem_cgroup *memcg = cw->memcg; | 
 | 	struct kmem_cache *cachep = cw->cachep; | 
 |  | 
 | 	memcg_create_kmem_cache(memcg, cachep); | 
 |  | 
 | 	css_put(&memcg->css); | 
 | 	kfree(cw); | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue the creation of a per-memcg kmem_cache. | 
 |  */ | 
 | static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | 
 | 					       struct kmem_cache *cachep) | 
 | { | 
 | 	struct memcg_kmem_cache_create_work *cw; | 
 |  | 
 | 	if (!css_tryget_online(&memcg->css)) | 
 | 		return; | 
 |  | 
 | 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); | 
 | 	if (!cw) { | 
 | 		css_put(&memcg->css); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cw->memcg = memcg; | 
 | 	cw->cachep = cachep; | 
 | 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func); | 
 |  | 
 | 	queue_work(memcg_kmem_cache_wq, &cw->work); | 
 | } | 
 |  | 
 | static inline bool memcg_kmem_bypass(void) | 
 | { | 
 | 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation | 
 |  * @cachep: the original global kmem cache | 
 |  * | 
 |  * Return the kmem_cache we're supposed to use for a slab allocation. | 
 |  * We try to use the current memcg's version of the cache. | 
 |  * | 
 |  * If the cache does not exist yet, if we are the first user of it, we | 
 |  * create it asynchronously in a workqueue and let the current allocation | 
 |  * go through with the original cache. | 
 |  * | 
 |  * This function takes a reference to the cache it returns to assure it | 
 |  * won't get destroyed while we are working with it. Once the caller is | 
 |  * done with it, memcg_kmem_put_cache() must be called to release the | 
 |  * reference. | 
 |  */ | 
 | struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct kmem_cache *memcg_cachep; | 
 | 	struct memcg_cache_array *arr; | 
 | 	int kmemcg_id; | 
 |  | 
 | 	VM_BUG_ON(!is_root_cache(cachep)); | 
 |  | 
 | 	if (memcg_kmem_bypass()) | 
 | 		return cachep; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	if (unlikely(current->active_memcg)) | 
 | 		memcg = current->active_memcg; | 
 | 	else | 
 | 		memcg = mem_cgroup_from_task(current); | 
 |  | 
 | 	if (!memcg || memcg == root_mem_cgroup) | 
 | 		goto out_unlock; | 
 |  | 
 | 	kmemcg_id = READ_ONCE(memcg->kmemcg_id); | 
 | 	if (kmemcg_id < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	arr = rcu_dereference(cachep->memcg_params.memcg_caches); | 
 |  | 
 | 	/* | 
 | 	 * Make sure we will access the up-to-date value. The code updating | 
 | 	 * memcg_caches issues a write barrier to match the data dependency | 
 | 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). | 
 | 	 */ | 
 | 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); | 
 |  | 
 | 	/* | 
 | 	 * If we are in a safe context (can wait, and not in interrupt | 
 | 	 * context), we could be be predictable and return right away. | 
 | 	 * This would guarantee that the allocation being performed | 
 | 	 * already belongs in the new cache. | 
 | 	 * | 
 | 	 * However, there are some clashes that can arrive from locking. | 
 | 	 * For instance, because we acquire the slab_mutex while doing | 
 | 	 * memcg_create_kmem_cache, this means no further allocation | 
 | 	 * could happen with the slab_mutex held. So it's better to | 
 | 	 * defer everything. | 
 | 	 * | 
 | 	 * If the memcg is dying or memcg_cache is about to be released, | 
 | 	 * don't bother creating new kmem_caches. Because memcg_cachep | 
 | 	 * is ZEROed as the fist step of kmem offlining, we don't need | 
 | 	 * percpu_ref_tryget_live() here. css_tryget_online() check in | 
 | 	 * memcg_schedule_kmem_cache_create() will prevent us from | 
 | 	 * creation of a new kmem_cache. | 
 | 	 */ | 
 | 	if (unlikely(!memcg_cachep)) | 
 | 		memcg_schedule_kmem_cache_create(memcg, cachep); | 
 | 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) | 
 | 		cachep = memcg_cachep; | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return cachep; | 
 | } | 
 |  | 
 | /** | 
 |  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache | 
 |  * @cachep: the cache returned by memcg_kmem_get_cache | 
 |  */ | 
 | void memcg_kmem_put_cache(struct kmem_cache *cachep) | 
 | { | 
 | 	if (!is_root_cache(cachep)) | 
 | 		percpu_ref_put(&cachep->memcg_params.refcnt); | 
 | } | 
 |  | 
 | /** | 
 |  * __memcg_kmem_charge_memcg: charge a kmem page | 
 |  * @page: page to charge | 
 |  * @gfp: reclaim mode | 
 |  * @order: allocation order | 
 |  * @memcg: memory cgroup to charge | 
 |  * | 
 |  * Returns 0 on success, an error code on failure. | 
 |  */ | 
 | int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, | 
 | 			    struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned int nr_pages = 1 << order; | 
 | 	struct page_counter *counter; | 
 | 	int ret; | 
 |  | 
 | 	ret = try_charge(memcg, gfp, nr_pages); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | 
 | 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | 
 |  | 
 | 		/* | 
 | 		 * Enforce __GFP_NOFAIL allocation because callers are not | 
 | 		 * prepared to see failures and likely do not have any failure | 
 | 		 * handling code. | 
 | 		 */ | 
 | 		if (gfp & __GFP_NOFAIL) { | 
 | 			page_counter_charge(&memcg->kmem, nr_pages); | 
 | 			return 0; | 
 | 		} | 
 | 		cancel_charge(memcg, nr_pages); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup | 
 |  * @page: page to charge | 
 |  * @gfp: reclaim mode | 
 |  * @order: allocation order | 
 |  * | 
 |  * Returns 0 on success, an error code on failure. | 
 |  */ | 
 | int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (memcg_kmem_bypass()) | 
 | 		return 0; | 
 |  | 
 | 	memcg = get_mem_cgroup_from_current(); | 
 | 	if (!mem_cgroup_is_root(memcg)) { | 
 | 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); | 
 | 		if (!ret) { | 
 | 			page->mem_cgroup = memcg; | 
 | 			__SetPageKmemcg(page); | 
 | 		} | 
 | 	} | 
 | 	css_put(&memcg->css); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * __memcg_kmem_uncharge_memcg: uncharge a kmem page | 
 |  * @memcg: memcg to uncharge | 
 |  * @nr_pages: number of pages to uncharge | 
 |  */ | 
 | void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, | 
 | 				 unsigned int nr_pages) | 
 | { | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		page_counter_uncharge(&memcg->kmem, nr_pages); | 
 |  | 
 | 	page_counter_uncharge(&memcg->memory, nr_pages); | 
 | 	if (do_memsw_account()) | 
 | 		page_counter_uncharge(&memcg->memsw, nr_pages); | 
 | } | 
 | /** | 
 |  * __memcg_kmem_uncharge: uncharge a kmem page | 
 |  * @page: page to uncharge | 
 |  * @order: allocation order | 
 |  */ | 
 | void __memcg_kmem_uncharge(struct page *page, int order) | 
 | { | 
 | 	struct mem_cgroup *memcg = page->mem_cgroup; | 
 | 	unsigned int nr_pages = 1 << order; | 
 |  | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); | 
 | 	__memcg_kmem_uncharge_memcg(memcg, nr_pages); | 
 | 	page->mem_cgroup = NULL; | 
 |  | 
 | 	/* slab pages do not have PageKmemcg flag set */ | 
 | 	if (PageKmemcg(page)) | 
 | 		__ClearPageKmemcg(page); | 
 |  | 
 | 	css_put_many(&memcg->css, nr_pages); | 
 | } | 
 | #endif /* CONFIG_MEMCG_KMEM */ | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 |  | 
 | /* | 
 |  * Because tail pages are not marked as "used", set it. We're under | 
 |  * pgdat->lru_lock and migration entries setup in all page mappings. | 
 |  */ | 
 | void mem_cgroup_split_huge_fixup(struct page *head) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	for (i = 1; i < HPAGE_PMD_NR; i++) | 
 | 		head[i].mem_cgroup = head->mem_cgroup; | 
 |  | 
 | 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | /** | 
 |  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 
 |  * @entry: swap entry to be moved | 
 |  * @from:  mem_cgroup which the entry is moved from | 
 |  * @to:  mem_cgroup which the entry is moved to | 
 |  * | 
 |  * It succeeds only when the swap_cgroup's record for this entry is the same | 
 |  * as the mem_cgroup's id of @from. | 
 |  * | 
 |  * Returns 0 on success, -EINVAL on failure. | 
 |  * | 
 |  * The caller must have charged to @to, IOW, called page_counter_charge() about | 
 |  * both res and memsw, and called css_get(). | 
 |  */ | 
 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 
 | 				struct mem_cgroup *from, struct mem_cgroup *to) | 
 | { | 
 | 	unsigned short old_id, new_id; | 
 |  | 
 | 	old_id = mem_cgroup_id(from); | 
 | 	new_id = mem_cgroup_id(to); | 
 |  | 
 | 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 
 | 		mod_memcg_state(from, MEMCG_SWAP, -1); | 
 | 		mod_memcg_state(to, MEMCG_SWAP, 1); | 
 | 		return 0; | 
 | 	} | 
 | 	return -EINVAL; | 
 | } | 
 | #else | 
 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 
 | 				struct mem_cgroup *from, struct mem_cgroup *to) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_MUTEX(memcg_max_mutex); | 
 |  | 
 | static int mem_cgroup_resize_max(struct mem_cgroup *memcg, | 
 | 				 unsigned long max, bool memsw) | 
 | { | 
 | 	bool enlarge = false; | 
 | 	bool drained = false; | 
 | 	int ret; | 
 | 	bool limits_invariant; | 
 | 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; | 
 |  | 
 | 	do { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		mutex_lock(&memcg_max_mutex); | 
 | 		/* | 
 | 		 * Make sure that the new limit (memsw or memory limit) doesn't | 
 | 		 * break our basic invariant rule memory.max <= memsw.max. | 
 | 		 */ | 
 | 		limits_invariant = memsw ? max >= memcg->memory.max : | 
 | 					   max <= memcg->memsw.max; | 
 | 		if (!limits_invariant) { | 
 | 			mutex_unlock(&memcg_max_mutex); | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		if (max > counter->max) | 
 | 			enlarge = true; | 
 | 		ret = page_counter_set_max(counter, max); | 
 | 		mutex_unlock(&memcg_max_mutex); | 
 |  | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		if (!drained) { | 
 | 			drain_all_stock(memcg); | 
 | 			drained = true; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!try_to_free_mem_cgroup_pages(memcg, 1, | 
 | 					GFP_KERNEL, !memsw)) { | 
 | 			ret = -EBUSY; | 
 | 			break; | 
 | 		} | 
 | 	} while (true); | 
 |  | 
 | 	if (!ret && enlarge) | 
 | 		memcg_oom_recover(memcg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, | 
 | 					    gfp_t gfp_mask, | 
 | 					    unsigned long *total_scanned) | 
 | { | 
 | 	unsigned long nr_reclaimed = 0; | 
 | 	struct mem_cgroup_per_node *mz, *next_mz = NULL; | 
 | 	unsigned long reclaimed; | 
 | 	int loop = 0; | 
 | 	struct mem_cgroup_tree_per_node *mctz; | 
 | 	unsigned long excess; | 
 | 	unsigned long nr_scanned; | 
 |  | 
 | 	if (order > 0) | 
 | 		return 0; | 
 |  | 
 | 	mctz = soft_limit_tree_node(pgdat->node_id); | 
 |  | 
 | 	/* | 
 | 	 * Do not even bother to check the largest node if the root | 
 | 	 * is empty. Do it lockless to prevent lock bouncing. Races | 
 | 	 * are acceptable as soft limit is best effort anyway. | 
 | 	 */ | 
 | 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * This loop can run a while, specially if mem_cgroup's continuously | 
 | 	 * keep exceeding their soft limit and putting the system under | 
 | 	 * pressure | 
 | 	 */ | 
 | 	do { | 
 | 		if (next_mz) | 
 | 			mz = next_mz; | 
 | 		else | 
 | 			mz = mem_cgroup_largest_soft_limit_node(mctz); | 
 | 		if (!mz) | 
 | 			break; | 
 |  | 
 | 		nr_scanned = 0; | 
 | 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, | 
 | 						    gfp_mask, &nr_scanned); | 
 | 		nr_reclaimed += reclaimed; | 
 | 		*total_scanned += nr_scanned; | 
 | 		spin_lock_irq(&mctz->lock); | 
 | 		__mem_cgroup_remove_exceeded(mz, mctz); | 
 |  | 
 | 		/* | 
 | 		 * If we failed to reclaim anything from this memory cgroup | 
 | 		 * it is time to move on to the next cgroup | 
 | 		 */ | 
 | 		next_mz = NULL; | 
 | 		if (!reclaimed) | 
 | 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
 |  | 
 | 		excess = soft_limit_excess(mz->memcg); | 
 | 		/* | 
 | 		 * One school of thought says that we should not add | 
 | 		 * back the node to the tree if reclaim returns 0. | 
 | 		 * But our reclaim could return 0, simply because due | 
 | 		 * to priority we are exposing a smaller subset of | 
 | 		 * memory to reclaim from. Consider this as a longer | 
 | 		 * term TODO. | 
 | 		 */ | 
 | 		/* If excess == 0, no tree ops */ | 
 | 		__mem_cgroup_insert_exceeded(mz, mctz, excess); | 
 | 		spin_unlock_irq(&mctz->lock); | 
 | 		css_put(&mz->memcg->css); | 
 | 		loop++; | 
 | 		/* | 
 | 		 * Could not reclaim anything and there are no more | 
 | 		 * mem cgroups to try or we seem to be looping without | 
 | 		 * reclaiming anything. | 
 | 		 */ | 
 | 		if (!nr_reclaimed && | 
 | 			(next_mz == NULL || | 
 | 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
 | 			break; | 
 | 	} while (!nr_reclaimed); | 
 | 	if (next_mz) | 
 | 		css_put(&next_mz->memcg->css); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether @memcg has children, dead or alive.  Note that this | 
 |  * function doesn't care whether @memcg has use_hierarchy enabled and | 
 |  * returns %true if there are child csses according to the cgroup | 
 |  * hierarchy.  Testing use_hierarchy is the caller's responsiblity. | 
 |  */ | 
 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = css_next_child(NULL, &memcg->css); | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaims as many pages from the given memcg as possible. | 
 |  * | 
 |  * Caller is responsible for holding css reference for memcg. | 
 |  */ | 
 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 |  | 
 | 	/* we call try-to-free pages for make this cgroup empty */ | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	drain_all_stock(memcg); | 
 |  | 
 | 	/* try to free all pages in this cgroup */ | 
 | 	while (nr_retries && page_counter_read(&memcg->memory)) { | 
 | 		int progress; | 
 |  | 
 | 		if (signal_pending(current)) | 
 | 			return -EINTR; | 
 |  | 
 | 		progress = try_to_free_mem_cgroup_pages(memcg, 1, | 
 | 							GFP_KERNEL, true); | 
 | 		if (!progress) { | 
 | 			nr_retries--; | 
 | 			/* maybe some writeback is necessary */ | 
 | 			congestion_wait(BLK_RW_ASYNC, HZ/10); | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | 
 | 					    char *buf, size_t nbytes, | 
 | 					    loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return -EINVAL; | 
 | 	return mem_cgroup_force_empty(memcg) ?: nbytes; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | 
 | 				     struct cftype *cft) | 
 | { | 
 | 	return mem_cgroup_from_css(css)->use_hierarchy; | 
 | } | 
 |  | 
 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | 
 | 				      struct cftype *cft, u64 val) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); | 
 |  | 
 | 	if (memcg->use_hierarchy == val) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If parent's use_hierarchy is set, we can't make any modifications | 
 | 	 * in the child subtrees. If it is unset, then the change can | 
 | 	 * occur, provided the current cgroup has no children. | 
 | 	 * | 
 | 	 * For the root cgroup, parent_mem is NULL, we allow value to be | 
 | 	 * set if there are no children. | 
 | 	 */ | 
 | 	if ((!parent_memcg || !parent_memcg->use_hierarchy) && | 
 | 				(val == 1 || val == 0)) { | 
 | 		if (!memcg_has_children(memcg)) | 
 | 			memcg->use_hierarchy = val; | 
 | 		else | 
 | 			retval = -EBUSY; | 
 | 	} else | 
 | 		retval = -EINVAL; | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 
 | { | 
 | 	unsigned long val; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) { | 
 | 		val = memcg_page_state(memcg, MEMCG_CACHE) + | 
 | 			memcg_page_state(memcg, MEMCG_RSS); | 
 | 		if (swap) | 
 | 			val += memcg_page_state(memcg, MEMCG_SWAP); | 
 | 	} else { | 
 | 		if (!swap) | 
 | 			val = page_counter_read(&memcg->memory); | 
 | 		else | 
 | 			val = page_counter_read(&memcg->memsw); | 
 | 	} | 
 | 	return val; | 
 | } | 
 |  | 
 | enum { | 
 | 	RES_USAGE, | 
 | 	RES_LIMIT, | 
 | 	RES_MAX_USAGE, | 
 | 	RES_FAILCNT, | 
 | 	RES_SOFT_LIMIT, | 
 | }; | 
 |  | 
 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | 
 | 			       struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	struct page_counter *counter; | 
 |  | 
 | 	switch (MEMFILE_TYPE(cft->private)) { | 
 | 	case _MEM: | 
 | 		counter = &memcg->memory; | 
 | 		break; | 
 | 	case _MEMSWAP: | 
 | 		counter = &memcg->memsw; | 
 | 		break; | 
 | 	case _KMEM: | 
 | 		counter = &memcg->kmem; | 
 | 		break; | 
 | 	case _TCP: | 
 | 		counter = &memcg->tcpmem; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	switch (MEMFILE_ATTR(cft->private)) { | 
 | 	case RES_USAGE: | 
 | 		if (counter == &memcg->memory) | 
 | 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | 
 | 		if (counter == &memcg->memsw) | 
 | 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | 
 | 		return (u64)page_counter_read(counter) * PAGE_SIZE; | 
 | 	case RES_LIMIT: | 
 | 		return (u64)counter->max * PAGE_SIZE; | 
 | 	case RES_MAX_USAGE: | 
 | 		return (u64)counter->watermark * PAGE_SIZE; | 
 | 	case RES_FAILCNT: | 
 | 		return counter->failcnt; | 
 | 	case RES_SOFT_LIMIT: | 
 | 		return (u64)memcg->soft_limit * PAGE_SIZE; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long stat[MEMCG_NR_STAT] = {0}; | 
 | 	struct mem_cgroup *mi; | 
 | 	int node, cpu, i; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		for (i = 0; i < MEMCG_NR_STAT; i++) | 
 | 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); | 
 |  | 
 | 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
 | 		for (i = 0; i < MEMCG_NR_STAT; i++) | 
 | 			atomic_long_add(stat[i], &mi->vmstats[i]); | 
 |  | 
 | 	for_each_node(node) { | 
 | 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; | 
 | 		struct mem_cgroup_per_node *pi; | 
 |  | 
 | 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 			stat[i] = 0; | 
 |  | 
 | 		for_each_online_cpu(cpu) | 
 | 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 				stat[i] += per_cpu( | 
 | 					pn->lruvec_stat_cpu->count[i], cpu); | 
 |  | 
 | 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) | 
 | 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) | 
 | 				atomic_long_add(stat[i], &pi->lruvec_stat[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long events[NR_VM_EVENT_ITEMS]; | 
 | 	struct mem_cgroup *mi; | 
 | 	int cpu, i; | 
 |  | 
 | 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 
 | 		events[i] = 0; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 
 | 			events[i] += per_cpu(memcg->vmstats_percpu->events[i], | 
 | 					     cpu); | 
 |  | 
 | 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) | 
 | 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 
 | 			atomic_long_add(events[i], &mi->vmevents[i]); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | 	int memcg_id; | 
 |  | 
 | 	if (cgroup_memory_nokmem) | 
 | 		return 0; | 
 |  | 
 | 	BUG_ON(memcg->kmemcg_id >= 0); | 
 | 	BUG_ON(memcg->kmem_state); | 
 |  | 
 | 	memcg_id = memcg_alloc_cache_id(); | 
 | 	if (memcg_id < 0) | 
 | 		return memcg_id; | 
 |  | 
 | 	static_branch_inc(&memcg_kmem_enabled_key); | 
 | 	/* | 
 | 	 * A memory cgroup is considered kmem-online as soon as it gets | 
 | 	 * kmemcg_id. Setting the id after enabling static branching will | 
 | 	 * guarantee no one starts accounting before all call sites are | 
 | 	 * patched. | 
 | 	 */ | 
 | 	memcg->kmemcg_id = memcg_id; | 
 | 	memcg->kmem_state = KMEM_ONLINE; | 
 | 	INIT_LIST_HEAD(&memcg->kmem_caches); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct mem_cgroup *parent, *child; | 
 | 	int kmemcg_id; | 
 |  | 
 | 	if (memcg->kmem_state != KMEM_ONLINE) | 
 | 		return; | 
 | 	/* | 
 | 	 * Clear the online state before clearing memcg_caches array | 
 | 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches() | 
 | 	 * guarantees that no cache will be created for this cgroup | 
 | 	 * after we are done (see memcg_create_kmem_cache()). | 
 | 	 */ | 
 | 	memcg->kmem_state = KMEM_ALLOCATED; | 
 |  | 
 | 	parent = parent_mem_cgroup(memcg); | 
 | 	if (!parent) | 
 | 		parent = root_mem_cgroup; | 
 |  | 
 | 	/* | 
 | 	 * Deactivate and reparent kmem_caches. | 
 | 	 */ | 
 | 	memcg_deactivate_kmem_caches(memcg, parent); | 
 |  | 
 | 	kmemcg_id = memcg->kmemcg_id; | 
 | 	BUG_ON(kmemcg_id < 0); | 
 |  | 
 | 	/* | 
 | 	 * Change kmemcg_id of this cgroup and all its descendants to the | 
 | 	 * parent's id, and then move all entries from this cgroup's list_lrus | 
 | 	 * to ones of the parent. After we have finished, all list_lrus | 
 | 	 * corresponding to this cgroup are guaranteed to remain empty. The | 
 | 	 * ordering is imposed by list_lru_node->lock taken by | 
 | 	 * memcg_drain_all_list_lrus(). | 
 | 	 */ | 
 | 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ | 
 | 	css_for_each_descendant_pre(css, &memcg->css) { | 
 | 		child = mem_cgroup_from_css(css); | 
 | 		BUG_ON(child->kmemcg_id != kmemcg_id); | 
 | 		child->kmemcg_id = parent->kmemcg_id; | 
 | 		if (!memcg->use_hierarchy) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	memcg_drain_all_list_lrus(kmemcg_id, parent); | 
 |  | 
 | 	memcg_free_cache_id(kmemcg_id); | 
 | } | 
 |  | 
 | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* css_alloc() failed, offlining didn't happen */ | 
 | 	if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | 
 | 		memcg_offline_kmem(memcg); | 
 |  | 
 | 	if (memcg->kmem_state == KMEM_ALLOCATED) { | 
 | 		WARN_ON(!list_empty(&memcg->kmem_caches)); | 
 | 		static_branch_dec(&memcg_kmem_enabled_key); | 
 | 	} | 
 | } | 
 | #else | 
 | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MEMCG_KMEM */ | 
 |  | 
 | static int memcg_update_kmem_max(struct mem_cgroup *memcg, | 
 | 				 unsigned long max) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&memcg_max_mutex); | 
 | 	ret = page_counter_set_max(&memcg->kmem, max); | 
 | 	mutex_unlock(&memcg_max_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&memcg_max_mutex); | 
 |  | 
 | 	ret = page_counter_set_max(&memcg->tcpmem, max); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (!memcg->tcpmem_active) { | 
 | 		/* | 
 | 		 * The active flag needs to be written after the static_key | 
 | 		 * update. This is what guarantees that the socket activation | 
 | 		 * function is the last one to run. See mem_cgroup_sk_alloc() | 
 | 		 * for details, and note that we don't mark any socket as | 
 | 		 * belonging to this memcg until that flag is up. | 
 | 		 * | 
 | 		 * We need to do this, because static_keys will span multiple | 
 | 		 * sites, but we can't control their order. If we mark a socket | 
 | 		 * as accounted, but the accounting functions are not patched in | 
 | 		 * yet, we'll lose accounting. | 
 | 		 * | 
 | 		 * We never race with the readers in mem_cgroup_sk_alloc(), | 
 | 		 * because when this value change, the code to process it is not | 
 | 		 * patched in yet. | 
 | 		 */ | 
 | 		static_branch_inc(&memcg_sockets_enabled_key); | 
 | 		memcg->tcpmem_active = true; | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&memcg_max_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The user of this function is... | 
 |  * RES_LIMIT. | 
 |  */ | 
 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | 
 | 				char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned long nr_pages; | 
 | 	int ret; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	ret = page_counter_memparse(buf, "-1", &nr_pages); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
 | 	case RES_LIMIT: | 
 | 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
 | 		case _MEM: | 
 | 			ret = mem_cgroup_resize_max(memcg, nr_pages, false); | 
 | 			break; | 
 | 		case _MEMSWAP: | 
 | 			ret = mem_cgroup_resize_max(memcg, nr_pages, true); | 
 | 			break; | 
 | 		case _KMEM: | 
 | 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " | 
 | 				     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 				     "depend on this functionality.\n"); | 
 | 			ret = memcg_update_kmem_max(memcg, nr_pages); | 
 | 			break; | 
 | 		case _TCP: | 
 | 			ret = memcg_update_tcp_max(memcg, nr_pages); | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case RES_SOFT_LIMIT: | 
 | 		memcg->soft_limit = nr_pages; | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret ?: nbytes; | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | 
 | 				size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	struct page_counter *counter; | 
 |  | 
 | 	switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
 | 	case _MEM: | 
 | 		counter = &memcg->memory; | 
 | 		break; | 
 | 	case _MEMSWAP: | 
 | 		counter = &memcg->memsw; | 
 | 		break; | 
 | 	case _KMEM: | 
 | 		counter = &memcg->kmem; | 
 | 		break; | 
 | 	case _TCP: | 
 | 		counter = &memcg->tcpmem; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
 | 	case RES_MAX_USAGE: | 
 | 		page_counter_reset_watermark(counter); | 
 | 		break; | 
 | 	case RES_FAILCNT: | 
 | 		counter->failcnt = 0; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | 
 | 					struct cftype *cft) | 
 | { | 
 | 	return mem_cgroup_from_css(css)->move_charge_at_immigrate; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
 | 					struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " | 
 | 		     "Please report your usecase to linux-mm@kvack.org if you " | 
 | 		     "depend on this functionality.\n"); | 
 |  | 
 | 	if (val & ~MOVE_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * No kind of locking is needed in here, because ->can_attach() will | 
 | 	 * check this value once in the beginning of the process, and then carry | 
 | 	 * on with stale data. This means that changes to this value will only | 
 | 	 * affect task migrations starting after the change. | 
 | 	 */ | 
 | 	memcg->move_charge_at_immigrate = val; | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
 | 					struct cftype *cft, u64 val) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) | 
 | #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) | 
 | #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1) | 
 |  | 
 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 
 | 					   int nid, unsigned int lru_mask) | 
 | { | 
 | 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); | 
 | 	unsigned long nr = 0; | 
 | 	enum lru_list lru; | 
 |  | 
 | 	VM_BUG_ON((unsigned)nid >= nr_node_ids); | 
 |  | 
 | 	for_each_lru(lru) { | 
 | 		if (!(BIT(lru) & lru_mask)) | 
 | 			continue; | 
 | 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); | 
 | 	} | 
 | 	return nr; | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 
 | 					     unsigned int lru_mask) | 
 | { | 
 | 	unsigned long nr = 0; | 
 | 	enum lru_list lru; | 
 |  | 
 | 	for_each_lru(lru) { | 
 | 		if (!(BIT(lru) & lru_mask)) | 
 | 			continue; | 
 | 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); | 
 | 	} | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int memcg_numa_stat_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct numa_stat { | 
 | 		const char *name; | 
 | 		unsigned int lru_mask; | 
 | 	}; | 
 |  | 
 | 	static const struct numa_stat stats[] = { | 
 | 		{ "total", LRU_ALL }, | 
 | 		{ "file", LRU_ALL_FILE }, | 
 | 		{ "anon", LRU_ALL_ANON }, | 
 | 		{ "unevictable", BIT(LRU_UNEVICTABLE) }, | 
 | 	}; | 
 | 	const struct numa_stat *stat; | 
 | 	int nid; | 
 | 	unsigned long nr; | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 |  | 
 | 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
 | 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | 
 | 		seq_printf(m, "%s=%lu", stat->name, nr); | 
 | 		for_each_node_state(nid, N_MEMORY) { | 
 | 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
 | 							  stat->lru_mask); | 
 | 			seq_printf(m, " N%d=%lu", nid, nr); | 
 | 		} | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
 | 		struct mem_cgroup *iter; | 
 |  | 
 | 		nr = 0; | 
 | 		for_each_mem_cgroup_tree(iter, memcg) | 
 | 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | 
 | 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | 
 | 		for_each_node_state(nid, N_MEMORY) { | 
 | 			nr = 0; | 
 | 			for_each_mem_cgroup_tree(iter, memcg) | 
 | 				nr += mem_cgroup_node_nr_lru_pages( | 
 | 					iter, nid, stat->lru_mask); | 
 | 			seq_printf(m, " N%d=%lu", nid, nr); | 
 | 		} | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | static const unsigned int memcg1_stats[] = { | 
 | 	MEMCG_CACHE, | 
 | 	MEMCG_RSS, | 
 | 	MEMCG_RSS_HUGE, | 
 | 	NR_SHMEM, | 
 | 	NR_FILE_MAPPED, | 
 | 	NR_FILE_DIRTY, | 
 | 	NR_WRITEBACK, | 
 | 	MEMCG_SWAP, | 
 | }; | 
 |  | 
 | static const char *const memcg1_stat_names[] = { | 
 | 	"cache", | 
 | 	"rss", | 
 | 	"rss_huge", | 
 | 	"shmem", | 
 | 	"mapped_file", | 
 | 	"dirty", | 
 | 	"writeback", | 
 | 	"swap", | 
 | }; | 
 |  | 
 | /* Universal VM events cgroup1 shows, original sort order */ | 
 | static const unsigned int memcg1_events[] = { | 
 | 	PGPGIN, | 
 | 	PGPGOUT, | 
 | 	PGFAULT, | 
 | 	PGMAJFAULT, | 
 | }; | 
 |  | 
 | static const char *const memcg1_event_names[] = { | 
 | 	"pgpgin", | 
 | 	"pgpgout", | 
 | 	"pgfault", | 
 | 	"pgmajfault", | 
 | }; | 
 |  | 
 | static int memcg_stat_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 | 	unsigned long memory, memsw; | 
 | 	struct mem_cgroup *mi; | 
 | 	unsigned int i; | 
 |  | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
 | 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | 
 | 			continue; | 
 | 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], | 
 | 			   memcg_page_state_local(memcg, memcg1_stats[i]) * | 
 | 			   PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
 | 		seq_printf(m, "%s %lu\n", memcg1_event_names[i], | 
 | 			   memcg_events_local(memcg, memcg1_events[i])); | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | 
 | 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) * | 
 | 			   PAGE_SIZE); | 
 |  | 
 | 	/* Hierarchical information */ | 
 | 	memory = memsw = PAGE_COUNTER_MAX; | 
 | 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | 
 | 		memory = min(memory, mi->memory.max); | 
 | 		memsw = min(memsw, mi->memsw.max); | 
 | 	} | 
 | 	seq_printf(m, "hierarchical_memory_limit %llu\n", | 
 | 		   (u64)memory * PAGE_SIZE); | 
 | 	if (do_memsw_account()) | 
 | 		seq_printf(m, "hierarchical_memsw_limit %llu\n", | 
 | 			   (u64)memsw * PAGE_SIZE); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
 | 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | 
 | 			continue; | 
 | 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], | 
 | 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) * | 
 | 			   PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
 | 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], | 
 | 			   (u64)memcg_events(memcg, memcg1_events[i])); | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], | 
 | 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * | 
 | 			   PAGE_SIZE); | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	{ | 
 | 		pg_data_t *pgdat; | 
 | 		struct mem_cgroup_per_node *mz; | 
 | 		struct zone_reclaim_stat *rstat; | 
 | 		unsigned long recent_rotated[2] = {0, 0}; | 
 | 		unsigned long recent_scanned[2] = {0, 0}; | 
 |  | 
 | 		for_each_online_pgdat(pgdat) { | 
 | 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | 
 | 			rstat = &mz->lruvec.reclaim_stat; | 
 |  | 
 | 			recent_rotated[0] += rstat->recent_rotated[0]; | 
 | 			recent_rotated[1] += rstat->recent_rotated[1]; | 
 | 			recent_scanned[0] += rstat->recent_scanned[0]; | 
 | 			recent_scanned[1] += rstat->recent_scanned[1]; | 
 | 		} | 
 | 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | 
 | 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | 
 | 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | 
 | 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | 
 | 				      struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	return mem_cgroup_swappiness(memcg); | 
 | } | 
 |  | 
 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | 
 | 				       struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	if (val > 100) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (css->parent) | 
 | 		memcg->swappiness = val; | 
 | 	else | 
 | 		vm_swappiness = val; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
 | { | 
 | 	struct mem_cgroup_threshold_ary *t; | 
 | 	unsigned long usage; | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!swap) | 
 | 		t = rcu_dereference(memcg->thresholds.primary); | 
 | 	else | 
 | 		t = rcu_dereference(memcg->memsw_thresholds.primary); | 
 |  | 
 | 	if (!t) | 
 | 		goto unlock; | 
 |  | 
 | 	usage = mem_cgroup_usage(memcg, swap); | 
 |  | 
 | 	/* | 
 | 	 * current_threshold points to threshold just below or equal to usage. | 
 | 	 * If it's not true, a threshold was crossed after last | 
 | 	 * call of __mem_cgroup_threshold(). | 
 | 	 */ | 
 | 	i = t->current_threshold; | 
 |  | 
 | 	/* | 
 | 	 * Iterate backward over array of thresholds starting from | 
 | 	 * current_threshold and check if a threshold is crossed. | 
 | 	 * If none of thresholds below usage is crossed, we read | 
 | 	 * only one element of the array here. | 
 | 	 */ | 
 | 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
 | 		eventfd_signal(t->entries[i].eventfd, 1); | 
 |  | 
 | 	/* i = current_threshold + 1 */ | 
 | 	i++; | 
 |  | 
 | 	/* | 
 | 	 * Iterate forward over array of thresholds starting from | 
 | 	 * current_threshold+1 and check if a threshold is crossed. | 
 | 	 * If none of thresholds above usage is crossed, we read | 
 | 	 * only one element of the array here. | 
 | 	 */ | 
 | 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
 | 		eventfd_signal(t->entries[i].eventfd, 1); | 
 |  | 
 | 	/* Update current_threshold */ | 
 | 	t->current_threshold = i - 1; | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
 | { | 
 | 	while (memcg) { | 
 | 		__mem_cgroup_threshold(memcg, false); | 
 | 		if (do_memsw_account()) | 
 | 			__mem_cgroup_threshold(memcg, true); | 
 |  | 
 | 		memcg = parent_mem_cgroup(memcg); | 
 | 	} | 
 | } | 
 |  | 
 | static int compare_thresholds(const void *a, const void *b) | 
 | { | 
 | 	const struct mem_cgroup_threshold *_a = a; | 
 | 	const struct mem_cgroup_threshold *_b = b; | 
 |  | 
 | 	if (_a->threshold > _b->threshold) | 
 | 		return 1; | 
 |  | 
 | 	if (_a->threshold < _b->threshold) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *ev; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	list_for_each_entry(ev, &memcg->oom_notify, list) | 
 | 		eventfd_signal(ev->eventfd, 1); | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		mem_cgroup_oom_notify_cb(iter); | 
 | } | 
 |  | 
 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args, enum res_type type) | 
 | { | 
 | 	struct mem_cgroup_thresholds *thresholds; | 
 | 	struct mem_cgroup_threshold_ary *new; | 
 | 	unsigned long threshold; | 
 | 	unsigned long usage; | 
 | 	int i, size, ret; | 
 |  | 
 | 	ret = page_counter_memparse(args, "-1", &threshold); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&memcg->thresholds_lock); | 
 |  | 
 | 	if (type == _MEM) { | 
 | 		thresholds = &memcg->thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, false); | 
 | 	} else if (type == _MEMSWAP) { | 
 | 		thresholds = &memcg->memsw_thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, true); | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	/* Check if a threshold crossed before adding a new one */ | 
 | 	if (thresholds->primary) | 
 | 		__mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
 |  | 
 | 	size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
 |  | 
 | 	/* Allocate memory for new array of thresholds */ | 
 | 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); | 
 | 	if (!new) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unlock; | 
 | 	} | 
 | 	new->size = size; | 
 |  | 
 | 	/* Copy thresholds (if any) to new array */ | 
 | 	if (thresholds->primary) { | 
 | 		memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 
 | 				sizeof(struct mem_cgroup_threshold)); | 
 | 	} | 
 |  | 
 | 	/* Add new threshold */ | 
 | 	new->entries[size - 1].eventfd = eventfd; | 
 | 	new->entries[size - 1].threshold = threshold; | 
 |  | 
 | 	/* Sort thresholds. Registering of new threshold isn't time-critical */ | 
 | 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 
 | 			compare_thresholds, NULL); | 
 |  | 
 | 	/* Find current threshold */ | 
 | 	new->current_threshold = -1; | 
 | 	for (i = 0; i < size; i++) { | 
 | 		if (new->entries[i].threshold <= usage) { | 
 | 			/* | 
 | 			 * new->current_threshold will not be used until | 
 | 			 * rcu_assign_pointer(), so it's safe to increment | 
 | 			 * it here. | 
 | 			 */ | 
 | 			++new->current_threshold; | 
 | 		} else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Free old spare buffer and save old primary buffer as spare */ | 
 | 	kfree(thresholds->spare); | 
 | 	thresholds->spare = thresholds->primary; | 
 |  | 
 | 	rcu_assign_pointer(thresholds->primary, new); | 
 |  | 
 | 	/* To be sure that nobody uses thresholds */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&memcg->thresholds_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | 
 | } | 
 |  | 
 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | 
 | } | 
 |  | 
 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, enum res_type type) | 
 | { | 
 | 	struct mem_cgroup_thresholds *thresholds; | 
 | 	struct mem_cgroup_threshold_ary *new; | 
 | 	unsigned long usage; | 
 | 	int i, j, size, entries; | 
 |  | 
 | 	mutex_lock(&memcg->thresholds_lock); | 
 |  | 
 | 	if (type == _MEM) { | 
 | 		thresholds = &memcg->thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, false); | 
 | 	} else if (type == _MEMSWAP) { | 
 | 		thresholds = &memcg->memsw_thresholds; | 
 | 		usage = mem_cgroup_usage(memcg, true); | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	if (!thresholds->primary) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Check if a threshold crossed before removing */ | 
 | 	__mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
 |  | 
 | 	/* Calculate new number of threshold */ | 
 | 	size = entries = 0; | 
 | 	for (i = 0; i < thresholds->primary->size; i++) { | 
 | 		if (thresholds->primary->entries[i].eventfd != eventfd) | 
 | 			size++; | 
 | 		else | 
 | 			entries++; | 
 | 	} | 
 |  | 
 | 	new = thresholds->spare; | 
 |  | 
 | 	/* If no items related to eventfd have been cleared, nothing to do */ | 
 | 	if (!entries) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Set thresholds array to NULL if we don't have thresholds */ | 
 | 	if (!size) { | 
 | 		kfree(new); | 
 | 		new = NULL; | 
 | 		goto swap_buffers; | 
 | 	} | 
 |  | 
 | 	new->size = size; | 
 |  | 
 | 	/* Copy thresholds and find current threshold */ | 
 | 	new->current_threshold = -1; | 
 | 	for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
 | 		if (thresholds->primary->entries[i].eventfd == eventfd) | 
 | 			continue; | 
 |  | 
 | 		new->entries[j] = thresholds->primary->entries[i]; | 
 | 		if (new->entries[j].threshold <= usage) { | 
 | 			/* | 
 | 			 * new->current_threshold will not be used | 
 | 			 * until rcu_assign_pointer(), so it's safe to increment | 
 | 			 * it here. | 
 | 			 */ | 
 | 			++new->current_threshold; | 
 | 		} | 
 | 		j++; | 
 | 	} | 
 |  | 
 | swap_buffers: | 
 | 	/* Swap primary and spare array */ | 
 | 	thresholds->spare = thresholds->primary; | 
 |  | 
 | 	rcu_assign_pointer(thresholds->primary, new); | 
 |  | 
 | 	/* To be sure that nobody uses thresholds */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	/* If all events are unregistered, free the spare array */ | 
 | 	if (!new) { | 
 | 		kfree(thresholds->spare); | 
 | 		thresholds->spare = NULL; | 
 | 	} | 
 | unlock: | 
 | 	mutex_unlock(&memcg->thresholds_lock); | 
 | } | 
 |  | 
 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd) | 
 | { | 
 | 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | 
 | } | 
 |  | 
 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd) | 
 | { | 
 | 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *event; | 
 |  | 
 | 	event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	event->eventfd = eventfd; | 
 | 	list_add(&event->list, &memcg->oom_notify); | 
 |  | 
 | 	/* already in OOM ? */ | 
 | 	if (memcg->under_oom) | 
 | 		eventfd_signal(eventfd, 1); | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | 
 | 	struct eventfd_ctx *eventfd) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *ev, *tmp; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 
 | 		if (ev->eventfd == eventfd) { | 
 | 			list_del(&ev->list); | 
 | 			kfree(ev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); | 
 |  | 
 | 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | 
 | 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | 
 | 	seq_printf(sf, "oom_kill %lu\n", | 
 | 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | 
 | 	struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	/* cannot set to root cgroup and only 0 and 1 are allowed */ | 
 | 	if (!css->parent || !((val == 0) || (val == 1))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcg->oom_kill_disable = val; | 
 | 	if (!val) | 
 | 		memcg_oom_recover(memcg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_WRITEBACK | 
 |  | 
 | #include <trace/events/writeback.h> | 
 |  | 
 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
 | { | 
 | 	return wb_domain_init(&memcg->cgwb_domain, gfp); | 
 | } | 
 |  | 
 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
 | { | 
 | 	wb_domain_exit(&memcg->cgwb_domain); | 
 | } | 
 |  | 
 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
 | { | 
 | 	wb_domain_size_changed(&memcg->cgwb_domain); | 
 | } | 
 |  | 
 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
 |  | 
 | 	if (!memcg->css.parent) | 
 | 		return NULL; | 
 |  | 
 | 	return &memcg->cgwb_domain; | 
 | } | 
 |  | 
 | /* | 
 |  * idx can be of type enum memcg_stat_item or node_stat_item. | 
 |  * Keep in sync with memcg_exact_page(). | 
 |  */ | 
 | static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) | 
 | { | 
 | 	long x = atomic_long_read(&memcg->vmstats[idx]); | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; | 
 | 	if (x < 0) | 
 | 		x = 0; | 
 | 	return x; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | 
 |  * @wb: bdi_writeback in question | 
 |  * @pfilepages: out parameter for number of file pages | 
 |  * @pheadroom: out parameter for number of allocatable pages according to memcg | 
 |  * @pdirty: out parameter for number of dirty pages | 
 |  * @pwriteback: out parameter for number of pages under writeback | 
 |  * | 
 |  * Determine the numbers of file, headroom, dirty, and writeback pages in | 
 |  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom | 
 |  * is a bit more involved. | 
 |  * | 
 |  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the | 
 |  * headroom is calculated as the lowest headroom of itself and the | 
 |  * ancestors.  Note that this doesn't consider the actual amount of | 
 |  * available memory in the system.  The caller should further cap | 
 |  * *@pheadroom accordingly. | 
 |  */ | 
 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | 
 | 			 unsigned long *pheadroom, unsigned long *pdirty, | 
 | 			 unsigned long *pwriteback) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
 | 	struct mem_cgroup *parent; | 
 |  | 
 | 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); | 
 |  | 
 | 	/* this should eventually include NR_UNSTABLE_NFS */ | 
 | 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); | 
 | 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + | 
 | 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE); | 
 | 	*pheadroom = PAGE_COUNTER_MAX; | 
 |  | 
 | 	while ((parent = parent_mem_cgroup(memcg))) { | 
 | 		unsigned long ceiling = min(memcg->memory.max, memcg->high); | 
 | 		unsigned long used = page_counter_read(&memcg->memory); | 
 |  | 
 | 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | 
 | 		memcg = parent; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Foreign dirty flushing | 
 |  * | 
 |  * There's an inherent mismatch between memcg and writeback.  The former | 
 |  * trackes ownership per-page while the latter per-inode.  This was a | 
 |  * deliberate design decision because honoring per-page ownership in the | 
 |  * writeback path is complicated, may lead to higher CPU and IO overheads | 
 |  * and deemed unnecessary given that write-sharing an inode across | 
 |  * different cgroups isn't a common use-case. | 
 |  * | 
 |  * Combined with inode majority-writer ownership switching, this works well | 
 |  * enough in most cases but there are some pathological cases.  For | 
 |  * example, let's say there are two cgroups A and B which keep writing to | 
 |  * different but confined parts of the same inode.  B owns the inode and | 
 |  * A's memory is limited far below B's.  A's dirty ratio can rise enough to | 
 |  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid | 
 |  * triggering background writeback.  A will be slowed down without a way to | 
 |  * make writeback of the dirty pages happen. | 
 |  * | 
 |  * Conditions like the above can lead to a cgroup getting repatedly and | 
 |  * severely throttled after making some progress after each | 
 |  * dirty_expire_interval while the underyling IO device is almost | 
 |  * completely idle. | 
 |  * | 
 |  * Solving this problem completely requires matching the ownership tracking | 
 |  * granularities between memcg and writeback in either direction.  However, | 
 |  * the more egregious behaviors can be avoided by simply remembering the | 
 |  * most recent foreign dirtying events and initiating remote flushes on | 
 |  * them when local writeback isn't enough to keep the memory clean enough. | 
 |  * | 
 |  * The following two functions implement such mechanism.  When a foreign | 
 |  * page - a page whose memcg and writeback ownerships don't match - is | 
 |  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning | 
 |  * bdi_writeback on the page owning memcg.  When balance_dirty_pages() | 
 |  * decides that the memcg needs to sleep due to high dirty ratio, it calls | 
 |  * mem_cgroup_flush_foreign() which queues writeback on the recorded | 
 |  * foreign bdi_writebacks which haven't expired.  Both the numbers of | 
 |  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are | 
 |  * limited to MEMCG_CGWB_FRN_CNT. | 
 |  * | 
 |  * The mechanism only remembers IDs and doesn't hold any object references. | 
 |  * As being wrong occasionally doesn't matter, updates and accesses to the | 
 |  * records are lockless and racy. | 
 |  */ | 
 | void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, | 
 | 					     struct bdi_writeback *wb) | 
 | { | 
 | 	struct mem_cgroup *memcg = page->mem_cgroup; | 
 | 	struct memcg_cgwb_frn *frn; | 
 | 	u64 now = get_jiffies_64(); | 
 | 	u64 oldest_at = now; | 
 | 	int oldest = -1; | 
 | 	int i; | 
 |  | 
 | 	trace_track_foreign_dirty(page, wb); | 
 |  | 
 | 	/* | 
 | 	 * Pick the slot to use.  If there is already a slot for @wb, keep | 
 | 	 * using it.  If not replace the oldest one which isn't being | 
 | 	 * written out. | 
 | 	 */ | 
 | 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | 
 | 		frn = &memcg->cgwb_frn[i]; | 
 | 		if (frn->bdi_id == wb->bdi->id && | 
 | 		    frn->memcg_id == wb->memcg_css->id) | 
 | 			break; | 
 | 		if (time_before64(frn->at, oldest_at) && | 
 | 		    atomic_read(&frn->done.cnt) == 1) { | 
 | 			oldest = i; | 
 | 			oldest_at = frn->at; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i < MEMCG_CGWB_FRN_CNT) { | 
 | 		/* | 
 | 		 * Re-using an existing one.  Update timestamp lazily to | 
 | 		 * avoid making the cacheline hot.  We want them to be | 
 | 		 * reasonably up-to-date and significantly shorter than | 
 | 		 * dirty_expire_interval as that's what expires the record. | 
 | 		 * Use the shorter of 1s and dirty_expire_interval / 8. | 
 | 		 */ | 
 | 		unsigned long update_intv = | 
 | 			min_t(unsigned long, HZ, | 
 | 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8); | 
 |  | 
 | 		if (time_before64(frn->at, now - update_intv)) | 
 | 			frn->at = now; | 
 | 	} else if (oldest >= 0) { | 
 | 		/* replace the oldest free one */ | 
 | 		frn = &memcg->cgwb_frn[oldest]; | 
 | 		frn->bdi_id = wb->bdi->id; | 
 | 		frn->memcg_id = wb->memcg_css->id; | 
 | 		frn->at = now; | 
 | 	} | 
 | } | 
 |  | 
 | /* issue foreign writeback flushes for recorded foreign dirtying events */ | 
 | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
 | 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); | 
 | 	u64 now = jiffies_64; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | 
 | 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; | 
 |  | 
 | 		/* | 
 | 		 * If the record is older than dirty_expire_interval, | 
 | 		 * writeback on it has already started.  No need to kick it | 
 | 		 * off again.  Also, don't start a new one if there's | 
 | 		 * already one in flight. | 
 | 		 */ | 
 | 		if (time_after64(frn->at, now - intv) && | 
 | 		    atomic_read(&frn->done.cnt) == 1) { | 
 | 			frn->at = 0; | 
 | 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); | 
 | 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, | 
 | 					       WB_REASON_FOREIGN_FLUSH, | 
 | 					       &frn->done); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
 |  | 
 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
 |  | 
 | /* | 
 |  * DO NOT USE IN NEW FILES. | 
 |  * | 
 |  * "cgroup.event_control" implementation. | 
 |  * | 
 |  * This is way over-engineered.  It tries to support fully configurable | 
 |  * events for each user.  Such level of flexibility is completely | 
 |  * unnecessary especially in the light of the planned unified hierarchy. | 
 |  * | 
 |  * Please deprecate this and replace with something simpler if at all | 
 |  * possible. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Unregister event and free resources. | 
 |  * | 
 |  * Gets called from workqueue. | 
 |  */ | 
 | static void memcg_event_remove(struct work_struct *work) | 
 | { | 
 | 	struct mem_cgroup_event *event = | 
 | 		container_of(work, struct mem_cgroup_event, remove); | 
 | 	struct mem_cgroup *memcg = event->memcg; | 
 |  | 
 | 	remove_wait_queue(event->wqh, &event->wait); | 
 |  | 
 | 	event->unregister_event(memcg, event->eventfd); | 
 |  | 
 | 	/* Notify userspace the event is going away. */ | 
 | 	eventfd_signal(event->eventfd, 1); | 
 |  | 
 | 	eventfd_ctx_put(event->eventfd); | 
 | 	kfree(event); | 
 | 	css_put(&memcg->css); | 
 | } | 
 |  | 
 | /* | 
 |  * Gets called on EPOLLHUP on eventfd when user closes it. | 
 |  * | 
 |  * Called with wqh->lock held and interrupts disabled. | 
 |  */ | 
 | static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, | 
 | 			    int sync, void *key) | 
 | { | 
 | 	struct mem_cgroup_event *event = | 
 | 		container_of(wait, struct mem_cgroup_event, wait); | 
 | 	struct mem_cgroup *memcg = event->memcg; | 
 | 	__poll_t flags = key_to_poll(key); | 
 |  | 
 | 	if (flags & EPOLLHUP) { | 
 | 		/* | 
 | 		 * If the event has been detached at cgroup removal, we | 
 | 		 * can simply return knowing the other side will cleanup | 
 | 		 * for us. | 
 | 		 * | 
 | 		 * We can't race against event freeing since the other | 
 | 		 * side will require wqh->lock via remove_wait_queue(), | 
 | 		 * which we hold. | 
 | 		 */ | 
 | 		spin_lock(&memcg->event_list_lock); | 
 | 		if (!list_empty(&event->list)) { | 
 | 			list_del_init(&event->list); | 
 | 			/* | 
 | 			 * We are in atomic context, but cgroup_event_remove() | 
 | 			 * may sleep, so we have to call it in workqueue. | 
 | 			 */ | 
 | 			schedule_work(&event->remove); | 
 | 		} | 
 | 		spin_unlock(&memcg->event_list_lock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void memcg_event_ptable_queue_proc(struct file *file, | 
 | 		wait_queue_head_t *wqh, poll_table *pt) | 
 | { | 
 | 	struct mem_cgroup_event *event = | 
 | 		container_of(pt, struct mem_cgroup_event, pt); | 
 |  | 
 | 	event->wqh = wqh; | 
 | 	add_wait_queue(wqh, &event->wait); | 
 | } | 
 |  | 
 | /* | 
 |  * DO NOT USE IN NEW FILES. | 
 |  * | 
 |  * Parse input and register new cgroup event handler. | 
 |  * | 
 |  * Input must be in format '<event_fd> <control_fd> <args>'. | 
 |  * Interpretation of args is defined by control file implementation. | 
 |  */ | 
 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | 
 | 					 char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct cgroup_subsys_state *css = of_css(of); | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	struct mem_cgroup_event *event; | 
 | 	struct cgroup_subsys_state *cfile_css; | 
 | 	unsigned int efd, cfd; | 
 | 	struct fd efile; | 
 | 	struct fd cfile; | 
 | 	struct dentry *cdentry; | 
 | 	const char *name; | 
 | 	char *endp; | 
 | 	int ret; | 
 |  | 
 | 	buf = strstrip(buf); | 
 |  | 
 | 	efd = simple_strtoul(buf, &endp, 10); | 
 | 	if (*endp != ' ') | 
 | 		return -EINVAL; | 
 | 	buf = endp + 1; | 
 |  | 
 | 	cfd = simple_strtoul(buf, &endp, 10); | 
 | 	if (*endp == '\0') | 
 | 		buf = endp; | 
 | 	else if (*endp == ' ') | 
 | 		buf = endp + 1; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	event = kzalloc(sizeof(*event), GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	event->memcg = memcg; | 
 | 	INIT_LIST_HEAD(&event->list); | 
 | 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | 
 | 	init_waitqueue_func_entry(&event->wait, memcg_event_wake); | 
 | 	INIT_WORK(&event->remove, memcg_event_remove); | 
 |  | 
 | 	efile = fdget(efd); | 
 | 	if (!efile.file) { | 
 | 		ret = -EBADF; | 
 | 		goto out_kfree; | 
 | 	} | 
 |  | 
 | 	event->eventfd = eventfd_ctx_fileget(efile.file); | 
 | 	if (IS_ERR(event->eventfd)) { | 
 | 		ret = PTR_ERR(event->eventfd); | 
 | 		goto out_put_efile; | 
 | 	} | 
 |  | 
 | 	cfile = fdget(cfd); | 
 | 	if (!cfile.file) { | 
 | 		ret = -EBADF; | 
 | 		goto out_put_eventfd; | 
 | 	} | 
 |  | 
 | 	/* the process need read permission on control file */ | 
 | 	/* AV: shouldn't we check that it's been opened for read instead? */ | 
 | 	ret = inode_permission(file_inode(cfile.file), MAY_READ); | 
 | 	if (ret < 0) | 
 | 		goto out_put_cfile; | 
 |  | 
 | 	/* | 
 | 	 * The control file must be a regular cgroup1 file. As a regular cgroup | 
 | 	 * file can't be renamed, it's safe to access its name afterwards. | 
 | 	 */ | 
 | 	cdentry = cfile.file->f_path.dentry; | 
 | 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_put_cfile; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Determine the event callbacks and set them in @event.  This used | 
 | 	 * to be done via struct cftype but cgroup core no longer knows | 
 | 	 * about these events.  The following is crude but the whole thing | 
 | 	 * is for compatibility anyway. | 
 | 	 * | 
 | 	 * DO NOT ADD NEW FILES. | 
 | 	 */ | 
 | 	name = cdentry->d_name.name; | 
 |  | 
 | 	if (!strcmp(name, "memory.usage_in_bytes")) { | 
 | 		event->register_event = mem_cgroup_usage_register_event; | 
 | 		event->unregister_event = mem_cgroup_usage_unregister_event; | 
 | 	} else if (!strcmp(name, "memory.oom_control")) { | 
 | 		event->register_event = mem_cgroup_oom_register_event; | 
 | 		event->unregister_event = mem_cgroup_oom_unregister_event; | 
 | 	} else if (!strcmp(name, "memory.pressure_level")) { | 
 | 		event->register_event = vmpressure_register_event; | 
 | 		event->unregister_event = vmpressure_unregister_event; | 
 | 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | 
 | 		event->register_event = memsw_cgroup_usage_register_event; | 
 | 		event->unregister_event = memsw_cgroup_usage_unregister_event; | 
 | 	} else { | 
 | 		ret = -EINVAL; | 
 | 		goto out_put_cfile; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Verify @cfile should belong to @css.  Also, remaining events are | 
 | 	 * automatically removed on cgroup destruction but the removal is | 
 | 	 * asynchronous, so take an extra ref on @css. | 
 | 	 */ | 
 | 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent, | 
 | 					       &memory_cgrp_subsys); | 
 | 	ret = -EINVAL; | 
 | 	if (IS_ERR(cfile_css)) | 
 | 		goto out_put_cfile; | 
 | 	if (cfile_css != css) { | 
 | 		css_put(cfile_css); | 
 | 		goto out_put_cfile; | 
 | 	} | 
 |  | 
 | 	ret = event->register_event(memcg, event->eventfd, buf); | 
 | 	if (ret) | 
 | 		goto out_put_css; | 
 |  | 
 | 	vfs_poll(efile.file, &event->pt); | 
 |  | 
 | 	spin_lock(&memcg->event_list_lock); | 
 | 	list_add(&event->list, &memcg->event_list); | 
 | 	spin_unlock(&memcg->event_list_lock); | 
 |  | 
 | 	fdput(cfile); | 
 | 	fdput(efile); | 
 |  | 
 | 	return nbytes; | 
 |  | 
 | out_put_css: | 
 | 	css_put(css); | 
 | out_put_cfile: | 
 | 	fdput(cfile); | 
 | out_put_eventfd: | 
 | 	eventfd_ctx_put(event->eventfd); | 
 | out_put_efile: | 
 | 	fdput(efile); | 
 | out_kfree: | 
 | 	kfree(event); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct cftype mem_cgroup_legacy_files[] = { | 
 | 	{ | 
 | 		.name = "usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "soft_limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.seq_show = memcg_stat_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "force_empty", | 
 | 		.write = mem_cgroup_force_empty_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "use_hierarchy", | 
 | 		.write_u64 = mem_cgroup_hierarchy_write, | 
 | 		.read_u64 = mem_cgroup_hierarchy_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "cgroup.event_control",		/* XXX: for compat */ | 
 | 		.write = memcg_write_event_control, | 
 | 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "swappiness", | 
 | 		.read_u64 = mem_cgroup_swappiness_read, | 
 | 		.write_u64 = mem_cgroup_swappiness_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "move_charge_at_immigrate", | 
 | 		.read_u64 = mem_cgroup_move_charge_read, | 
 | 		.write_u64 = mem_cgroup_move_charge_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "oom_control", | 
 | 		.seq_show = mem_cgroup_oom_control_read, | 
 | 		.write_u64 = mem_cgroup_oom_control_write, | 
 | 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 
 | 	}, | 
 | 	{ | 
 | 		.name = "pressure_level", | 
 | 	}, | 
 | #ifdef CONFIG_NUMA | 
 | 	{ | 
 | 		.name = "numa_stat", | 
 | 		.seq_show = memcg_numa_stat_show, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 		.name = "kmem.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) | 
 | 	{ | 
 | 		.name = "kmem.slabinfo", | 
 | 		.seq_start = memcg_slab_start, | 
 | 		.seq_next = memcg_slab_next, | 
 | 		.seq_stop = memcg_slab_stop, | 
 | 		.seq_show = memcg_slab_show, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 		.name = "kmem.tcp.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.tcp.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.tcp.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.tcp.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ },	/* terminate */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Private memory cgroup IDR | 
 |  * | 
 |  * Swap-out records and page cache shadow entries need to store memcg | 
 |  * references in constrained space, so we maintain an ID space that is | 
 |  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | 
 |  * memory-controlled cgroups to 64k. | 
 |  * | 
 |  * However, there usually are many references to the oflline CSS after | 
 |  * the cgroup has been destroyed, such as page cache or reclaimable | 
 |  * slab objects, that don't need to hang on to the ID. We want to keep | 
 |  * those dead CSS from occupying IDs, or we might quickly exhaust the | 
 |  * relatively small ID space and prevent the creation of new cgroups | 
 |  * even when there are much fewer than 64k cgroups - possibly none. | 
 |  * | 
 |  * Maintain a private 16-bit ID space for memcg, and allow the ID to | 
 |  * be freed and recycled when it's no longer needed, which is usually | 
 |  * when the CSS is offlined. | 
 |  * | 
 |  * The only exception to that are records of swapped out tmpfs/shmem | 
 |  * pages that need to be attributed to live ancestors on swapin. But | 
 |  * those references are manageable from userspace. | 
 |  */ | 
 |  | 
 | static DEFINE_IDR(mem_cgroup_idr); | 
 |  | 
 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (memcg->id.id > 0) { | 
 | 		idr_remove(&mem_cgroup_idr, memcg->id.id); | 
 | 		memcg->id.id = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) | 
 | { | 
 | 	refcount_add(n, &memcg->id.ref); | 
 | } | 
 |  | 
 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) | 
 | { | 
 | 	if (refcount_sub_and_test(n, &memcg->id.ref)) { | 
 | 		mem_cgroup_id_remove(memcg); | 
 |  | 
 | 		/* Memcg ID pins CSS */ | 
 | 		css_put(&memcg->css); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) | 
 | { | 
 | 	mem_cgroup_id_put_many(memcg, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_from_id - look up a memcg from a memcg id | 
 |  * @id: the memcg id to look up | 
 |  * | 
 |  * Caller must hold rcu_read_lock(). | 
 |  */ | 
 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | 
 | { | 
 | 	WARN_ON_ONCE(!rcu_read_lock_held()); | 
 | 	return idr_find(&mem_cgroup_idr, id); | 
 | } | 
 |  | 
 | static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
 | { | 
 | 	struct mem_cgroup_per_node *pn; | 
 | 	int tmp = node; | 
 | 	/* | 
 | 	 * This routine is called against possible nodes. | 
 | 	 * But it's BUG to call kmalloc() against offline node. | 
 | 	 * | 
 | 	 * TODO: this routine can waste much memory for nodes which will | 
 | 	 *       never be onlined. It's better to use memory hotplug callback | 
 | 	 *       function. | 
 | 	 */ | 
 | 	if (!node_state(node, N_NORMAL_MEMORY)) | 
 | 		tmp = -1; | 
 | 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
 | 	if (!pn) | 
 | 		return 1; | 
 |  | 
 | 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); | 
 | 	if (!pn->lruvec_stat_local) { | 
 | 		kfree(pn); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); | 
 | 	if (!pn->lruvec_stat_cpu) { | 
 | 		free_percpu(pn->lruvec_stat_local); | 
 | 		kfree(pn); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	lruvec_init(&pn->lruvec); | 
 | 	pn->usage_in_excess = 0; | 
 | 	pn->on_tree = false; | 
 | 	pn->memcg = memcg; | 
 |  | 
 | 	memcg->nodeinfo[node] = pn; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
 | { | 
 | 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; | 
 |  | 
 | 	if (!pn) | 
 | 		return; | 
 |  | 
 | 	free_percpu(pn->lruvec_stat_cpu); | 
 | 	free_percpu(pn->lruvec_stat_local); | 
 | 	kfree(pn); | 
 | } | 
 |  | 
 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node(node) | 
 | 		free_mem_cgroup_per_node_info(memcg, node); | 
 | 	free_percpu(memcg->vmstats_percpu); | 
 | 	free_percpu(memcg->vmstats_local); | 
 | 	kfree(memcg); | 
 | } | 
 |  | 
 | static void mem_cgroup_free(struct mem_cgroup *memcg) | 
 | { | 
 | 	memcg_wb_domain_exit(memcg); | 
 | 	/* | 
 | 	 * Flush percpu vmstats and vmevents to guarantee the value correctness | 
 | 	 * on parent's and all ancestor levels. | 
 | 	 */ | 
 | 	memcg_flush_percpu_vmstats(memcg); | 
 | 	memcg_flush_percpu_vmevents(memcg); | 
 | 	__mem_cgroup_free(memcg); | 
 | } | 
 |  | 
 | static struct mem_cgroup *mem_cgroup_alloc(void) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned int size; | 
 | 	int node; | 
 | 	int __maybe_unused i; | 
 | 	long error = -ENOMEM; | 
 |  | 
 | 	size = sizeof(struct mem_cgroup); | 
 | 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | 
 |  | 
 | 	memcg = kzalloc(size, GFP_KERNEL); | 
 | 	if (!memcg) | 
 | 		return ERR_PTR(error); | 
 |  | 
 | 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, | 
 | 				 1, MEM_CGROUP_ID_MAX, | 
 | 				 GFP_KERNEL); | 
 | 	if (memcg->id.id < 0) { | 
 | 		error = memcg->id.id; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); | 
 | 	if (!memcg->vmstats_local) | 
 | 		goto fail; | 
 |  | 
 | 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); | 
 | 	if (!memcg->vmstats_percpu) | 
 | 		goto fail; | 
 |  | 
 | 	for_each_node(node) | 
 | 		if (alloc_mem_cgroup_per_node_info(memcg, node)) | 
 | 			goto fail; | 
 |  | 
 | 	if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | 
 | 		goto fail; | 
 |  | 
 | 	INIT_WORK(&memcg->high_work, high_work_func); | 
 | 	memcg->last_scanned_node = MAX_NUMNODES; | 
 | 	INIT_LIST_HEAD(&memcg->oom_notify); | 
 | 	mutex_init(&memcg->thresholds_lock); | 
 | 	spin_lock_init(&memcg->move_lock); | 
 | 	vmpressure_init(&memcg->vmpressure); | 
 | 	INIT_LIST_HEAD(&memcg->event_list); | 
 | 	spin_lock_init(&memcg->event_list_lock); | 
 | 	memcg->socket_pressure = jiffies; | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | 	memcg->kmemcg_id = -1; | 
 | #endif | 
 | #ifdef CONFIG_CGROUP_WRITEBACK | 
 | 	INIT_LIST_HEAD(&memcg->cgwb_list); | 
 | 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | 
 | 		memcg->cgwb_frn[i].done = | 
 | 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); | 
 | #endif | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); | 
 | 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); | 
 | 	memcg->deferred_split_queue.split_queue_len = 0; | 
 | #endif | 
 | 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); | 
 | 	return memcg; | 
 | fail: | 
 | 	mem_cgroup_id_remove(memcg); | 
 | 	__mem_cgroup_free(memcg); | 
 | 	return ERR_PTR(error); | 
 | } | 
 |  | 
 | static struct cgroup_subsys_state * __ref | 
 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
 | { | 
 | 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | 
 | 	struct mem_cgroup *memcg; | 
 | 	long error = -ENOMEM; | 
 |  | 
 | 	memcg = mem_cgroup_alloc(); | 
 | 	if (IS_ERR(memcg)) | 
 | 		return ERR_CAST(memcg); | 
 |  | 
 | 	memcg->high = PAGE_COUNTER_MAX; | 
 | 	memcg->soft_limit = PAGE_COUNTER_MAX; | 
 | 	if (parent) { | 
 | 		memcg->swappiness = mem_cgroup_swappiness(parent); | 
 | 		memcg->oom_kill_disable = parent->oom_kill_disable; | 
 | 	} | 
 | 	if (parent && parent->use_hierarchy) { | 
 | 		memcg->use_hierarchy = true; | 
 | 		page_counter_init(&memcg->memory, &parent->memory); | 
 | 		page_counter_init(&memcg->swap, &parent->swap); | 
 | 		page_counter_init(&memcg->memsw, &parent->memsw); | 
 | 		page_counter_init(&memcg->kmem, &parent->kmem); | 
 | 		page_counter_init(&memcg->tcpmem, &parent->tcpmem); | 
 | 	} else { | 
 | 		page_counter_init(&memcg->memory, NULL); | 
 | 		page_counter_init(&memcg->swap, NULL); | 
 | 		page_counter_init(&memcg->memsw, NULL); | 
 | 		page_counter_init(&memcg->kmem, NULL); | 
 | 		page_counter_init(&memcg->tcpmem, NULL); | 
 | 		/* | 
 | 		 * Deeper hierachy with use_hierarchy == false doesn't make | 
 | 		 * much sense so let cgroup subsystem know about this | 
 | 		 * unfortunate state in our controller. | 
 | 		 */ | 
 | 		if (parent != root_mem_cgroup) | 
 | 			memory_cgrp_subsys.broken_hierarchy = true; | 
 | 	} | 
 |  | 
 | 	/* The following stuff does not apply to the root */ | 
 | 	if (!parent) { | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | 		INIT_LIST_HEAD(&memcg->kmem_caches); | 
 | #endif | 
 | 		root_mem_cgroup = memcg; | 
 | 		return &memcg->css; | 
 | 	} | 
 |  | 
 | 	error = memcg_online_kmem(memcg); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
 | 		static_branch_inc(&memcg_sockets_enabled_key); | 
 |  | 
 | 	return &memcg->css; | 
 | fail: | 
 | 	mem_cgroup_id_remove(memcg); | 
 | 	mem_cgroup_free(memcg); | 
 | 	return ERR_PTR(error); | 
 | } | 
 |  | 
 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	/* | 
 | 	 * A memcg must be visible for memcg_expand_shrinker_maps() | 
 | 	 * by the time the maps are allocated. So, we allocate maps | 
 | 	 * here, when for_each_mem_cgroup() can't skip it. | 
 | 	 */ | 
 | 	if (memcg_alloc_shrinker_maps(memcg)) { | 
 | 		mem_cgroup_id_remove(memcg); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Online state pins memcg ID, memcg ID pins CSS */ | 
 | 	refcount_set(&memcg->id.ref, 1); | 
 | 	css_get(css); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	struct mem_cgroup_event *event, *tmp; | 
 |  | 
 | 	/* | 
 | 	 * Unregister events and notify userspace. | 
 | 	 * Notify userspace about cgroup removing only after rmdir of cgroup | 
 | 	 * directory to avoid race between userspace and kernelspace. | 
 | 	 */ | 
 | 	spin_lock(&memcg->event_list_lock); | 
 | 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | 
 | 		list_del_init(&event->list); | 
 | 		schedule_work(&event->remove); | 
 | 	} | 
 | 	spin_unlock(&memcg->event_list_lock); | 
 |  | 
 | 	page_counter_set_min(&memcg->memory, 0); | 
 | 	page_counter_set_low(&memcg->memory, 0); | 
 |  | 
 | 	memcg_offline_kmem(memcg); | 
 | 	wb_memcg_offline(memcg); | 
 |  | 
 | 	drain_all_stock(memcg); | 
 |  | 
 | 	mem_cgroup_id_put(memcg); | 
 | } | 
 |  | 
 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	invalidate_reclaim_iterators(memcg); | 
 | } | 
 |  | 
 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 | 	int __maybe_unused i; | 
 |  | 
 | #ifdef CONFIG_CGROUP_WRITEBACK | 
 | 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | 
 | 		wb_wait_for_completion(&memcg->cgwb_frn[i].done); | 
 | #endif | 
 | 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
 | 		static_branch_dec(&memcg_sockets_enabled_key); | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) | 
 | 		static_branch_dec(&memcg_sockets_enabled_key); | 
 |  | 
 | 	vmpressure_cleanup(&memcg->vmpressure); | 
 | 	cancel_work_sync(&memcg->high_work); | 
 | 	mem_cgroup_remove_from_trees(memcg); | 
 | 	memcg_free_shrinker_maps(memcg); | 
 | 	memcg_free_kmem(memcg); | 
 | 	mem_cgroup_free(memcg); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_css_reset - reset the states of a mem_cgroup | 
 |  * @css: the target css | 
 |  * | 
 |  * Reset the states of the mem_cgroup associated with @css.  This is | 
 |  * invoked when the userland requests disabling on the default hierarchy | 
 |  * but the memcg is pinned through dependency.  The memcg should stop | 
 |  * applying policies and should revert to the vanilla state as it may be | 
 |  * made visible again. | 
 |  * | 
 |  * The current implementation only resets the essential configurations. | 
 |  * This needs to be expanded to cover all the visible parts. | 
 |  */ | 
 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); | 
 | 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); | 
 | 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); | 
 | 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); | 
 | 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); | 
 | 	page_counter_set_min(&memcg->memory, 0); | 
 | 	page_counter_set_low(&memcg->memory, 0); | 
 | 	memcg->high = PAGE_COUNTER_MAX; | 
 | 	memcg->soft_limit = PAGE_COUNTER_MAX; | 
 | 	memcg_wb_domain_size_changed(memcg); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* Handlers for move charge at task migration. */ | 
 | static int mem_cgroup_do_precharge(unsigned long count) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* Try a single bulk charge without reclaim first, kswapd may wake */ | 
 | 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | 
 | 	if (!ret) { | 
 | 		mc.precharge += count; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Try charges one by one with reclaim, but do not retry */ | 
 | 	while (count--) { | 
 | 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		mc.precharge++; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | union mc_target { | 
 | 	struct page	*page; | 
 | 	swp_entry_t	ent; | 
 | }; | 
 |  | 
 | enum mc_target_type { | 
 | 	MC_TARGET_NONE = 0, | 
 | 	MC_TARGET_PAGE, | 
 | 	MC_TARGET_SWAP, | 
 | 	MC_TARGET_DEVICE, | 
 | }; | 
 |  | 
 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 
 | 						unsigned long addr, pte_t ptent) | 
 | { | 
 | 	struct page *page = vm_normal_page(vma, addr, ptent); | 
 |  | 
 | 	if (!page || !page_mapped(page)) | 
 | 		return NULL; | 
 | 	if (PageAnon(page)) { | 
 | 		if (!(mc.flags & MOVE_ANON)) | 
 | 			return NULL; | 
 | 	} else { | 
 | 		if (!(mc.flags & MOVE_FILE)) | 
 | 			return NULL; | 
 | 	} | 
 | 	if (!get_page_unless_zero(page)) | 
 | 		return NULL; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) | 
 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
 | 			pte_t ptent, swp_entry_t *entry) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	swp_entry_t ent = pte_to_swp_entry(ptent); | 
 |  | 
 | 	if (!(mc.flags & MOVE_ANON)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to | 
 | 	 * a device and because they are not accessible by CPU they are store | 
 | 	 * as special swap entry in the CPU page table. | 
 | 	 */ | 
 | 	if (is_device_private_entry(ent)) { | 
 | 		page = device_private_entry_to_page(ent); | 
 | 		/* | 
 | 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have | 
 | 		 * a refcount of 1 when free (unlike normal page) | 
 | 		 */ | 
 | 		if (!page_ref_add_unless(page, 1, 1)) | 
 | 			return NULL; | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	if (non_swap_entry(ent)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Because lookup_swap_cache() updates some statistics counter, | 
 | 	 * we call find_get_page() with swapper_space directly. | 
 | 	 */ | 
 | 	page = find_get_page(swap_address_space(ent), swp_offset(ent)); | 
 | 	if (do_memsw_account()) | 
 | 		entry->val = ent.val; | 
 |  | 
 | 	return page; | 
 | } | 
 | #else | 
 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
 | 			pte_t ptent, swp_entry_t *entry) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 
 | 			unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t pgoff; | 
 |  | 
 | 	if (!vma->vm_file) /* anonymous vma */ | 
 | 		return NULL; | 
 | 	if (!(mc.flags & MOVE_FILE)) | 
 | 		return NULL; | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	pgoff = linear_page_index(vma, addr); | 
 |  | 
 | 	/* page is moved even if it's not RSS of this task(page-faulted). */ | 
 | #ifdef CONFIG_SWAP | 
 | 	/* shmem/tmpfs may report page out on swap: account for that too. */ | 
 | 	if (shmem_mapping(mapping)) { | 
 | 		page = find_get_entry(mapping, pgoff); | 
 | 		if (xa_is_value(page)) { | 
 | 			swp_entry_t swp = radix_to_swp_entry(page); | 
 | 			if (do_memsw_account()) | 
 | 				*entry = swp; | 
 | 			page = find_get_page(swap_address_space(swp), | 
 | 					     swp_offset(swp)); | 
 | 		} | 
 | 	} else | 
 | 		page = find_get_page(mapping, pgoff); | 
 | #else | 
 | 	page = find_get_page(mapping, pgoff); | 
 | #endif | 
 | 	return page; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_move_account - move account of the page | 
 |  * @page: the page | 
 |  * @compound: charge the page as compound or small page | 
 |  * @from: mem_cgroup which the page is moved from. | 
 |  * @to:	mem_cgroup which the page is moved to. @from != @to. | 
 |  * | 
 |  * The caller must make sure the page is not on LRU (isolate_page() is useful.) | 
 |  * | 
 |  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | 
 |  * from old cgroup. | 
 |  */ | 
 | static int mem_cgroup_move_account(struct page *page, | 
 | 				   bool compound, | 
 | 				   struct mem_cgroup *from, | 
 | 				   struct mem_cgroup *to) | 
 | { | 
 | 	struct lruvec *from_vec, *to_vec; | 
 | 	struct pglist_data *pgdat; | 
 | 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
 | 	int ret; | 
 | 	bool anon; | 
 |  | 
 | 	VM_BUG_ON(from == to); | 
 | 	VM_BUG_ON_PAGE(PageLRU(page), page); | 
 | 	VM_BUG_ON(compound && !PageTransHuge(page)); | 
 |  | 
 | 	/* | 
 | 	 * Prevent mem_cgroup_migrate() from looking at | 
 | 	 * page->mem_cgroup of its source page while we change it. | 
 | 	 */ | 
 | 	ret = -EBUSY; | 
 | 	if (!trylock_page(page)) | 
 | 		goto out; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (page->mem_cgroup != from) | 
 | 		goto out_unlock; | 
 |  | 
 | 	anon = PageAnon(page); | 
 |  | 
 | 	pgdat = page_pgdat(page); | 
 | 	from_vec = mem_cgroup_lruvec(pgdat, from); | 
 | 	to_vec = mem_cgroup_lruvec(pgdat, to); | 
 |  | 
 | 	lock_page_memcg(page); | 
 |  | 
 | 	if (!anon && page_mapped(page)) { | 
 | 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); | 
 | 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); | 
 | 	} | 
 |  | 
 | 	if (!anon && PageDirty(page)) { | 
 | 		struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 		if (mapping_cap_account_dirty(mapping)) { | 
 | 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); | 
 | 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (PageWriteback(page)) { | 
 | 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); | 
 | 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All state has been migrated, let's switch to the new memcg. | 
 | 	 * | 
 | 	 * It is safe to change page->mem_cgroup here because the page | 
 | 	 * is referenced, charged, isolated, and locked: we can't race | 
 | 	 * with (un)charging, migration, LRU putback, or anything else | 
 | 	 * that would rely on a stable page->mem_cgroup. | 
 | 	 * | 
 | 	 * Note that lock_page_memcg is a memcg lock, not a page lock, | 
 | 	 * to save space. As soon as we switch page->mem_cgroup to a | 
 | 	 * new memcg that isn't locked, the above state can change | 
 | 	 * concurrently again. Make sure we're truly done with it. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	page->mem_cgroup = to; 	/* caller should have done css_get */ | 
 |  | 
 | 	__unlock_page_memcg(from); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	mem_cgroup_charge_statistics(to, page, compound, nr_pages); | 
 | 	memcg_check_events(to, page); | 
 | 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages); | 
 | 	memcg_check_events(from, page); | 
 | 	local_irq_enable(); | 
 | out_unlock: | 
 | 	unlock_page(page); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * get_mctgt_type - get target type of moving charge | 
 |  * @vma: the vma the pte to be checked belongs | 
 |  * @addr: the address corresponding to the pte to be checked | 
 |  * @ptent: the pte to be checked | 
 |  * @target: the pointer the target page or swap ent will be stored(can be NULL) | 
 |  * | 
 |  * Returns | 
 |  *   0(MC_TARGET_NONE): if the pte is not a target for move charge. | 
 |  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 
 |  *     move charge. if @target is not NULL, the page is stored in target->page | 
 |  *     with extra refcnt got(Callers should handle it). | 
 |  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 
 |  *     target for charge migration. if @target is not NULL, the entry is stored | 
 |  *     in target->ent. | 
 |  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE | 
 |  *     (so ZONE_DEVICE page and thus not on the lru). | 
 |  *     For now we such page is charge like a regular page would be as for all | 
 |  *     intent and purposes it is just special memory taking the place of a | 
 |  *     regular page. | 
 |  * | 
 |  *     See Documentations/vm/hmm.txt and include/linux/hmm.h | 
 |  * | 
 |  * Called with pte lock held. | 
 |  */ | 
 |  | 
 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | 
 | 		unsigned long addr, pte_t ptent, union mc_target *target) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	enum mc_target_type ret = MC_TARGET_NONE; | 
 | 	swp_entry_t ent = { .val = 0 }; | 
 |  | 
 | 	if (pte_present(ptent)) | 
 | 		page = mc_handle_present_pte(vma, addr, ptent); | 
 | 	else if (is_swap_pte(ptent)) | 
 | 		page = mc_handle_swap_pte(vma, ptent, &ent); | 
 | 	else if (pte_none(ptent)) | 
 | 		page = mc_handle_file_pte(vma, addr, ptent, &ent); | 
 |  | 
 | 	if (!page && !ent.val) | 
 | 		return ret; | 
 | 	if (page) { | 
 | 		/* | 
 | 		 * Do only loose check w/o serialization. | 
 | 		 * mem_cgroup_move_account() checks the page is valid or | 
 | 		 * not under LRU exclusion. | 
 | 		 */ | 
 | 		if (page->mem_cgroup == mc.from) { | 
 | 			ret = MC_TARGET_PAGE; | 
 | 			if (is_device_private_page(page)) | 
 | 				ret = MC_TARGET_DEVICE; | 
 | 			if (target) | 
 | 				target->page = page; | 
 | 		} | 
 | 		if (!ret || !target) | 
 | 			put_page(page); | 
 | 	} | 
 | 	/* | 
 | 	 * There is a swap entry and a page doesn't exist or isn't charged. | 
 | 	 * But we cannot move a tail-page in a THP. | 
 | 	 */ | 
 | 	if (ent.val && !ret && (!page || !PageTransCompound(page)) && | 
 | 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | 
 | 		ret = MC_TARGET_SWAP; | 
 | 		if (target) | 
 | 			target->ent = ent; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | /* | 
 |  * We don't consider PMD mapped swapping or file mapped pages because THP does | 
 |  * not support them for now. | 
 |  * Caller should make sure that pmd_trans_huge(pmd) is true. | 
 |  */ | 
 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
 | 		unsigned long addr, pmd_t pmd, union mc_target *target) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	enum mc_target_type ret = MC_TARGET_NONE; | 
 |  | 
 | 	if (unlikely(is_swap_pmd(pmd))) { | 
 | 		VM_BUG_ON(thp_migration_supported() && | 
 | 				  !is_pmd_migration_entry(pmd)); | 
 | 		return ret; | 
 | 	} | 
 | 	page = pmd_page(pmd); | 
 | 	VM_BUG_ON_PAGE(!page || !PageHead(page), page); | 
 | 	if (!(mc.flags & MOVE_ANON)) | 
 | 		return ret; | 
 | 	if (page->mem_cgroup == mc.from) { | 
 | 		ret = MC_TARGET_PAGE; | 
 | 		if (target) { | 
 | 			get_page(page); | 
 | 			target->page = page; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
 | 		unsigned long addr, pmd_t pmd, union mc_target *target) | 
 | { | 
 | 	return MC_TARGET_NONE; | 
 | } | 
 | #endif | 
 |  | 
 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 
 | 					unsigned long addr, unsigned long end, | 
 | 					struct mm_walk *walk) | 
 | { | 
 | 	struct vm_area_struct *vma = walk->vma; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	ptl = pmd_trans_huge_lock(pmd, vma); | 
 | 	if (ptl) { | 
 | 		/* | 
 | 		 * Note their can not be MC_TARGET_DEVICE for now as we do not | 
 | 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but | 
 | 		 * this might change. | 
 | 		 */ | 
 | 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | 
 | 			mc.precharge += HPAGE_PMD_NR; | 
 | 		spin_unlock(ptl); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (pmd_trans_unstable(pmd)) | 
 | 		return 0; | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	for (; addr != end; pte++, addr += PAGE_SIZE) | 
 | 		if (get_mctgt_type(vma, addr, *pte, NULL)) | 
 | 			mc.precharge++;	/* increment precharge temporarily */ | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	cond_resched(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct mm_walk_ops precharge_walk_ops = { | 
 | 	.pmd_entry	= mem_cgroup_count_precharge_pte_range, | 
 | }; | 
 |  | 
 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long precharge; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	precharge = mc.precharge; | 
 | 	mc.precharge = 0; | 
 |  | 
 | 	return precharge; | 
 | } | 
 |  | 
 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long precharge = mem_cgroup_count_precharge(mm); | 
 |  | 
 | 	VM_BUG_ON(mc.moving_task); | 
 | 	mc.moving_task = current; | 
 | 	return mem_cgroup_do_precharge(precharge); | 
 | } | 
 |  | 
 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | 
 | static void __mem_cgroup_clear_mc(void) | 
 | { | 
 | 	struct mem_cgroup *from = mc.from; | 
 | 	struct mem_cgroup *to = mc.to; | 
 |  | 
 | 	/* we must uncharge all the leftover precharges from mc.to */ | 
 | 	if (mc.precharge) { | 
 | 		cancel_charge(mc.to, mc.precharge); | 
 | 		mc.precharge = 0; | 
 | 	} | 
 | 	/* | 
 | 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 
 | 	 * we must uncharge here. | 
 | 	 */ | 
 | 	if (mc.moved_charge) { | 
 | 		cancel_charge(mc.from, mc.moved_charge); | 
 | 		mc.moved_charge = 0; | 
 | 	} | 
 | 	/* we must fixup refcnts and charges */ | 
 | 	if (mc.moved_swap) { | 
 | 		/* uncharge swap account from the old cgroup */ | 
 | 		if (!mem_cgroup_is_root(mc.from)) | 
 | 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | 
 |  | 
 | 		mem_cgroup_id_put_many(mc.from, mc.moved_swap); | 
 |  | 
 | 		/* | 
 | 		 * we charged both to->memory and to->memsw, so we | 
 | 		 * should uncharge to->memory. | 
 | 		 */ | 
 | 		if (!mem_cgroup_is_root(mc.to)) | 
 | 			page_counter_uncharge(&mc.to->memory, mc.moved_swap); | 
 |  | 
 | 		css_put_many(&mc.to->css, mc.moved_swap); | 
 |  | 
 | 		mc.moved_swap = 0; | 
 | 	} | 
 | 	memcg_oom_recover(from); | 
 | 	memcg_oom_recover(to); | 
 | 	wake_up_all(&mc.waitq); | 
 | } | 
 |  | 
 | static void mem_cgroup_clear_mc(void) | 
 | { | 
 | 	struct mm_struct *mm = mc.mm; | 
 |  | 
 | 	/* | 
 | 	 * we must clear moving_task before waking up waiters at the end of | 
 | 	 * task migration. | 
 | 	 */ | 
 | 	mc.moving_task = NULL; | 
 | 	__mem_cgroup_clear_mc(); | 
 | 	spin_lock(&mc.lock); | 
 | 	mc.from = NULL; | 
 | 	mc.to = NULL; | 
 | 	mc.mm = NULL; | 
 | 	spin_unlock(&mc.lock); | 
 |  | 
 | 	mmput(mm); | 
 | } | 
 |  | 
 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ | 
 | 	struct mem_cgroup *from; | 
 | 	struct task_struct *leader, *p; | 
 | 	struct mm_struct *mm; | 
 | 	unsigned long move_flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* charge immigration isn't supported on the default hierarchy */ | 
 | 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Multi-process migrations only happen on the default hierarchy | 
 | 	 * where charge immigration is not used.  Perform charge | 
 | 	 * immigration if @tset contains a leader and whine if there are | 
 | 	 * multiple. | 
 | 	 */ | 
 | 	p = NULL; | 
 | 	cgroup_taskset_for_each_leader(leader, css, tset) { | 
 | 		WARN_ON_ONCE(p); | 
 | 		p = leader; | 
 | 		memcg = mem_cgroup_from_css(css); | 
 | 	} | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We are now commited to this value whatever it is. Changes in this | 
 | 	 * tunable will only affect upcoming migrations, not the current one. | 
 | 	 * So we need to save it, and keep it going. | 
 | 	 */ | 
 | 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | 
 | 	if (!move_flags) | 
 | 		return 0; | 
 |  | 
 | 	from = mem_cgroup_from_task(p); | 
 |  | 
 | 	VM_BUG_ON(from == memcg); | 
 |  | 
 | 	mm = get_task_mm(p); | 
 | 	if (!mm) | 
 | 		return 0; | 
 | 	/* We move charges only when we move a owner of the mm */ | 
 | 	if (mm->owner == p) { | 
 | 		VM_BUG_ON(mc.from); | 
 | 		VM_BUG_ON(mc.to); | 
 | 		VM_BUG_ON(mc.precharge); | 
 | 		VM_BUG_ON(mc.moved_charge); | 
 | 		VM_BUG_ON(mc.moved_swap); | 
 |  | 
 | 		spin_lock(&mc.lock); | 
 | 		mc.mm = mm; | 
 | 		mc.from = from; | 
 | 		mc.to = memcg; | 
 | 		mc.flags = move_flags; | 
 | 		spin_unlock(&mc.lock); | 
 | 		/* We set mc.moving_task later */ | 
 |  | 
 | 		ret = mem_cgroup_precharge_mc(mm); | 
 | 		if (ret) | 
 | 			mem_cgroup_clear_mc(); | 
 | 	} else { | 
 | 		mmput(mm); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	if (mc.to) | 
 | 		mem_cgroup_clear_mc(); | 
 | } | 
 |  | 
 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				struct mm_walk *walk) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct vm_area_struct *vma = walk->vma; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 | 	enum mc_target_type target_type; | 
 | 	union mc_target target; | 
 | 	struct page *page; | 
 |  | 
 | 	ptl = pmd_trans_huge_lock(pmd, vma); | 
 | 	if (ptl) { | 
 | 		if (mc.precharge < HPAGE_PMD_NR) { | 
 | 			spin_unlock(ptl); | 
 | 			return 0; | 
 | 		} | 
 | 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | 
 | 		if (target_type == MC_TARGET_PAGE) { | 
 | 			page = target.page; | 
 | 			if (!isolate_lru_page(page)) { | 
 | 				if (!mem_cgroup_move_account(page, true, | 
 | 							     mc.from, mc.to)) { | 
 | 					mc.precharge -= HPAGE_PMD_NR; | 
 | 					mc.moved_charge += HPAGE_PMD_NR; | 
 | 				} | 
 | 				putback_lru_page(page); | 
 | 			} | 
 | 			put_page(page); | 
 | 		} else if (target_type == MC_TARGET_DEVICE) { | 
 | 			page = target.page; | 
 | 			if (!mem_cgroup_move_account(page, true, | 
 | 						     mc.from, mc.to)) { | 
 | 				mc.precharge -= HPAGE_PMD_NR; | 
 | 				mc.moved_charge += HPAGE_PMD_NR; | 
 | 			} | 
 | 			put_page(page); | 
 | 		} | 
 | 		spin_unlock(ptl); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (pmd_trans_unstable(pmd)) | 
 | 		return 0; | 
 | retry: | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	for (; addr != end; addr += PAGE_SIZE) { | 
 | 		pte_t ptent = *(pte++); | 
 | 		bool device = false; | 
 | 		swp_entry_t ent; | 
 |  | 
 | 		if (!mc.precharge) | 
 | 			break; | 
 |  | 
 | 		switch (get_mctgt_type(vma, addr, ptent, &target)) { | 
 | 		case MC_TARGET_DEVICE: | 
 | 			device = true; | 
 | 			/* fall through */ | 
 | 		case MC_TARGET_PAGE: | 
 | 			page = target.page; | 
 | 			/* | 
 | 			 * We can have a part of the split pmd here. Moving it | 
 | 			 * can be done but it would be too convoluted so simply | 
 | 			 * ignore such a partial THP and keep it in original | 
 | 			 * memcg. There should be somebody mapping the head. | 
 | 			 */ | 
 | 			if (PageTransCompound(page)) | 
 | 				goto put; | 
 | 			if (!device && isolate_lru_page(page)) | 
 | 				goto put; | 
 | 			if (!mem_cgroup_move_account(page, false, | 
 | 						mc.from, mc.to)) { | 
 | 				mc.precharge--; | 
 | 				/* we uncharge from mc.from later. */ | 
 | 				mc.moved_charge++; | 
 | 			} | 
 | 			if (!device) | 
 | 				putback_lru_page(page); | 
 | put:			/* get_mctgt_type() gets the page */ | 
 | 			put_page(page); | 
 | 			break; | 
 | 		case MC_TARGET_SWAP: | 
 | 			ent = target.ent; | 
 | 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | 
 | 				mc.precharge--; | 
 | 				mem_cgroup_id_get_many(mc.to, 1); | 
 | 				/* we fixup other refcnts and charges later. */ | 
 | 				mc.moved_swap++; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	cond_resched(); | 
 |  | 
 | 	if (addr != end) { | 
 | 		/* | 
 | 		 * We have consumed all precharges we got in can_attach(). | 
 | 		 * We try charge one by one, but don't do any additional | 
 | 		 * charges to mc.to if we have failed in charge once in attach() | 
 | 		 * phase. | 
 | 		 */ | 
 | 		ret = mem_cgroup_do_precharge(1); | 
 | 		if (!ret) | 
 | 			goto retry; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct mm_walk_ops charge_walk_ops = { | 
 | 	.pmd_entry	= mem_cgroup_move_charge_pte_range, | 
 | }; | 
 |  | 
 | static void mem_cgroup_move_charge(void) | 
 | { | 
 | 	lru_add_drain_all(); | 
 | 	/* | 
 | 	 * Signal lock_page_memcg() to take the memcg's move_lock | 
 | 	 * while we're moving its pages to another memcg. Then wait | 
 | 	 * for already started RCU-only updates to finish. | 
 | 	 */ | 
 | 	atomic_inc(&mc.from->moving_account); | 
 | 	synchronize_rcu(); | 
 | retry: | 
 | 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { | 
 | 		/* | 
 | 		 * Someone who are holding the mmap_sem might be waiting in | 
 | 		 * waitq. So we cancel all extra charges, wake up all waiters, | 
 | 		 * and retry. Because we cancel precharges, we might not be able | 
 | 		 * to move enough charges, but moving charge is a best-effort | 
 | 		 * feature anyway, so it wouldn't be a big problem. | 
 | 		 */ | 
 | 		__mem_cgroup_clear_mc(); | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | 	/* | 
 | 	 * When we have consumed all precharges and failed in doing | 
 | 	 * additional charge, the page walk just aborts. | 
 | 	 */ | 
 | 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, | 
 | 			NULL); | 
 |  | 
 | 	up_read(&mc.mm->mmap_sem); | 
 | 	atomic_dec(&mc.from->moving_account); | 
 | } | 
 |  | 
 | static void mem_cgroup_move_task(void) | 
 | { | 
 | 	if (mc.to) { | 
 | 		mem_cgroup_move_charge(); | 
 | 		mem_cgroup_clear_mc(); | 
 | 	} | 
 | } | 
 | #else	/* !CONFIG_MMU */ | 
 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
 | { | 
 | } | 
 | static void mem_cgroup_move_task(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Cgroup retains root cgroups across [un]mount cycles making it necessary | 
 |  * to verify whether we're attached to the default hierarchy on each mount | 
 |  * attempt. | 
 |  */ | 
 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) | 
 | { | 
 | 	/* | 
 | 	 * use_hierarchy is forced on the default hierarchy.  cgroup core | 
 | 	 * guarantees that @root doesn't have any children, so turning it | 
 | 	 * on for the root memcg is enough. | 
 | 	 */ | 
 | 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		root_mem_cgroup->use_hierarchy = true; | 
 | 	else | 
 | 		root_mem_cgroup->use_hierarchy = false; | 
 | } | 
 |  | 
 | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) | 
 | { | 
 | 	if (value == PAGE_COUNTER_MAX) | 
 | 		seq_puts(m, "max\n"); | 
 | 	else | 
 | 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 memory_current_read(struct cgroup_subsys_state *css, | 
 | 			       struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | 
 | } | 
 |  | 
 | static int memory_min_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return seq_puts_memcg_tunable(m, | 
 | 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); | 
 | } | 
 |  | 
 | static ssize_t memory_min_write(struct kernfs_open_file *of, | 
 | 				char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned long min; | 
 | 	int err; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	err = page_counter_memparse(buf, "max", &min); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	page_counter_set_min(&memcg->memory, min); | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static int memory_low_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return seq_puts_memcg_tunable(m, | 
 | 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); | 
 | } | 
 |  | 
 | static ssize_t memory_low_write(struct kernfs_open_file *of, | 
 | 				char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned long low; | 
 | 	int err; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	err = page_counter_memparse(buf, "max", &low); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	page_counter_set_low(&memcg->memory, low); | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static int memory_high_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); | 
 | } | 
 |  | 
 | static ssize_t memory_high_write(struct kernfs_open_file *of, | 
 | 				 char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned long nr_pages; | 
 | 	unsigned long high; | 
 | 	int err; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	err = page_counter_memparse(buf, "max", &high); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	memcg->high = high; | 
 |  | 
 | 	nr_pages = page_counter_read(&memcg->memory); | 
 | 	if (nr_pages > high) | 
 | 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | 
 | 					     GFP_KERNEL, true); | 
 |  | 
 | 	memcg_wb_domain_size_changed(memcg); | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static int memory_max_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return seq_puts_memcg_tunable(m, | 
 | 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); | 
 | } | 
 |  | 
 | static ssize_t memory_max_write(struct kernfs_open_file *of, | 
 | 				char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	bool drained = false; | 
 | 	unsigned long max; | 
 | 	int err; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	err = page_counter_memparse(buf, "max", &max); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	xchg(&memcg->memory.max, max); | 
 |  | 
 | 	for (;;) { | 
 | 		unsigned long nr_pages = page_counter_read(&memcg->memory); | 
 |  | 
 | 		if (nr_pages <= max) | 
 | 			break; | 
 |  | 
 | 		if (signal_pending(current)) { | 
 | 			err = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!drained) { | 
 | 			drain_all_stock(memcg); | 
 | 			drained = true; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (nr_reclaims) { | 
 | 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | 
 | 							  GFP_KERNEL, true)) | 
 | 				nr_reclaims--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		memcg_memory_event(memcg, MEMCG_OOM); | 
 | 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	memcg_wb_domain_size_changed(memcg); | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) | 
 | { | 
 | 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); | 
 | 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); | 
 | 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); | 
 | 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); | 
 | 	seq_printf(m, "oom_kill %lu\n", | 
 | 		   atomic_long_read(&events[MEMCG_OOM_KILL])); | 
 | } | 
 |  | 
 | static int memory_events_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 |  | 
 | 	__memory_events_show(m, memcg->memory_events); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int memory_events_local_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 |  | 
 | 	__memory_events_show(m, memcg->memory_events_local); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int memory_stat_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 | 	char *buf; | 
 |  | 
 | 	buf = memory_stat_format(memcg); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 | 	seq_puts(m, buf); | 
 | 	kfree(buf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int memory_oom_group_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 |  | 
 | 	seq_printf(m, "%d\n", memcg->oom_group); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, | 
 | 				      char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	int ret, oom_group; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	if (!buf) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = kstrtoint(buf, 0, &oom_group); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (oom_group != 0 && oom_group != 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcg->oom_group = oom_group; | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static struct cftype memory_files[] = { | 
 | 	{ | 
 | 		.name = "current", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.read_u64 = memory_current_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "min", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = memory_min_show, | 
 | 		.write = memory_min_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "low", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = memory_low_show, | 
 | 		.write = memory_low_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "high", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = memory_high_show, | 
 | 		.write = memory_high_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "max", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = memory_max_show, | 
 | 		.write = memory_max_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "events", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.file_offset = offsetof(struct mem_cgroup, events_file), | 
 | 		.seq_show = memory_events_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "events.local", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.file_offset = offsetof(struct mem_cgroup, events_local_file), | 
 | 		.seq_show = memory_events_local_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = memory_stat_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "oom.group", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, | 
 | 		.seq_show = memory_oom_group_show, | 
 | 		.write = memory_oom_group_write, | 
 | 	}, | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | struct cgroup_subsys memory_cgrp_subsys = { | 
 | 	.css_alloc = mem_cgroup_css_alloc, | 
 | 	.css_online = mem_cgroup_css_online, | 
 | 	.css_offline = mem_cgroup_css_offline, | 
 | 	.css_released = mem_cgroup_css_released, | 
 | 	.css_free = mem_cgroup_css_free, | 
 | 	.css_reset = mem_cgroup_css_reset, | 
 | 	.can_attach = mem_cgroup_can_attach, | 
 | 	.cancel_attach = mem_cgroup_cancel_attach, | 
 | 	.post_attach = mem_cgroup_move_task, | 
 | 	.bind = mem_cgroup_bind, | 
 | 	.dfl_cftypes = memory_files, | 
 | 	.legacy_cftypes = mem_cgroup_legacy_files, | 
 | 	.early_init = 0, | 
 | }; | 
 |  | 
 | /** | 
 |  * mem_cgroup_protected - check if memory consumption is in the normal range | 
 |  * @root: the top ancestor of the sub-tree being checked | 
 |  * @memcg: the memory cgroup to check | 
 |  * | 
 |  * WARNING: This function is not stateless! It can only be used as part | 
 |  *          of a top-down tree iteration, not for isolated queries. | 
 |  * | 
 |  * Returns one of the following: | 
 |  *   MEMCG_PROT_NONE: cgroup memory is not protected | 
 |  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is | 
 |  *     an unprotected supply of reclaimable memory from other cgroups. | 
 |  *   MEMCG_PROT_MIN: cgroup memory is protected | 
 |  * | 
 |  * @root is exclusive; it is never protected when looked at directly | 
 |  * | 
 |  * To provide a proper hierarchical behavior, effective memory.min/low values | 
 |  * are used. Below is the description of how effective memory.low is calculated. | 
 |  * Effective memory.min values is calculated in the same way. | 
 |  * | 
 |  * Effective memory.low is always equal or less than the original memory.low. | 
 |  * If there is no memory.low overcommittment (which is always true for | 
 |  * top-level memory cgroups), these two values are equal. | 
 |  * Otherwise, it's a part of parent's effective memory.low, | 
 |  * calculated as a cgroup's memory.low usage divided by sum of sibling's | 
 |  * memory.low usages, where memory.low usage is the size of actually | 
 |  * protected memory. | 
 |  * | 
 |  *                                             low_usage | 
 |  * elow = min( memory.low, parent->elow * ------------------ ), | 
 |  *                                        siblings_low_usage | 
 |  * | 
 |  *             | memory.current, if memory.current < memory.low | 
 |  * low_usage = | | 
 |  *	       | 0, otherwise. | 
 |  * | 
 |  * | 
 |  * Such definition of the effective memory.low provides the expected | 
 |  * hierarchical behavior: parent's memory.low value is limiting | 
 |  * children, unprotected memory is reclaimed first and cgroups, | 
 |  * which are not using their guarantee do not affect actual memory | 
 |  * distribution. | 
 |  * | 
 |  * For example, if there are memcgs A, A/B, A/C, A/D and A/E: | 
 |  * | 
 |  *     A      A/memory.low = 2G, A/memory.current = 6G | 
 |  *    //\\ | 
 |  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G | 
 |  *            C/memory.low = 1G  C/memory.current = 2G | 
 |  *            D/memory.low = 0   D/memory.current = 2G | 
 |  *            E/memory.low = 10G E/memory.current = 0 | 
 |  * | 
 |  * and the memory pressure is applied, the following memory distribution | 
 |  * is expected (approximately): | 
 |  * | 
 |  *     A/memory.current = 2G | 
 |  * | 
 |  *     B/memory.current = 1.3G | 
 |  *     C/memory.current = 0.6G | 
 |  *     D/memory.current = 0 | 
 |  *     E/memory.current = 0 | 
 |  * | 
 |  * These calculations require constant tracking of the actual low usages | 
 |  * (see propagate_protected_usage()), as well as recursive calculation of | 
 |  * effective memory.low values. But as we do call mem_cgroup_protected() | 
 |  * path for each memory cgroup top-down from the reclaim, | 
 |  * it's possible to optimize this part, and save calculated elow | 
 |  * for next usage. This part is intentionally racy, but it's ok, | 
 |  * as memory.low is a best-effort mechanism. | 
 |  */ | 
 | enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, | 
 | 						struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *parent; | 
 | 	unsigned long emin, parent_emin; | 
 | 	unsigned long elow, parent_elow; | 
 | 	unsigned long usage; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return MEMCG_PROT_NONE; | 
 |  | 
 | 	if (!root) | 
 | 		root = root_mem_cgroup; | 
 |  | 
 | 	/* | 
 | 	 * Effective values of the reclaim targets are ignored so they | 
 | 	 * can be stale. Have a look at mem_cgroup_protection for more | 
 | 	 * details. | 
 | 	 * TODO: calculation should be more robust so that we do not need | 
 | 	 * that special casing. | 
 | 	 */ | 
 | 	if (memcg == root) | 
 | 		return MEMCG_PROT_NONE; | 
 |  | 
 | 	usage = page_counter_read(&memcg->memory); | 
 | 	if (!usage) | 
 | 		return MEMCG_PROT_NONE; | 
 |  | 
 | 	emin = memcg->memory.min; | 
 | 	elow = memcg->memory.low; | 
 |  | 
 | 	parent = parent_mem_cgroup(memcg); | 
 | 	/* No parent means a non-hierarchical mode on v1 memcg */ | 
 | 	if (!parent) | 
 | 		return MEMCG_PROT_NONE; | 
 |  | 
 | 	if (parent == root) | 
 | 		goto exit; | 
 |  | 
 | 	parent_emin = READ_ONCE(parent->memory.emin); | 
 | 	emin = min(emin, parent_emin); | 
 | 	if (emin && parent_emin) { | 
 | 		unsigned long min_usage, siblings_min_usage; | 
 |  | 
 | 		min_usage = min(usage, memcg->memory.min); | 
 | 		siblings_min_usage = atomic_long_read( | 
 | 			&parent->memory.children_min_usage); | 
 |  | 
 | 		if (min_usage && siblings_min_usage) | 
 | 			emin = min(emin, parent_emin * min_usage / | 
 | 				   siblings_min_usage); | 
 | 	} | 
 |  | 
 | 	parent_elow = READ_ONCE(parent->memory.elow); | 
 | 	elow = min(elow, parent_elow); | 
 | 	if (elow && parent_elow) { | 
 | 		unsigned long low_usage, siblings_low_usage; | 
 |  | 
 | 		low_usage = min(usage, memcg->memory.low); | 
 | 		siblings_low_usage = atomic_long_read( | 
 | 			&parent->memory.children_low_usage); | 
 |  | 
 | 		if (low_usage && siblings_low_usage) | 
 | 			elow = min(elow, parent_elow * low_usage / | 
 | 				   siblings_low_usage); | 
 | 	} | 
 |  | 
 | exit: | 
 | 	memcg->memory.emin = emin; | 
 | 	memcg->memory.elow = elow; | 
 |  | 
 | 	if (usage <= emin) | 
 | 		return MEMCG_PROT_MIN; | 
 | 	else if (usage <= elow) | 
 | 		return MEMCG_PROT_LOW; | 
 | 	else | 
 | 		return MEMCG_PROT_NONE; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_try_charge - try charging a page | 
 |  * @page: page to charge | 
 |  * @mm: mm context of the victim | 
 |  * @gfp_mask: reclaim mode | 
 |  * @memcgp: charged memcg return | 
 |  * @compound: charge the page as compound or small page | 
 |  * | 
 |  * Try to charge @page to the memcg that @mm belongs to, reclaiming | 
 |  * pages according to @gfp_mask if necessary. | 
 |  * | 
 |  * Returns 0 on success, with *@memcgp pointing to the charged memcg. | 
 |  * Otherwise, an error code is returned. | 
 |  * | 
 |  * After page->mapping has been set up, the caller must finalize the | 
 |  * charge with mem_cgroup_commit_charge().  Or abort the transaction | 
 |  * with mem_cgroup_cancel_charge() in case page instantiation fails. | 
 |  */ | 
 | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | 
 | 			  gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
 | 			  bool compound) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		goto out; | 
 |  | 
 | 	if (PageSwapCache(page)) { | 
 | 		/* | 
 | 		 * Every swap fault against a single page tries to charge the | 
 | 		 * page, bail as early as possible.  shmem_unuse() encounters | 
 | 		 * already charged pages, too.  The USED bit is protected by | 
 | 		 * the page lock, which serializes swap cache removal, which | 
 | 		 * in turn serializes uncharging. | 
 | 		 */ | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		if (compound_head(page)->mem_cgroup) | 
 | 			goto out; | 
 |  | 
 | 		if (do_swap_account) { | 
 | 			swp_entry_t ent = { .val = page_private(page), }; | 
 | 			unsigned short id = lookup_swap_cgroup_id(ent); | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			memcg = mem_cgroup_from_id(id); | 
 | 			if (memcg && !css_tryget_online(&memcg->css)) | 
 | 				memcg = NULL; | 
 | 			rcu_read_unlock(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!memcg) | 
 | 		memcg = get_mem_cgroup_from_mm(mm); | 
 |  | 
 | 	ret = try_charge(memcg, gfp_mask, nr_pages); | 
 |  | 
 | 	css_put(&memcg->css); | 
 | out: | 
 | 	*memcgp = memcg; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, | 
 | 			  gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
 | 			  bool compound) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int ret; | 
 |  | 
 | 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); | 
 | 	memcg = *memcgp; | 
 | 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_commit_charge - commit a page charge | 
 |  * @page: page to charge | 
 |  * @memcg: memcg to charge the page to | 
 |  * @lrucare: page might be on LRU already | 
 |  * @compound: charge the page as compound or small page | 
 |  * | 
 |  * Finalize a charge transaction started by mem_cgroup_try_charge(), | 
 |  * after page->mapping has been set up.  This must happen atomically | 
 |  * as part of the page instantiation, i.e. under the page table lock | 
 |  * for anonymous pages, under the page lock for page and swap cache. | 
 |  * | 
 |  * In addition, the page must not be on the LRU during the commit, to | 
 |  * prevent racing with task migration.  If it might be, use @lrucare. | 
 |  * | 
 |  * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | 
 |  */ | 
 | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | 
 | 			      bool lrucare, bool compound) | 
 | { | 
 | 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!page->mapping, page); | 
 | 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	/* | 
 | 	 * Swap faults will attempt to charge the same page multiple | 
 | 	 * times.  But reuse_swap_page() might have removed the page | 
 | 	 * from swapcache already, so we can't check PageSwapCache(). | 
 | 	 */ | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	commit_charge(page, memcg, lrucare); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); | 
 | 	memcg_check_events(memcg, page); | 
 | 	local_irq_enable(); | 
 |  | 
 | 	if (do_memsw_account() && PageSwapCache(page)) { | 
 | 		swp_entry_t entry = { .val = page_private(page) }; | 
 | 		/* | 
 | 		 * The swap entry might not get freed for a long time, | 
 | 		 * let's not wait for it.  The page already received a | 
 | 		 * memory+swap charge, drop the swap entry duplicate. | 
 | 		 */ | 
 | 		mem_cgroup_uncharge_swap(entry, nr_pages); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_cancel_charge - cancel a page charge | 
 |  * @page: page to charge | 
 |  * @memcg: memcg to charge the page to | 
 |  * @compound: charge the page as compound or small page | 
 |  * | 
 |  * Cancel a charge transaction started by mem_cgroup_try_charge(). | 
 |  */ | 
 | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, | 
 | 		bool compound) | 
 | { | 
 | 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	/* | 
 | 	 * Swap faults will attempt to charge the same page multiple | 
 | 	 * times.  But reuse_swap_page() might have removed the page | 
 | 	 * from swapcache already, so we can't check PageSwapCache(). | 
 | 	 */ | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	cancel_charge(memcg, nr_pages); | 
 | } | 
 |  | 
 | struct uncharge_gather { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned long pgpgout; | 
 | 	unsigned long nr_anon; | 
 | 	unsigned long nr_file; | 
 | 	unsigned long nr_kmem; | 
 | 	unsigned long nr_huge; | 
 | 	unsigned long nr_shmem; | 
 | 	struct page *dummy_page; | 
 | }; | 
 |  | 
 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) | 
 | { | 
 | 	memset(ug, 0, sizeof(*ug)); | 
 | } | 
 |  | 
 | static void uncharge_batch(const struct uncharge_gather *ug) | 
 | { | 
 | 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!mem_cgroup_is_root(ug->memcg)) { | 
 | 		page_counter_uncharge(&ug->memcg->memory, nr_pages); | 
 | 		if (do_memsw_account()) | 
 | 			page_counter_uncharge(&ug->memcg->memsw, nr_pages); | 
 | 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) | 
 | 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); | 
 | 		memcg_oom_recover(ug->memcg); | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); | 
 | 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); | 
 | 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); | 
 | 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); | 
 | 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); | 
 | 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); | 
 | 	memcg_check_events(ug->memcg, ug->dummy_page); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	if (!mem_cgroup_is_root(ug->memcg)) | 
 | 		css_put_many(&ug->memcg->css, nr_pages); | 
 | } | 
 |  | 
 | static void uncharge_page(struct page *page, struct uncharge_gather *ug) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageLRU(page), page); | 
 | 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && | 
 | 			!PageHWPoison(page) , page); | 
 |  | 
 | 	if (!page->mem_cgroup) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Nobody should be changing or seriously looking at | 
 | 	 * page->mem_cgroup at this point, we have fully | 
 | 	 * exclusive access to the page. | 
 | 	 */ | 
 |  | 
 | 	if (ug->memcg != page->mem_cgroup) { | 
 | 		if (ug->memcg) { | 
 | 			uncharge_batch(ug); | 
 | 			uncharge_gather_clear(ug); | 
 | 		} | 
 | 		ug->memcg = page->mem_cgroup; | 
 | 	} | 
 |  | 
 | 	if (!PageKmemcg(page)) { | 
 | 		unsigned int nr_pages = 1; | 
 |  | 
 | 		if (PageTransHuge(page)) { | 
 | 			nr_pages = compound_nr(page); | 
 | 			ug->nr_huge += nr_pages; | 
 | 		} | 
 | 		if (PageAnon(page)) | 
 | 			ug->nr_anon += nr_pages; | 
 | 		else { | 
 | 			ug->nr_file += nr_pages; | 
 | 			if (PageSwapBacked(page)) | 
 | 				ug->nr_shmem += nr_pages; | 
 | 		} | 
 | 		ug->pgpgout++; | 
 | 	} else { | 
 | 		ug->nr_kmem += compound_nr(page); | 
 | 		__ClearPageKmemcg(page); | 
 | 	} | 
 |  | 
 | 	ug->dummy_page = page; | 
 | 	page->mem_cgroup = NULL; | 
 | } | 
 |  | 
 | static void uncharge_list(struct list_head *page_list) | 
 | { | 
 | 	struct uncharge_gather ug; | 
 | 	struct list_head *next; | 
 |  | 
 | 	uncharge_gather_clear(&ug); | 
 |  | 
 | 	/* | 
 | 	 * Note that the list can be a single page->lru; hence the | 
 | 	 * do-while loop instead of a simple list_for_each_entry(). | 
 | 	 */ | 
 | 	next = page_list->next; | 
 | 	do { | 
 | 		struct page *page; | 
 |  | 
 | 		page = list_entry(next, struct page, lru); | 
 | 		next = page->lru.next; | 
 |  | 
 | 		uncharge_page(page, &ug); | 
 | 	} while (next != page_list); | 
 |  | 
 | 	if (ug.memcg) | 
 | 		uncharge_batch(&ug); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_uncharge - uncharge a page | 
 |  * @page: page to uncharge | 
 |  * | 
 |  * Uncharge a page previously charged with mem_cgroup_try_charge() and | 
 |  * mem_cgroup_commit_charge(). | 
 |  */ | 
 | void mem_cgroup_uncharge(struct page *page) | 
 | { | 
 | 	struct uncharge_gather ug; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	/* Don't touch page->lru of any random page, pre-check: */ | 
 | 	if (!page->mem_cgroup) | 
 | 		return; | 
 |  | 
 | 	uncharge_gather_clear(&ug); | 
 | 	uncharge_page(page, &ug); | 
 | 	uncharge_batch(&ug); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_uncharge_list - uncharge a list of page | 
 |  * @page_list: list of pages to uncharge | 
 |  * | 
 |  * Uncharge a list of pages previously charged with | 
 |  * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | 
 |  */ | 
 | void mem_cgroup_uncharge_list(struct list_head *page_list) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	if (!list_empty(page_list)) | 
 | 		uncharge_list(page_list); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_migrate - charge a page's replacement | 
 |  * @oldpage: currently circulating page | 
 |  * @newpage: replacement page | 
 |  * | 
 |  * Charge @newpage as a replacement page for @oldpage. @oldpage will | 
 |  * be uncharged upon free. | 
 |  * | 
 |  * Both pages must be locked, @newpage->mapping must be set up. | 
 |  */ | 
 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned int nr_pages; | 
 | 	bool compound; | 
 | 	unsigned long flags; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | 
 | 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | 
 | 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | 
 | 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | 
 | 		       newpage); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	/* Page cache replacement: new page already charged? */ | 
 | 	if (newpage->mem_cgroup) | 
 | 		return; | 
 |  | 
 | 	/* Swapcache readahead pages can get replaced before being charged */ | 
 | 	memcg = oldpage->mem_cgroup; | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	/* Force-charge the new page. The old one will be freed soon */ | 
 | 	compound = PageTransHuge(newpage); | 
 | 	nr_pages = compound ? hpage_nr_pages(newpage) : 1; | 
 |  | 
 | 	page_counter_charge(&memcg->memory, nr_pages); | 
 | 	if (do_memsw_account()) | 
 | 		page_counter_charge(&memcg->memsw, nr_pages); | 
 | 	css_get_many(&memcg->css, nr_pages); | 
 |  | 
 | 	commit_charge(newpage, memcg, false); | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); | 
 | 	memcg_check_events(memcg, newpage); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | 
 | EXPORT_SYMBOL(memcg_sockets_enabled_key); | 
 |  | 
 | void mem_cgroup_sk_alloc(struct sock *sk) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	if (!mem_cgroup_sockets_enabled) | 
 | 		return; | 
 |  | 
 | 	/* Do not associate the sock with unrelated interrupted task's memcg. */ | 
 | 	if (in_interrupt()) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_task(current); | 
 | 	if (memcg == root_mem_cgroup) | 
 | 		goto out; | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) | 
 | 		goto out; | 
 | 	if (css_tryget_online(&memcg->css)) | 
 | 		sk->sk_memcg = memcg; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void mem_cgroup_sk_free(struct sock *sk) | 
 | { | 
 | 	if (sk->sk_memcg) | 
 | 		css_put(&sk->sk_memcg->css); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_charge_skmem - charge socket memory | 
 |  * @memcg: memcg to charge | 
 |  * @nr_pages: number of pages to charge | 
 |  * | 
 |  * Charges @nr_pages to @memcg. Returns %true if the charge fit within | 
 |  * @memcg's configured limit, %false if the charge had to be forced. | 
 |  */ | 
 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	gfp_t gfp_mask = GFP_KERNEL; | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
 | 		struct page_counter *fail; | 
 |  | 
 | 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | 
 | 			memcg->tcpmem_pressure = 0; | 
 | 			return true; | 
 | 		} | 
 | 		page_counter_charge(&memcg->tcpmem, nr_pages); | 
 | 		memcg->tcpmem_pressure = 1; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Don't block in the packet receive path */ | 
 | 	if (in_softirq()) | 
 | 		gfp_mask = GFP_NOWAIT; | 
 |  | 
 | 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); | 
 |  | 
 | 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) | 
 | 		return true; | 
 |  | 
 | 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_uncharge_skmem - uncharge socket memory | 
 |  * @memcg: memcg to uncharge | 
 |  * @nr_pages: number of pages to uncharge | 
 |  */ | 
 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
 | 		page_counter_uncharge(&memcg->tcpmem, nr_pages); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); | 
 |  | 
 | 	refill_stock(memcg, nr_pages); | 
 | } | 
 |  | 
 | static int __init cgroup_memory(char *s) | 
 | { | 
 | 	char *token; | 
 |  | 
 | 	while ((token = strsep(&s, ",")) != NULL) { | 
 | 		if (!*token) | 
 | 			continue; | 
 | 		if (!strcmp(token, "nosocket")) | 
 | 			cgroup_memory_nosocket = true; | 
 | 		if (!strcmp(token, "nokmem")) | 
 | 			cgroup_memory_nokmem = true; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | __setup("cgroup.memory=", cgroup_memory); | 
 |  | 
 | /* | 
 |  * subsys_initcall() for memory controller. | 
 |  * | 
 |  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this | 
 |  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | 
 |  * basically everything that doesn't depend on a specific mem_cgroup structure | 
 |  * should be initialized from here. | 
 |  */ | 
 | static int __init mem_cgroup_init(void) | 
 | { | 
 | 	int cpu, node; | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | 	/* | 
 | 	 * Kmem cache creation is mostly done with the slab_mutex held, | 
 | 	 * so use a workqueue with limited concurrency to avoid stalling | 
 | 	 * all worker threads in case lots of cgroups are created and | 
 | 	 * destroyed simultaneously. | 
 | 	 */ | 
 | 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); | 
 | 	BUG_ON(!memcg_kmem_cache_wq); | 
 | #endif | 
 |  | 
 | 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, | 
 | 				  memcg_hotplug_cpu_dead); | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | 
 | 			  drain_local_stock); | 
 |  | 
 | 	for_each_node(node) { | 
 | 		struct mem_cgroup_tree_per_node *rtpn; | 
 |  | 
 | 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | 
 | 				    node_online(node) ? node : NUMA_NO_NODE); | 
 |  | 
 | 		rtpn->rb_root = RB_ROOT; | 
 | 		rtpn->rb_rightmost = NULL; | 
 | 		spin_lock_init(&rtpn->lock); | 
 | 		soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(mem_cgroup_init); | 
 |  | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) | 
 | { | 
 | 	while (!refcount_inc_not_zero(&memcg->id.ref)) { | 
 | 		/* | 
 | 		 * The root cgroup cannot be destroyed, so it's refcount must | 
 | 		 * always be >= 1. | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { | 
 | 			VM_BUG_ON(1); | 
 | 			break; | 
 | 		} | 
 | 		memcg = parent_mem_cgroup(memcg); | 
 | 		if (!memcg) | 
 | 			memcg = root_mem_cgroup; | 
 | 	} | 
 | 	return memcg; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_swapout - transfer a memsw charge to swap | 
 |  * @page: page whose memsw charge to transfer | 
 |  * @entry: swap entry to move the charge to | 
 |  * | 
 |  * Transfer the memsw charge of @page to @entry. | 
 |  */ | 
 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | 
 | { | 
 | 	struct mem_cgroup *memcg, *swap_memcg; | 
 | 	unsigned int nr_entries; | 
 | 	unsigned short oldid; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageLRU(page), page); | 
 | 	VM_BUG_ON_PAGE(page_count(page), page); | 
 |  | 
 | 	if (!do_memsw_account()) | 
 | 		return; | 
 |  | 
 | 	memcg = page->mem_cgroup; | 
 |  | 
 | 	/* Readahead page, never charged */ | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * In case the memcg owning these pages has been offlined and doesn't | 
 | 	 * have an ID allocated to it anymore, charge the closest online | 
 | 	 * ancestor for the swap instead and transfer the memory+swap charge. | 
 | 	 */ | 
 | 	swap_memcg = mem_cgroup_id_get_online(memcg); | 
 | 	nr_entries = hpage_nr_pages(page); | 
 | 	/* Get references for the tail pages, too */ | 
 | 	if (nr_entries > 1) | 
 | 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); | 
 | 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), | 
 | 				   nr_entries); | 
 | 	VM_BUG_ON_PAGE(oldid, page); | 
 | 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); | 
 |  | 
 | 	page->mem_cgroup = NULL; | 
 |  | 
 | 	if (!mem_cgroup_is_root(memcg)) | 
 | 		page_counter_uncharge(&memcg->memory, nr_entries); | 
 |  | 
 | 	if (memcg != swap_memcg) { | 
 | 		if (!mem_cgroup_is_root(swap_memcg)) | 
 | 			page_counter_charge(&swap_memcg->memsw, nr_entries); | 
 | 		page_counter_uncharge(&memcg->memsw, nr_entries); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Interrupts should be disabled here because the caller holds the | 
 | 	 * i_pages lock which is taken with interrupts-off. It is | 
 | 	 * important here to have the interrupts disabled because it is the | 
 | 	 * only synchronisation we have for updating the per-CPU variables. | 
 | 	 */ | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 | 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), | 
 | 				     -nr_entries); | 
 | 	memcg_check_events(memcg, page); | 
 |  | 
 | 	if (!mem_cgroup_is_root(memcg)) | 
 | 		css_put_many(&memcg->css, nr_entries); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_try_charge_swap - try charging swap space for a page | 
 |  * @page: page being added to swap | 
 |  * @entry: swap entry to charge | 
 |  * | 
 |  * Try to charge @page's memcg for the swap space at @entry. | 
 |  * | 
 |  * Returns 0 on success, -ENOMEM on failure. | 
 |  */ | 
 | int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | 
 | { | 
 | 	unsigned int nr_pages = hpage_nr_pages(page); | 
 | 	struct page_counter *counter; | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned short oldid; | 
 |  | 
 | 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) | 
 | 		return 0; | 
 |  | 
 | 	memcg = page->mem_cgroup; | 
 |  | 
 | 	/* Readahead page, never charged */ | 
 | 	if (!memcg) | 
 | 		return 0; | 
 |  | 
 | 	if (!entry.val) { | 
 | 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	memcg = mem_cgroup_id_get_online(memcg); | 
 |  | 
 | 	if (!mem_cgroup_is_root(memcg) && | 
 | 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { | 
 | 		memcg_memory_event(memcg, MEMCG_SWAP_MAX); | 
 | 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
 | 		mem_cgroup_id_put(memcg); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Get references for the tail pages, too */ | 
 | 	if (nr_pages > 1) | 
 | 		mem_cgroup_id_get_many(memcg, nr_pages - 1); | 
 | 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); | 
 | 	VM_BUG_ON_PAGE(oldid, page); | 
 | 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_uncharge_swap - uncharge swap space | 
 |  * @entry: swap entry to uncharge | 
 |  * @nr_pages: the amount of swap space to uncharge | 
 |  */ | 
 | void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned short id; | 
 |  | 
 | 	if (!do_swap_account) | 
 | 		return; | 
 |  | 
 | 	id = swap_cgroup_record(entry, 0, nr_pages); | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_id(id); | 
 | 	if (memcg) { | 
 | 		if (!mem_cgroup_is_root(memcg)) { | 
 | 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 				page_counter_uncharge(&memcg->swap, nr_pages); | 
 | 			else | 
 | 				page_counter_uncharge(&memcg->memsw, nr_pages); | 
 | 		} | 
 | 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); | 
 | 		mem_cgroup_id_put_many(memcg, nr_pages); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | 
 | { | 
 | 	long nr_swap_pages = get_nr_swap_pages(); | 
 |  | 
 | 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		return nr_swap_pages; | 
 | 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
 | 		nr_swap_pages = min_t(long, nr_swap_pages, | 
 | 				      READ_ONCE(memcg->swap.max) - | 
 | 				      page_counter_read(&memcg->swap)); | 
 | 	return nr_swap_pages; | 
 | } | 
 |  | 
 | bool mem_cgroup_swap_full(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 |  | 
 | 	if (vm_swap_full()) | 
 | 		return true; | 
 | 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
 | 		return false; | 
 |  | 
 | 	memcg = page->mem_cgroup; | 
 | 	if (!memcg) | 
 | 		return false; | 
 |  | 
 | 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
 | 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* for remember boot option*/ | 
 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | 
 | static int really_do_swap_account __initdata = 1; | 
 | #else | 
 | static int really_do_swap_account __initdata; | 
 | #endif | 
 |  | 
 | static int __init enable_swap_account(char *s) | 
 | { | 
 | 	if (!strcmp(s, "1")) | 
 | 		really_do_swap_account = 1; | 
 | 	else if (!strcmp(s, "0")) | 
 | 		really_do_swap_account = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("swapaccount=", enable_swap_account); | 
 |  | 
 | static u64 swap_current_read(struct cgroup_subsys_state *css, | 
 | 			     struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
 |  | 
 | 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | 
 | } | 
 |  | 
 | static int swap_max_show(struct seq_file *m, void *v) | 
 | { | 
 | 	return seq_puts_memcg_tunable(m, | 
 | 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); | 
 | } | 
 |  | 
 | static ssize_t swap_max_write(struct kernfs_open_file *of, | 
 | 			      char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
 | 	unsigned long max; | 
 | 	int err; | 
 |  | 
 | 	buf = strstrip(buf); | 
 | 	err = page_counter_memparse(buf, "max", &max); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	xchg(&memcg->swap.max, max); | 
 |  | 
 | 	return nbytes; | 
 | } | 
 |  | 
 | static int swap_events_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
 |  | 
 | 	seq_printf(m, "max %lu\n", | 
 | 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | 
 | 	seq_printf(m, "fail %lu\n", | 
 | 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct cftype swap_files[] = { | 
 | 	{ | 
 | 		.name = "swap.current", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.read_u64 = swap_current_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "swap.max", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = swap_max_show, | 
 | 		.write = swap_max_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "swap.events", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.file_offset = offsetof(struct mem_cgroup, swap_events_file), | 
 | 		.seq_show = swap_events_show, | 
 | 	}, | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | static struct cftype memsw_cgroup_files[] = { | 
 | 	{ | 
 | 		.name = "memsw.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
 | 		.write = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
 | 		.write = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read_u64, | 
 | 	}, | 
 | 	{ },	/* terminate */ | 
 | }; | 
 |  | 
 | static int __init mem_cgroup_swap_init(void) | 
 | { | 
 | 	if (!mem_cgroup_disabled() && really_do_swap_account) { | 
 | 		do_swap_account = 1; | 
 | 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, | 
 | 					       swap_files)); | 
 | 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, | 
 | 						  memsw_cgroup_files)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(mem_cgroup_swap_init); | 
 |  | 
 | #endif /* CONFIG_MEMCG_SWAP */ |