|  | /* | 
|  | * SHA-256 hash implementation and interface functions | 
|  | * Copyright (c) 2003-2011, Jouni Malinen <j@w1.fi> | 
|  | * | 
|  | * This software may be distributed under the terms of the BSD license. | 
|  | * See README for more details. | 
|  | */ | 
|  |  | 
|  | #include "includes.h" | 
|  |  | 
|  | #include "common.h" | 
|  | #include "sha256.h" | 
|  | #include "sha256_i.h" | 
|  | #include "crypto.h" | 
|  |  | 
|  |  | 
|  | /** | 
|  | * sha256_vector - SHA256 hash for data vector | 
|  | * @num_elem: Number of elements in the data vector | 
|  | * @addr: Pointers to the data areas | 
|  | * @len: Lengths of the data blocks | 
|  | * @mac: Buffer for the hash | 
|  | * Returns: 0 on success, -1 of failure | 
|  | */ | 
|  | int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, | 
|  | u8 *mac) | 
|  | { | 
|  | struct sha256_state ctx; | 
|  | size_t i; | 
|  |  | 
|  | if (TEST_FAIL()) | 
|  | return -1; | 
|  |  | 
|  | sha256_init(&ctx); | 
|  | for (i = 0; i < num_elem; i++) | 
|  | if (sha256_process(&ctx, addr[i], len[i])) | 
|  | return -1; | 
|  | if (sha256_done(&ctx, mac)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ===== start - public domain SHA256 implementation ===== */ | 
|  |  | 
|  | /* This is based on SHA256 implementation in LibTomCrypt that was released into | 
|  | * public domain by Tom St Denis. */ | 
|  |  | 
|  | /* the K array */ | 
|  | static const unsigned long K[64] = { | 
|  | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, | 
|  | 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, | 
|  | 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, | 
|  | 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | 
|  | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, | 
|  | 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, | 
|  | 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, | 
|  | 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | 
|  | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, | 
|  | 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, | 
|  | 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, | 
|  | 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | 
|  | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Various logical functions */ | 
|  | #define RORc(x, y) \ | 
|  | ( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \ | 
|  | ((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL) | 
|  | #define Ch(x,y,z)       (z ^ (x & (y ^ z))) | 
|  | #define Maj(x,y,z)      (((x | y) & z) | (x & y)) | 
|  | #define S(x, n)         RORc((x), (n)) | 
|  | #define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n)) | 
|  | #define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22)) | 
|  | #define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25)) | 
|  | #define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3)) | 
|  | #define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10)) | 
|  | #ifndef MIN | 
|  | #define MIN(x, y) (((x) < (y)) ? (x) : (y)) | 
|  | #endif | 
|  |  | 
|  | /* compress 512-bits */ | 
|  | static int sha256_compress(struct sha256_state *md, unsigned char *buf) | 
|  | { | 
|  | u32 S[8], W[64], t0, t1; | 
|  | u32 t; | 
|  | int i; | 
|  |  | 
|  | /* copy state into S */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | S[i] = md->state[i]; | 
|  | } | 
|  |  | 
|  | /* copy the state into 512-bits into W[0..15] */ | 
|  | for (i = 0; i < 16; i++) | 
|  | W[i] = WPA_GET_BE32(buf + (4 * i)); | 
|  |  | 
|  | /* fill W[16..63] */ | 
|  | for (i = 16; i < 64; i++) { | 
|  | W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + | 
|  | W[i - 16]; | 
|  | } | 
|  |  | 
|  | /* Compress */ | 
|  | #define RND(a,b,c,d,e,f,g,h,i)                          \ | 
|  | t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];	\ | 
|  | t1 = Sigma0(a) + Maj(a, b, c);			\ | 
|  | d += t0;					\ | 
|  | h  = t0 + t1; | 
|  |  | 
|  | for (i = 0; i < 64; ++i) { | 
|  | RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i); | 
|  | t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; | 
|  | S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; | 
|  | } | 
|  |  | 
|  | /* feedback */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | md->state[i] = md->state[i] + S[i]; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Initialize the hash state */ | 
|  | void sha256_init(struct sha256_state *md) | 
|  | { | 
|  | md->curlen = 0; | 
|  | md->length = 0; | 
|  | md->state[0] = 0x6A09E667UL; | 
|  | md->state[1] = 0xBB67AE85UL; | 
|  | md->state[2] = 0x3C6EF372UL; | 
|  | md->state[3] = 0xA54FF53AUL; | 
|  | md->state[4] = 0x510E527FUL; | 
|  | md->state[5] = 0x9B05688CUL; | 
|  | md->state[6] = 0x1F83D9ABUL; | 
|  | md->state[7] = 0x5BE0CD19UL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | Process a block of memory though the hash | 
|  | @param md     The hash state | 
|  | @param in     The data to hash | 
|  | @param inlen  The length of the data (octets) | 
|  | @return CRYPT_OK if successful | 
|  | */ | 
|  | int sha256_process(struct sha256_state *md, const unsigned char *in, | 
|  | unsigned long inlen) | 
|  | { | 
|  | unsigned long n; | 
|  |  | 
|  | if (md->curlen >= sizeof(md->buf)) | 
|  | return -1; | 
|  |  | 
|  | while (inlen > 0) { | 
|  | if (md->curlen == 0 && inlen >= SHA256_BLOCK_SIZE) { | 
|  | if (sha256_compress(md, (unsigned char *) in) < 0) | 
|  | return -1; | 
|  | md->length += SHA256_BLOCK_SIZE * 8; | 
|  | in += SHA256_BLOCK_SIZE; | 
|  | inlen -= SHA256_BLOCK_SIZE; | 
|  | } else { | 
|  | n = MIN(inlen, (SHA256_BLOCK_SIZE - md->curlen)); | 
|  | os_memcpy(md->buf + md->curlen, in, n); | 
|  | md->curlen += n; | 
|  | in += n; | 
|  | inlen -= n; | 
|  | if (md->curlen == SHA256_BLOCK_SIZE) { | 
|  | if (sha256_compress(md, md->buf) < 0) | 
|  | return -1; | 
|  | md->length += 8 * SHA256_BLOCK_SIZE; | 
|  | md->curlen = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | Terminate the hash to get the digest | 
|  | @param md  The hash state | 
|  | @param out [out] The destination of the hash (32 bytes) | 
|  | @return CRYPT_OK if successful | 
|  | */ | 
|  | int sha256_done(struct sha256_state *md, unsigned char *out) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (md->curlen >= sizeof(md->buf)) | 
|  | return -1; | 
|  |  | 
|  | /* increase the length of the message */ | 
|  | md->length += md->curlen * 8; | 
|  |  | 
|  | /* append the '1' bit */ | 
|  | md->buf[md->curlen++] = (unsigned char) 0x80; | 
|  |  | 
|  | /* if the length is currently above 56 bytes we append zeros | 
|  | * then compress.  Then we can fall back to padding zeros and length | 
|  | * encoding like normal. | 
|  | */ | 
|  | if (md->curlen > 56) { | 
|  | while (md->curlen < SHA256_BLOCK_SIZE) { | 
|  | md->buf[md->curlen++] = (unsigned char) 0; | 
|  | } | 
|  | sha256_compress(md, md->buf); | 
|  | md->curlen = 0; | 
|  | } | 
|  |  | 
|  | /* pad up to 56 bytes of zeroes */ | 
|  | while (md->curlen < 56) { | 
|  | md->buf[md->curlen++] = (unsigned char) 0; | 
|  | } | 
|  |  | 
|  | /* store length */ | 
|  | WPA_PUT_BE64(md->buf + 56, md->length); | 
|  | sha256_compress(md, md->buf); | 
|  |  | 
|  | /* copy output */ | 
|  | for (i = 0; i < 8; i++) | 
|  | WPA_PUT_BE32(out + (4 * i), md->state[i]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ===== end - public domain SHA256 implementation ===== */ |