|  | /* | 
|  | * MD4 hash implementation | 
|  | * Copyright (c) 2006, Jouni Malinen <j@w1.fi> | 
|  | * | 
|  | * This software may be distributed under the terms of the BSD license. | 
|  | * See README for more details. | 
|  | */ | 
|  |  | 
|  | #include "includes.h" | 
|  |  | 
|  | #include "common.h" | 
|  | #include "crypto.h" | 
|  |  | 
|  | #define	MD4_BLOCK_LENGTH		64 | 
|  | #define	MD4_DIGEST_LENGTH		16 | 
|  |  | 
|  | typedef struct MD4Context { | 
|  | u32 state[4];			/* state */ | 
|  | u64 count;			/* number of bits, mod 2^64 */ | 
|  | u8 buffer[MD4_BLOCK_LENGTH];	/* input buffer */ | 
|  | } MD4_CTX; | 
|  |  | 
|  |  | 
|  | static void MD4Init(MD4_CTX *ctx); | 
|  | static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len); | 
|  | static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx); | 
|  |  | 
|  |  | 
|  | int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) | 
|  | { | 
|  | MD4_CTX ctx; | 
|  | size_t i; | 
|  |  | 
|  | if (TEST_FAIL()) | 
|  | return -1; | 
|  |  | 
|  | MD4Init(&ctx); | 
|  | for (i = 0; i < num_elem; i++) | 
|  | MD4Update(&ctx, addr[i], len[i]); | 
|  | MD4Final(mac, &ctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ===== start - public domain MD4 implementation ===== */ | 
|  | /*	$OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $	*/ | 
|  |  | 
|  | /* | 
|  | * This code implements the MD4 message-digest algorithm. | 
|  | * The algorithm is due to Ron Rivest.	This code was | 
|  | * written by Colin Plumb in 1993, no copyright is claimed. | 
|  | * This code is in the public domain; do with it what you wish. | 
|  | * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. | 
|  | * | 
|  | * Equivalent code is available from RSA Data Security, Inc. | 
|  | * This code has been tested against that, and is equivalent, | 
|  | * except that you don't need to include two pages of legalese | 
|  | * with every copy. | 
|  | * | 
|  | * To compute the message digest of a chunk of bytes, declare an | 
|  | * MD4Context structure, pass it to MD4Init, call MD4Update as | 
|  | * needed on buffers full of bytes, and then call MD4Final, which | 
|  | * will fill a supplied 16-byte array with the digest. | 
|  | */ | 
|  |  | 
|  | #define	MD4_DIGEST_STRING_LENGTH	(MD4_DIGEST_LENGTH * 2 + 1) | 
|  |  | 
|  |  | 
|  | static void | 
|  | MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]); | 
|  |  | 
|  | #define PUT_64BIT_LE(cp, value) do {					\ | 
|  | (cp)[7] = (value) >> 56;					\ | 
|  | (cp)[6] = (value) >> 48;					\ | 
|  | (cp)[5] = (value) >> 40;					\ | 
|  | (cp)[4] = (value) >> 32;					\ | 
|  | (cp)[3] = (value) >> 24;					\ | 
|  | (cp)[2] = (value) >> 16;					\ | 
|  | (cp)[1] = (value) >> 8;						\ | 
|  | (cp)[0] = (value); } while (0) | 
|  |  | 
|  | #define PUT_32BIT_LE(cp, value) do {					\ | 
|  | (cp)[3] = (value) >> 24;					\ | 
|  | (cp)[2] = (value) >> 16;					\ | 
|  | (cp)[1] = (value) >> 8;						\ | 
|  | (cp)[0] = (value); } while (0) | 
|  |  | 
|  | static const u8 PADDING[MD4_BLOCK_LENGTH] = { | 
|  | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Start MD4 accumulation. | 
|  | * Set bit count to 0 and buffer to mysterious initialization constants. | 
|  | */ | 
|  | static void MD4Init(MD4_CTX *ctx) | 
|  | { | 
|  | ctx->count = 0; | 
|  | ctx->state[0] = 0x67452301; | 
|  | ctx->state[1] = 0xefcdab89; | 
|  | ctx->state[2] = 0x98badcfe; | 
|  | ctx->state[3] = 0x10325476; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update context to reflect the concatenation of another buffer full | 
|  | * of bytes. | 
|  | */ | 
|  | static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) | 
|  | { | 
|  | size_t have, need; | 
|  |  | 
|  | /* Check how many bytes we already have and how many more we need. */ | 
|  | have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); | 
|  | need = MD4_BLOCK_LENGTH - have; | 
|  |  | 
|  | /* Update bitcount */ | 
|  | ctx->count += (u64)len << 3; | 
|  |  | 
|  | if (len >= need) { | 
|  | if (have != 0) { | 
|  | os_memcpy(ctx->buffer + have, input, need); | 
|  | MD4Transform(ctx->state, ctx->buffer); | 
|  | input += need; | 
|  | len -= need; | 
|  | have = 0; | 
|  | } | 
|  |  | 
|  | /* Process data in MD4_BLOCK_LENGTH-byte chunks. */ | 
|  | while (len >= MD4_BLOCK_LENGTH) { | 
|  | MD4Transform(ctx->state, input); | 
|  | input += MD4_BLOCK_LENGTH; | 
|  | len -= MD4_BLOCK_LENGTH; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle any remaining bytes of data. */ | 
|  | if (len != 0) | 
|  | os_memcpy(ctx->buffer + have, input, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pad pad to 64-byte boundary with the bit pattern | 
|  | * 1 0* (64-bit count of bits processed, MSB-first) | 
|  | */ | 
|  | static void MD4Pad(MD4_CTX *ctx) | 
|  | { | 
|  | u8 count[8]; | 
|  | size_t padlen; | 
|  |  | 
|  | /* Convert count to 8 bytes in little endian order. */ | 
|  | PUT_64BIT_LE(count, ctx->count); | 
|  |  | 
|  | /* Pad out to 56 mod 64. */ | 
|  | padlen = MD4_BLOCK_LENGTH - | 
|  | ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); | 
|  | if (padlen < 1 + 8) | 
|  | padlen += MD4_BLOCK_LENGTH; | 
|  | MD4Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */ | 
|  | MD4Update(ctx, count, 8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Final wrapup--call MD4Pad, fill in digest and zero out ctx. | 
|  | */ | 
|  | static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | MD4Pad(ctx); | 
|  | if (digest != NULL) { | 
|  | for (i = 0; i < 4; i++) | 
|  | PUT_32BIT_LE(digest + i * 4, ctx->state[i]); | 
|  | os_memset(ctx, 0, sizeof(*ctx)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The three core functions - F1 is optimized somewhat */ | 
|  |  | 
|  | /* #define F1(x, y, z) (x & y | ~x & z) */ | 
|  | #define F1(x, y, z) (z ^ (x & (y ^ z))) | 
|  | #define F2(x, y, z) ((x & y) | (x & z) | (y & z)) | 
|  | #define F3(x, y, z) (x ^ y ^ z) | 
|  |  | 
|  | /* This is the central step in the MD4 algorithm. */ | 
|  | #define MD4STEP(f, w, x, y, z, data, s) \ | 
|  | ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s) ) | 
|  |  | 
|  | /* | 
|  | * The core of the MD4 algorithm, this alters an existing MD4 hash to | 
|  | * reflect the addition of 16 longwords of new data.  MD4Update blocks | 
|  | * the data and converts bytes into longwords for this routine. | 
|  | */ | 
|  | static void | 
|  | MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]) | 
|  | { | 
|  | u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; | 
|  |  | 
|  | #if BYTE_ORDER == LITTLE_ENDIAN | 
|  | os_memcpy(in, block, sizeof(in)); | 
|  | #else | 
|  | for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { | 
|  | in[a] = (u32)( | 
|  | (u32)(block[a * 4 + 0]) | | 
|  | (u32)(block[a * 4 + 1]) <<  8 | | 
|  | (u32)(block[a * 4 + 2]) << 16 | | 
|  | (u32)(block[a * 4 + 3]) << 24); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | a = state[0]; | 
|  | b = state[1]; | 
|  | c = state[2]; | 
|  | d = state[3]; | 
|  |  | 
|  | MD4STEP(F1, a, b, c, d, in[ 0],  3); | 
|  | MD4STEP(F1, d, a, b, c, in[ 1],  7); | 
|  | MD4STEP(F1, c, d, a, b, in[ 2], 11); | 
|  | MD4STEP(F1, b, c, d, a, in[ 3], 19); | 
|  | MD4STEP(F1, a, b, c, d, in[ 4],  3); | 
|  | MD4STEP(F1, d, a, b, c, in[ 5],  7); | 
|  | MD4STEP(F1, c, d, a, b, in[ 6], 11); | 
|  | MD4STEP(F1, b, c, d, a, in[ 7], 19); | 
|  | MD4STEP(F1, a, b, c, d, in[ 8],  3); | 
|  | MD4STEP(F1, d, a, b, c, in[ 9],  7); | 
|  | MD4STEP(F1, c, d, a, b, in[10], 11); | 
|  | MD4STEP(F1, b, c, d, a, in[11], 19); | 
|  | MD4STEP(F1, a, b, c, d, in[12],  3); | 
|  | MD4STEP(F1, d, a, b, c, in[13],  7); | 
|  | MD4STEP(F1, c, d, a, b, in[14], 11); | 
|  | MD4STEP(F1, b, c, d, a, in[15], 19); | 
|  |  | 
|  | MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999,  3); | 
|  | MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999,  5); | 
|  | MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999,  9); | 
|  | MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); | 
|  | MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999,  3); | 
|  | MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999,  5); | 
|  | MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999,  9); | 
|  | MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); | 
|  | MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999,  3); | 
|  | MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999,  5); | 
|  | MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999,  9); | 
|  | MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); | 
|  | MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999,  3); | 
|  | MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999,  5); | 
|  | MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999,  9); | 
|  | MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); | 
|  |  | 
|  | MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1,  3); | 
|  | MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1,  9); | 
|  | MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); | 
|  | MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); | 
|  | MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1,  3); | 
|  | MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1,  9); | 
|  | MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); | 
|  | MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); | 
|  | MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1,  3); | 
|  | MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1,  9); | 
|  | MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); | 
|  | MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); | 
|  | MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1,  3); | 
|  | MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1,  9); | 
|  | MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); | 
|  | MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); | 
|  |  | 
|  | state[0] += a; | 
|  | state[1] += b; | 
|  | state[2] += c; | 
|  | state[3] += d; | 
|  | } | 
|  | /* ===== end - public domain MD4 implementation ===== */ |