| // SPDX-License-Identifier: GPL-2.0 | 
 | #include "audit.h" | 
 | #include <linux/fsnotify_backend.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | struct audit_tree; | 
 | struct audit_chunk; | 
 |  | 
 | struct audit_tree { | 
 | 	refcount_t count; | 
 | 	int goner; | 
 | 	struct audit_chunk *root; | 
 | 	struct list_head chunks; | 
 | 	struct list_head rules; | 
 | 	struct list_head list; | 
 | 	struct list_head same_root; | 
 | 	struct rcu_head head; | 
 | 	char pathname[]; | 
 | }; | 
 |  | 
 | struct audit_chunk { | 
 | 	struct list_head hash; | 
 | 	unsigned long key; | 
 | 	struct fsnotify_mark *mark; | 
 | 	struct list_head trees;		/* with root here */ | 
 | 	int count; | 
 | 	atomic_long_t refs; | 
 | 	struct rcu_head head; | 
 | 	struct node { | 
 | 		struct list_head list; | 
 | 		struct audit_tree *owner; | 
 | 		unsigned index;		/* index; upper bit indicates 'will prune' */ | 
 | 	} owners[]; | 
 | }; | 
 |  | 
 | struct audit_tree_mark { | 
 | 	struct fsnotify_mark mark; | 
 | 	struct audit_chunk *chunk; | 
 | }; | 
 |  | 
 | static LIST_HEAD(tree_list); | 
 | static LIST_HEAD(prune_list); | 
 | static struct task_struct *prune_thread; | 
 |  | 
 | /* | 
 |  * One struct chunk is attached to each inode of interest through | 
 |  * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging / | 
 |  * untagging, the mark is stable as long as there is chunk attached. The | 
 |  * association between mark and chunk is protected by hash_lock and | 
 |  * audit_tree_group->mark_mutex. Thus as long as we hold | 
 |  * audit_tree_group->mark_mutex and check that the mark is alive by | 
 |  * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to | 
 |  * the current chunk. | 
 |  * | 
 |  * Rules have pointer to struct audit_tree. | 
 |  * Rules have struct list_head rlist forming a list of rules over | 
 |  * the same tree. | 
 |  * References to struct chunk are collected at audit_inode{,_child}() | 
 |  * time and used in AUDIT_TREE rule matching. | 
 |  * These references are dropped at the same time we are calling | 
 |  * audit_free_names(), etc. | 
 |  * | 
 |  * Cyclic lists galore: | 
 |  * tree.chunks anchors chunk.owners[].list			hash_lock | 
 |  * tree.rules anchors rule.rlist				audit_filter_mutex | 
 |  * chunk.trees anchors tree.same_root				hash_lock | 
 |  * chunk.hash is a hash with middle bits of watch.inode as | 
 |  * a hash function.						RCU, hash_lock | 
 |  * | 
 |  * tree is refcounted; one reference for "some rules on rules_list refer to | 
 |  * it", one for each chunk with pointer to it. | 
 |  * | 
 |  * chunk is refcounted by embedded .refs. Mark associated with the chunk holds | 
 |  * one chunk reference. This reference is dropped either when a mark is going | 
 |  * to be freed (corresponding inode goes away) or when chunk attached to the | 
 |  * mark gets replaced. This reference must be dropped using | 
 |  * audit_mark_put_chunk() to make sure the reference is dropped only after RCU | 
 |  * grace period as it protects RCU readers of the hash table. | 
 |  * | 
 |  * node.index allows to get from node.list to containing chunk. | 
 |  * MSB of that sucker is stolen to mark taggings that we might have to | 
 |  * revert - several operations have very unpleasant cleanup logics and | 
 |  * that makes a difference.  Some. | 
 |  */ | 
 |  | 
 | static struct fsnotify_group *audit_tree_group; | 
 | static struct kmem_cache *audit_tree_mark_cachep __read_mostly; | 
 |  | 
 | static struct audit_tree *alloc_tree(const char *s) | 
 | { | 
 | 	struct audit_tree *tree; | 
 |  | 
 | 	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL); | 
 | 	if (tree) { | 
 | 		refcount_set(&tree->count, 1); | 
 | 		tree->goner = 0; | 
 | 		INIT_LIST_HEAD(&tree->chunks); | 
 | 		INIT_LIST_HEAD(&tree->rules); | 
 | 		INIT_LIST_HEAD(&tree->list); | 
 | 		INIT_LIST_HEAD(&tree->same_root); | 
 | 		tree->root = NULL; | 
 | 		strcpy(tree->pathname, s); | 
 | 	} | 
 | 	return tree; | 
 | } | 
 |  | 
 | static inline void get_tree(struct audit_tree *tree) | 
 | { | 
 | 	refcount_inc(&tree->count); | 
 | } | 
 |  | 
 | static inline void put_tree(struct audit_tree *tree) | 
 | { | 
 | 	if (refcount_dec_and_test(&tree->count)) | 
 | 		kfree_rcu(tree, head); | 
 | } | 
 |  | 
 | /* to avoid bringing the entire thing in audit.h */ | 
 | const char *audit_tree_path(struct audit_tree *tree) | 
 | { | 
 | 	return tree->pathname; | 
 | } | 
 |  | 
 | static void free_chunk(struct audit_chunk *chunk) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < chunk->count; i++) { | 
 | 		if (chunk->owners[i].owner) | 
 | 			put_tree(chunk->owners[i].owner); | 
 | 	} | 
 | 	kfree(chunk); | 
 | } | 
 |  | 
 | void audit_put_chunk(struct audit_chunk *chunk) | 
 | { | 
 | 	if (atomic_long_dec_and_test(&chunk->refs)) | 
 | 		free_chunk(chunk); | 
 | } | 
 |  | 
 | static void __put_chunk(struct rcu_head *rcu) | 
 | { | 
 | 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head); | 
 | 	audit_put_chunk(chunk); | 
 | } | 
 |  | 
 | /* | 
 |  * Drop reference to the chunk that was held by the mark. This is the reference | 
 |  * that gets dropped after we've removed the chunk from the hash table and we | 
 |  * use it to make sure chunk cannot be freed before RCU grace period expires. | 
 |  */ | 
 | static void audit_mark_put_chunk(struct audit_chunk *chunk) | 
 | { | 
 | 	call_rcu(&chunk->head, __put_chunk); | 
 | } | 
 |  | 
 | static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark) | 
 | { | 
 | 	return container_of(mark, struct audit_tree_mark, mark); | 
 | } | 
 |  | 
 | static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark) | 
 | { | 
 | 	return audit_mark(mark)->chunk; | 
 | } | 
 |  | 
 | static void audit_tree_destroy_watch(struct fsnotify_mark *mark) | 
 | { | 
 | 	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark)); | 
 | } | 
 |  | 
 | static struct fsnotify_mark *alloc_mark(void) | 
 | { | 
 | 	struct audit_tree_mark *amark; | 
 |  | 
 | 	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL); | 
 | 	if (!amark) | 
 | 		return NULL; | 
 | 	fsnotify_init_mark(&amark->mark, audit_tree_group); | 
 | 	amark->mark.mask = FS_IN_IGNORED; | 
 | 	return &amark->mark; | 
 | } | 
 |  | 
 | static struct audit_chunk *alloc_chunk(int count) | 
 | { | 
 | 	struct audit_chunk *chunk; | 
 | 	size_t size; | 
 | 	int i; | 
 |  | 
 | 	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node); | 
 | 	chunk = kzalloc(size, GFP_KERNEL); | 
 | 	if (!chunk) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&chunk->hash); | 
 | 	INIT_LIST_HEAD(&chunk->trees); | 
 | 	chunk->count = count; | 
 | 	atomic_long_set(&chunk->refs, 1); | 
 | 	for (i = 0; i < count; i++) { | 
 | 		INIT_LIST_HEAD(&chunk->owners[i].list); | 
 | 		chunk->owners[i].index = i; | 
 | 	} | 
 | 	return chunk; | 
 | } | 
 |  | 
 | enum {HASH_SIZE = 128}; | 
 | static struct list_head chunk_hash_heads[HASH_SIZE]; | 
 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock); | 
 |  | 
 | /* Function to return search key in our hash from inode. */ | 
 | static unsigned long inode_to_key(const struct inode *inode) | 
 | { | 
 | 	/* Use address pointed to by connector->obj as the key */ | 
 | 	return (unsigned long)&inode->i_fsnotify_marks; | 
 | } | 
 |  | 
 | static inline struct list_head *chunk_hash(unsigned long key) | 
 | { | 
 | 	unsigned long n = key / L1_CACHE_BYTES; | 
 | 	return chunk_hash_heads + n % HASH_SIZE; | 
 | } | 
 |  | 
 | /* hash_lock & mark->group->mark_mutex is held by caller */ | 
 | static void insert_hash(struct audit_chunk *chunk) | 
 | { | 
 | 	struct list_head *list; | 
 |  | 
 | 	/* | 
 | 	 * Make sure chunk is fully initialized before making it visible in the | 
 | 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in | 
 | 	 * audit_tree_lookup(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	WARN_ON_ONCE(!chunk->key); | 
 | 	list = chunk_hash(chunk->key); | 
 | 	list_add_rcu(&chunk->hash, list); | 
 | } | 
 |  | 
 | /* called under rcu_read_lock */ | 
 | struct audit_chunk *audit_tree_lookup(const struct inode *inode) | 
 | { | 
 | 	unsigned long key = inode_to_key(inode); | 
 | 	struct list_head *list = chunk_hash(key); | 
 | 	struct audit_chunk *p; | 
 |  | 
 | 	list_for_each_entry_rcu(p, list, hash) { | 
 | 		/* | 
 | 		 * We use a data dependency barrier in READ_ONCE() to make sure | 
 | 		 * the chunk we see is fully initialized. | 
 | 		 */ | 
 | 		if (READ_ONCE(p->key) == key) { | 
 | 			atomic_long_inc(&p->refs); | 
 | 			return p; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree) | 
 | { | 
 | 	int n; | 
 | 	for (n = 0; n < chunk->count; n++) | 
 | 		if (chunk->owners[n].owner == tree) | 
 | 			return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* tagging and untagging inodes with trees */ | 
 |  | 
 | static struct audit_chunk *find_chunk(struct node *p) | 
 | { | 
 | 	int index = p->index & ~(1U<<31); | 
 | 	p -= index; | 
 | 	return container_of(p, struct audit_chunk, owners[0]); | 
 | } | 
 |  | 
 | static void replace_mark_chunk(struct fsnotify_mark *mark, | 
 | 			       struct audit_chunk *chunk) | 
 | { | 
 | 	struct audit_chunk *old; | 
 |  | 
 | 	assert_spin_locked(&hash_lock); | 
 | 	old = mark_chunk(mark); | 
 | 	audit_mark(mark)->chunk = chunk; | 
 | 	if (chunk) | 
 | 		chunk->mark = mark; | 
 | 	if (old) | 
 | 		old->mark = NULL; | 
 | } | 
 |  | 
 | static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old) | 
 | { | 
 | 	struct audit_tree *owner; | 
 | 	int i, j; | 
 |  | 
 | 	new->key = old->key; | 
 | 	list_splice_init(&old->trees, &new->trees); | 
 | 	list_for_each_entry(owner, &new->trees, same_root) | 
 | 		owner->root = new; | 
 | 	for (i = j = 0; j < old->count; i++, j++) { | 
 | 		if (!old->owners[j].owner) { | 
 | 			i--; | 
 | 			continue; | 
 | 		} | 
 | 		owner = old->owners[j].owner; | 
 | 		new->owners[i].owner = owner; | 
 | 		new->owners[i].index = old->owners[j].index - j + i; | 
 | 		if (!owner) /* result of earlier fallback */ | 
 | 			continue; | 
 | 		get_tree(owner); | 
 | 		list_replace_init(&old->owners[j].list, &new->owners[i].list); | 
 | 	} | 
 | 	replace_mark_chunk(old->mark, new); | 
 | 	/* | 
 | 	 * Make sure chunk is fully initialized before making it visible in the | 
 | 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in | 
 | 	 * audit_tree_lookup(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	list_replace_rcu(&old->hash, &new->hash); | 
 | } | 
 |  | 
 | static void remove_chunk_node(struct audit_chunk *chunk, struct node *p) | 
 | { | 
 | 	struct audit_tree *owner = p->owner; | 
 |  | 
 | 	if (owner->root == chunk) { | 
 | 		list_del_init(&owner->same_root); | 
 | 		owner->root = NULL; | 
 | 	} | 
 | 	list_del_init(&p->list); | 
 | 	p->owner = NULL; | 
 | 	put_tree(owner); | 
 | } | 
 |  | 
 | static int chunk_count_trees(struct audit_chunk *chunk) | 
 | { | 
 | 	int i; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (i = 0; i < chunk->count; i++) | 
 | 		if (chunk->owners[i].owner) | 
 | 			ret++; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark) | 
 | { | 
 | 	struct audit_chunk *new; | 
 | 	int size; | 
 |  | 
 | 	mutex_lock(&audit_tree_group->mark_mutex); | 
 | 	/* | 
 | 	 * mark_mutex stabilizes chunk attached to the mark so we can check | 
 | 	 * whether it didn't change while we've dropped hash_lock. | 
 | 	 */ | 
 | 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) || | 
 | 	    mark_chunk(mark) != chunk) | 
 | 		goto out_mutex; | 
 |  | 
 | 	size = chunk_count_trees(chunk); | 
 | 	if (!size) { | 
 | 		spin_lock(&hash_lock); | 
 | 		list_del_init(&chunk->trees); | 
 | 		list_del_rcu(&chunk->hash); | 
 | 		replace_mark_chunk(mark, NULL); | 
 | 		spin_unlock(&hash_lock); | 
 | 		fsnotify_detach_mark(mark); | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		audit_mark_put_chunk(chunk); | 
 | 		fsnotify_free_mark(mark); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	new = alloc_chunk(size); | 
 | 	if (!new) | 
 | 		goto out_mutex; | 
 |  | 
 | 	spin_lock(&hash_lock); | 
 | 	/* | 
 | 	 * This has to go last when updating chunk as once replace_chunk() is | 
 | 	 * called, new RCU readers can see the new chunk. | 
 | 	 */ | 
 | 	replace_chunk(new, chunk); | 
 | 	spin_unlock(&hash_lock); | 
 | 	mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 	audit_mark_put_chunk(chunk); | 
 | 	return; | 
 |  | 
 | out_mutex: | 
 | 	mutex_unlock(&audit_tree_group->mark_mutex); | 
 | } | 
 |  | 
 | /* Call with group->mark_mutex held, releases it */ | 
 | static int create_chunk(struct inode *inode, struct audit_tree *tree) | 
 | { | 
 | 	struct fsnotify_mark *mark; | 
 | 	struct audit_chunk *chunk = alloc_chunk(1); | 
 |  | 
 | 	if (!chunk) { | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	mark = alloc_mark(); | 
 | 	if (!mark) { | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		kfree(chunk); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) { | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		fsnotify_put_mark(mark); | 
 | 		kfree(chunk); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	spin_lock(&hash_lock); | 
 | 	if (tree->goner) { | 
 | 		spin_unlock(&hash_lock); | 
 | 		fsnotify_detach_mark(mark); | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		fsnotify_free_mark(mark); | 
 | 		fsnotify_put_mark(mark); | 
 | 		kfree(chunk); | 
 | 		return 0; | 
 | 	} | 
 | 	replace_mark_chunk(mark, chunk); | 
 | 	chunk->owners[0].index = (1U << 31); | 
 | 	chunk->owners[0].owner = tree; | 
 | 	get_tree(tree); | 
 | 	list_add(&chunk->owners[0].list, &tree->chunks); | 
 | 	if (!tree->root) { | 
 | 		tree->root = chunk; | 
 | 		list_add(&tree->same_root, &chunk->trees); | 
 | 	} | 
 | 	chunk->key = inode_to_key(inode); | 
 | 	/* | 
 | 	 * Inserting into the hash table has to go last as once we do that RCU | 
 | 	 * readers can see the chunk. | 
 | 	 */ | 
 | 	insert_hash(chunk); | 
 | 	spin_unlock(&hash_lock); | 
 | 	mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 	/* | 
 | 	 * Drop our initial reference. When mark we point to is getting freed, | 
 | 	 * we get notification through ->freeing_mark callback and cleanup | 
 | 	 * chunk pointing to this mark. | 
 | 	 */ | 
 | 	fsnotify_put_mark(mark); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* the first tagged inode becomes root of tree */ | 
 | static int tag_chunk(struct inode *inode, struct audit_tree *tree) | 
 | { | 
 | 	struct fsnotify_mark *mark; | 
 | 	struct audit_chunk *chunk, *old; | 
 | 	struct node *p; | 
 | 	int n; | 
 |  | 
 | 	mutex_lock(&audit_tree_group->mark_mutex); | 
 | 	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group); | 
 | 	if (!mark) | 
 | 		return create_chunk(inode, tree); | 
 |  | 
 | 	/* | 
 | 	 * Found mark is guaranteed to be attached and mark_mutex protects mark | 
 | 	 * from getting detached and thus it makes sure there is chunk attached | 
 | 	 * to the mark. | 
 | 	 */ | 
 | 	/* are we already there? */ | 
 | 	spin_lock(&hash_lock); | 
 | 	old = mark_chunk(mark); | 
 | 	for (n = 0; n < old->count; n++) { | 
 | 		if (old->owners[n].owner == tree) { | 
 | 			spin_unlock(&hash_lock); | 
 | 			mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 			fsnotify_put_mark(mark); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&hash_lock); | 
 |  | 
 | 	chunk = alloc_chunk(old->count + 1); | 
 | 	if (!chunk) { | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		fsnotify_put_mark(mark); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock(&hash_lock); | 
 | 	if (tree->goner) { | 
 | 		spin_unlock(&hash_lock); | 
 | 		mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 		fsnotify_put_mark(mark); | 
 | 		kfree(chunk); | 
 | 		return 0; | 
 | 	} | 
 | 	p = &chunk->owners[chunk->count - 1]; | 
 | 	p->index = (chunk->count - 1) | (1U<<31); | 
 | 	p->owner = tree; | 
 | 	get_tree(tree); | 
 | 	list_add(&p->list, &tree->chunks); | 
 | 	if (!tree->root) { | 
 | 		tree->root = chunk; | 
 | 		list_add(&tree->same_root, &chunk->trees); | 
 | 	} | 
 | 	/* | 
 | 	 * This has to go last when updating chunk as once replace_chunk() is | 
 | 	 * called, new RCU readers can see the new chunk. | 
 | 	 */ | 
 | 	replace_chunk(chunk, old); | 
 | 	spin_unlock(&hash_lock); | 
 | 	mutex_unlock(&audit_tree_group->mark_mutex); | 
 | 	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */ | 
 | 	audit_mark_put_chunk(old); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void audit_tree_log_remove_rule(struct audit_context *context, | 
 | 				       struct audit_krule *rule) | 
 | { | 
 | 	struct audit_buffer *ab; | 
 |  | 
 | 	if (!audit_enabled) | 
 | 		return; | 
 | 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE); | 
 | 	if (unlikely(!ab)) | 
 | 		return; | 
 | 	audit_log_format(ab, "op=remove_rule dir="); | 
 | 	audit_log_untrustedstring(ab, rule->tree->pathname); | 
 | 	audit_log_key(ab, rule->filterkey); | 
 | 	audit_log_format(ab, " list=%d res=1", rule->listnr); | 
 | 	audit_log_end(ab); | 
 | } | 
 |  | 
 | static void kill_rules(struct audit_context *context, struct audit_tree *tree) | 
 | { | 
 | 	struct audit_krule *rule, *next; | 
 | 	struct audit_entry *entry; | 
 |  | 
 | 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) { | 
 | 		entry = container_of(rule, struct audit_entry, rule); | 
 |  | 
 | 		list_del_init(&rule->rlist); | 
 | 		if (rule->tree) { | 
 | 			/* not a half-baked one */ | 
 | 			audit_tree_log_remove_rule(context, rule); | 
 | 			if (entry->rule.exe) | 
 | 				audit_remove_mark(entry->rule.exe); | 
 | 			rule->tree = NULL; | 
 | 			list_del_rcu(&entry->list); | 
 | 			list_del(&entry->rule.list); | 
 | 			call_rcu(&entry->rcu, audit_free_rule_rcu); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged | 
 |  * chunks. The function expects tagged chunks are all at the beginning of the | 
 |  * chunks list. | 
 |  */ | 
 | static void prune_tree_chunks(struct audit_tree *victim, bool tagged) | 
 | { | 
 | 	spin_lock(&hash_lock); | 
 | 	while (!list_empty(&victim->chunks)) { | 
 | 		struct node *p; | 
 | 		struct audit_chunk *chunk; | 
 | 		struct fsnotify_mark *mark; | 
 |  | 
 | 		p = list_first_entry(&victim->chunks, struct node, list); | 
 | 		/* have we run out of marked? */ | 
 | 		if (tagged && !(p->index & (1U<<31))) | 
 | 			break; | 
 | 		chunk = find_chunk(p); | 
 | 		mark = chunk->mark; | 
 | 		remove_chunk_node(chunk, p); | 
 | 		/* Racing with audit_tree_freeing_mark()? */ | 
 | 		if (!mark) | 
 | 			continue; | 
 | 		fsnotify_get_mark(mark); | 
 | 		spin_unlock(&hash_lock); | 
 |  | 
 | 		untag_chunk(chunk, mark); | 
 | 		fsnotify_put_mark(mark); | 
 |  | 
 | 		spin_lock(&hash_lock); | 
 | 	} | 
 | 	spin_unlock(&hash_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * finish killing struct audit_tree | 
 |  */ | 
 | static void prune_one(struct audit_tree *victim) | 
 | { | 
 | 	prune_tree_chunks(victim, false); | 
 | 	put_tree(victim); | 
 | } | 
 |  | 
 | /* trim the uncommitted chunks from tree */ | 
 |  | 
 | static void trim_marked(struct audit_tree *tree) | 
 | { | 
 | 	struct list_head *p, *q; | 
 | 	spin_lock(&hash_lock); | 
 | 	if (tree->goner) { | 
 | 		spin_unlock(&hash_lock); | 
 | 		return; | 
 | 	} | 
 | 	/* reorder */ | 
 | 	for (p = tree->chunks.next; p != &tree->chunks; p = q) { | 
 | 		struct node *node = list_entry(p, struct node, list); | 
 | 		q = p->next; | 
 | 		if (node->index & (1U<<31)) { | 
 | 			list_del_init(p); | 
 | 			list_add(p, &tree->chunks); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&hash_lock); | 
 |  | 
 | 	prune_tree_chunks(tree, true); | 
 |  | 
 | 	spin_lock(&hash_lock); | 
 | 	if (!tree->root && !tree->goner) { | 
 | 		tree->goner = 1; | 
 | 		spin_unlock(&hash_lock); | 
 | 		mutex_lock(&audit_filter_mutex); | 
 | 		kill_rules(audit_context(), tree); | 
 | 		list_del_init(&tree->list); | 
 | 		mutex_unlock(&audit_filter_mutex); | 
 | 		prune_one(tree); | 
 | 	} else { | 
 | 		spin_unlock(&hash_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void audit_schedule_prune(void); | 
 |  | 
 | /* called with audit_filter_mutex */ | 
 | int audit_remove_tree_rule(struct audit_krule *rule) | 
 | { | 
 | 	struct audit_tree *tree; | 
 | 	tree = rule->tree; | 
 | 	if (tree) { | 
 | 		spin_lock(&hash_lock); | 
 | 		list_del_init(&rule->rlist); | 
 | 		if (list_empty(&tree->rules) && !tree->goner) { | 
 | 			tree->root = NULL; | 
 | 			list_del_init(&tree->same_root); | 
 | 			tree->goner = 1; | 
 | 			list_move(&tree->list, &prune_list); | 
 | 			rule->tree = NULL; | 
 | 			spin_unlock(&hash_lock); | 
 | 			audit_schedule_prune(); | 
 | 			return 1; | 
 | 		} | 
 | 		rule->tree = NULL; | 
 | 		spin_unlock(&hash_lock); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int compare_root(struct vfsmount *mnt, void *arg) | 
 | { | 
 | 	return inode_to_key(d_backing_inode(mnt->mnt_root)) == | 
 | 	       (unsigned long)arg; | 
 | } | 
 |  | 
 | void audit_trim_trees(void) | 
 | { | 
 | 	struct list_head cursor; | 
 |  | 
 | 	mutex_lock(&audit_filter_mutex); | 
 | 	list_add(&cursor, &tree_list); | 
 | 	while (cursor.next != &tree_list) { | 
 | 		struct audit_tree *tree; | 
 | 		struct path path; | 
 | 		struct vfsmount *root_mnt; | 
 | 		struct node *node; | 
 | 		int err; | 
 |  | 
 | 		tree = container_of(cursor.next, struct audit_tree, list); | 
 | 		get_tree(tree); | 
 | 		list_del(&cursor); | 
 | 		list_add(&cursor, &tree->list); | 
 | 		mutex_unlock(&audit_filter_mutex); | 
 |  | 
 | 		err = kern_path(tree->pathname, 0, &path); | 
 | 		if (err) | 
 | 			goto skip_it; | 
 |  | 
 | 		root_mnt = collect_mounts(&path); | 
 | 		path_put(&path); | 
 | 		if (IS_ERR(root_mnt)) | 
 | 			goto skip_it; | 
 |  | 
 | 		spin_lock(&hash_lock); | 
 | 		list_for_each_entry(node, &tree->chunks, list) { | 
 | 			struct audit_chunk *chunk = find_chunk(node); | 
 | 			/* this could be NULL if the watch is dying else where... */ | 
 | 			node->index |= 1U<<31; | 
 | 			if (iterate_mounts(compare_root, | 
 | 					   (void *)(chunk->key), | 
 | 					   root_mnt)) | 
 | 				node->index &= ~(1U<<31); | 
 | 		} | 
 | 		spin_unlock(&hash_lock); | 
 | 		trim_marked(tree); | 
 | 		drop_collected_mounts(root_mnt); | 
 | skip_it: | 
 | 		put_tree(tree); | 
 | 		mutex_lock(&audit_filter_mutex); | 
 | 	} | 
 | 	list_del(&cursor); | 
 | 	mutex_unlock(&audit_filter_mutex); | 
 | } | 
 |  | 
 | int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op) | 
 | { | 
 |  | 
 | 	if (pathname[0] != '/' || | 
 | 	    rule->listnr != AUDIT_FILTER_EXIT || | 
 | 	    op != Audit_equal || | 
 | 	    rule->inode_f || rule->watch || rule->tree) | 
 | 		return -EINVAL; | 
 | 	rule->tree = alloc_tree(pathname); | 
 | 	if (!rule->tree) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void audit_put_tree(struct audit_tree *tree) | 
 | { | 
 | 	put_tree(tree); | 
 | } | 
 |  | 
 | static int tag_mount(struct vfsmount *mnt, void *arg) | 
 | { | 
 | 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg); | 
 | } | 
 |  | 
 | /* | 
 |  * That gets run when evict_chunk() ends up needing to kill audit_tree. | 
 |  * Runs from a separate thread. | 
 |  */ | 
 | static int prune_tree_thread(void *unused) | 
 | { | 
 | 	for (;;) { | 
 | 		if (list_empty(&prune_list)) { | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			schedule(); | 
 | 		} | 
 |  | 
 | 		audit_ctl_lock(); | 
 | 		mutex_lock(&audit_filter_mutex); | 
 |  | 
 | 		while (!list_empty(&prune_list)) { | 
 | 			struct audit_tree *victim; | 
 |  | 
 | 			victim = list_entry(prune_list.next, | 
 | 					struct audit_tree, list); | 
 | 			list_del_init(&victim->list); | 
 |  | 
 | 			mutex_unlock(&audit_filter_mutex); | 
 |  | 
 | 			prune_one(victim); | 
 |  | 
 | 			mutex_lock(&audit_filter_mutex); | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&audit_filter_mutex); | 
 | 		audit_ctl_unlock(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int audit_launch_prune(void) | 
 | { | 
 | 	if (prune_thread) | 
 | 		return 0; | 
 | 	prune_thread = kthread_run(prune_tree_thread, NULL, | 
 | 				"audit_prune_tree"); | 
 | 	if (IS_ERR(prune_thread)) { | 
 | 		pr_err("cannot start thread audit_prune_tree"); | 
 | 		prune_thread = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* called with audit_filter_mutex */ | 
 | int audit_add_tree_rule(struct audit_krule *rule) | 
 | { | 
 | 	struct audit_tree *seed = rule->tree, *tree; | 
 | 	struct path path; | 
 | 	struct vfsmount *mnt; | 
 | 	int err; | 
 |  | 
 | 	rule->tree = NULL; | 
 | 	list_for_each_entry(tree, &tree_list, list) { | 
 | 		if (!strcmp(seed->pathname, tree->pathname)) { | 
 | 			put_tree(seed); | 
 | 			rule->tree = tree; | 
 | 			list_add(&rule->rlist, &tree->rules); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	tree = seed; | 
 | 	list_add(&tree->list, &tree_list); | 
 | 	list_add(&rule->rlist, &tree->rules); | 
 | 	/* do not set rule->tree yet */ | 
 | 	mutex_unlock(&audit_filter_mutex); | 
 |  | 
 | 	if (unlikely(!prune_thread)) { | 
 | 		err = audit_launch_prune(); | 
 | 		if (err) | 
 | 			goto Err; | 
 | 	} | 
 |  | 
 | 	err = kern_path(tree->pathname, 0, &path); | 
 | 	if (err) | 
 | 		goto Err; | 
 | 	mnt = collect_mounts(&path); | 
 | 	path_put(&path); | 
 | 	if (IS_ERR(mnt)) { | 
 | 		err = PTR_ERR(mnt); | 
 | 		goto Err; | 
 | 	} | 
 |  | 
 | 	get_tree(tree); | 
 | 	err = iterate_mounts(tag_mount, tree, mnt); | 
 | 	drop_collected_mounts(mnt); | 
 |  | 
 | 	if (!err) { | 
 | 		struct node *node; | 
 | 		spin_lock(&hash_lock); | 
 | 		list_for_each_entry(node, &tree->chunks, list) | 
 | 			node->index &= ~(1U<<31); | 
 | 		spin_unlock(&hash_lock); | 
 | 	} else { | 
 | 		trim_marked(tree); | 
 | 		goto Err; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&audit_filter_mutex); | 
 | 	if (list_empty(&rule->rlist)) { | 
 | 		put_tree(tree); | 
 | 		return -ENOENT; | 
 | 	} | 
 | 	rule->tree = tree; | 
 | 	put_tree(tree); | 
 |  | 
 | 	return 0; | 
 | Err: | 
 | 	mutex_lock(&audit_filter_mutex); | 
 | 	list_del_init(&tree->list); | 
 | 	list_del_init(&tree->rules); | 
 | 	put_tree(tree); | 
 | 	return err; | 
 | } | 
 |  | 
 | int audit_tag_tree(char *old, char *new) | 
 | { | 
 | 	struct list_head cursor, barrier; | 
 | 	int failed = 0; | 
 | 	struct path path1, path2; | 
 | 	struct vfsmount *tagged; | 
 | 	int err; | 
 |  | 
 | 	err = kern_path(new, 0, &path2); | 
 | 	if (err) | 
 | 		return err; | 
 | 	tagged = collect_mounts(&path2); | 
 | 	path_put(&path2); | 
 | 	if (IS_ERR(tagged)) | 
 | 		return PTR_ERR(tagged); | 
 |  | 
 | 	err = kern_path(old, 0, &path1); | 
 | 	if (err) { | 
 | 		drop_collected_mounts(tagged); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&audit_filter_mutex); | 
 | 	list_add(&barrier, &tree_list); | 
 | 	list_add(&cursor, &barrier); | 
 |  | 
 | 	while (cursor.next != &tree_list) { | 
 | 		struct audit_tree *tree; | 
 | 		int good_one = 0; | 
 |  | 
 | 		tree = container_of(cursor.next, struct audit_tree, list); | 
 | 		get_tree(tree); | 
 | 		list_del(&cursor); | 
 | 		list_add(&cursor, &tree->list); | 
 | 		mutex_unlock(&audit_filter_mutex); | 
 |  | 
 | 		err = kern_path(tree->pathname, 0, &path2); | 
 | 		if (!err) { | 
 | 			good_one = path_is_under(&path1, &path2); | 
 | 			path_put(&path2); | 
 | 		} | 
 |  | 
 | 		if (!good_one) { | 
 | 			put_tree(tree); | 
 | 			mutex_lock(&audit_filter_mutex); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		failed = iterate_mounts(tag_mount, tree, tagged); | 
 | 		if (failed) { | 
 | 			put_tree(tree); | 
 | 			mutex_lock(&audit_filter_mutex); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		mutex_lock(&audit_filter_mutex); | 
 | 		spin_lock(&hash_lock); | 
 | 		if (!tree->goner) { | 
 | 			list_del(&tree->list); | 
 | 			list_add(&tree->list, &tree_list); | 
 | 		} | 
 | 		spin_unlock(&hash_lock); | 
 | 		put_tree(tree); | 
 | 	} | 
 |  | 
 | 	while (barrier.prev != &tree_list) { | 
 | 		struct audit_tree *tree; | 
 |  | 
 | 		tree = container_of(barrier.prev, struct audit_tree, list); | 
 | 		get_tree(tree); | 
 | 		list_del(&tree->list); | 
 | 		list_add(&tree->list, &barrier); | 
 | 		mutex_unlock(&audit_filter_mutex); | 
 |  | 
 | 		if (!failed) { | 
 | 			struct node *node; | 
 | 			spin_lock(&hash_lock); | 
 | 			list_for_each_entry(node, &tree->chunks, list) | 
 | 				node->index &= ~(1U<<31); | 
 | 			spin_unlock(&hash_lock); | 
 | 		} else { | 
 | 			trim_marked(tree); | 
 | 		} | 
 |  | 
 | 		put_tree(tree); | 
 | 		mutex_lock(&audit_filter_mutex); | 
 | 	} | 
 | 	list_del(&barrier); | 
 | 	list_del(&cursor); | 
 | 	mutex_unlock(&audit_filter_mutex); | 
 | 	path_put(&path1); | 
 | 	drop_collected_mounts(tagged); | 
 | 	return failed; | 
 | } | 
 |  | 
 |  | 
 | static void audit_schedule_prune(void) | 
 | { | 
 | 	wake_up_process(prune_thread); | 
 | } | 
 |  | 
 | /* | 
 |  * ... and that one is done if evict_chunk() decides to delay until the end | 
 |  * of syscall.  Runs synchronously. | 
 |  */ | 
 | void audit_kill_trees(struct audit_context *context) | 
 | { | 
 | 	struct list_head *list = &context->killed_trees; | 
 |  | 
 | 	audit_ctl_lock(); | 
 | 	mutex_lock(&audit_filter_mutex); | 
 |  | 
 | 	while (!list_empty(list)) { | 
 | 		struct audit_tree *victim; | 
 |  | 
 | 		victim = list_entry(list->next, struct audit_tree, list); | 
 | 		kill_rules(context, victim); | 
 | 		list_del_init(&victim->list); | 
 |  | 
 | 		mutex_unlock(&audit_filter_mutex); | 
 |  | 
 | 		prune_one(victim); | 
 |  | 
 | 		mutex_lock(&audit_filter_mutex); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&audit_filter_mutex); | 
 | 	audit_ctl_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  *  Here comes the stuff asynchronous to auditctl operations | 
 |  */ | 
 |  | 
 | static void evict_chunk(struct audit_chunk *chunk) | 
 | { | 
 | 	struct audit_tree *owner; | 
 | 	struct list_head *postponed = audit_killed_trees(); | 
 | 	int need_prune = 0; | 
 | 	int n; | 
 |  | 
 | 	mutex_lock(&audit_filter_mutex); | 
 | 	spin_lock(&hash_lock); | 
 | 	while (!list_empty(&chunk->trees)) { | 
 | 		owner = list_entry(chunk->trees.next, | 
 | 				   struct audit_tree, same_root); | 
 | 		owner->goner = 1; | 
 | 		owner->root = NULL; | 
 | 		list_del_init(&owner->same_root); | 
 | 		spin_unlock(&hash_lock); | 
 | 		if (!postponed) { | 
 | 			kill_rules(audit_context(), owner); | 
 | 			list_move(&owner->list, &prune_list); | 
 | 			need_prune = 1; | 
 | 		} else { | 
 | 			list_move(&owner->list, postponed); | 
 | 		} | 
 | 		spin_lock(&hash_lock); | 
 | 	} | 
 | 	list_del_rcu(&chunk->hash); | 
 | 	for (n = 0; n < chunk->count; n++) | 
 | 		list_del_init(&chunk->owners[n].list); | 
 | 	spin_unlock(&hash_lock); | 
 | 	mutex_unlock(&audit_filter_mutex); | 
 | 	if (need_prune) | 
 | 		audit_schedule_prune(); | 
 | } | 
 |  | 
 | static int audit_tree_handle_event(struct fsnotify_group *group, | 
 | 				   struct inode *to_tell, | 
 | 				   u32 mask, const void *data, int data_type, | 
 | 				   const struct qstr *file_name, u32 cookie, | 
 | 				   struct fsnotify_iter_info *iter_info) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void audit_tree_freeing_mark(struct fsnotify_mark *mark, | 
 | 				    struct fsnotify_group *group) | 
 | { | 
 | 	struct audit_chunk *chunk; | 
 |  | 
 | 	mutex_lock(&mark->group->mark_mutex); | 
 | 	spin_lock(&hash_lock); | 
 | 	chunk = mark_chunk(mark); | 
 | 	replace_mark_chunk(mark, NULL); | 
 | 	spin_unlock(&hash_lock); | 
 | 	mutex_unlock(&mark->group->mark_mutex); | 
 | 	if (chunk) { | 
 | 		evict_chunk(chunk); | 
 | 		audit_mark_put_chunk(chunk); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We are guaranteed to have at least one reference to the mark from | 
 | 	 * either the inode or the caller of fsnotify_destroy_mark(). | 
 | 	 */ | 
 | 	BUG_ON(refcount_read(&mark->refcnt) < 1); | 
 | } | 
 |  | 
 | static const struct fsnotify_ops audit_tree_ops = { | 
 | 	.handle_event = audit_tree_handle_event, | 
 | 	.freeing_mark = audit_tree_freeing_mark, | 
 | 	.free_mark = audit_tree_destroy_watch, | 
 | }; | 
 |  | 
 | static int __init audit_tree_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC); | 
 |  | 
 | 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops); | 
 | 	if (IS_ERR(audit_tree_group)) | 
 | 		audit_panic("cannot initialize fsnotify group for rectree watches"); | 
 |  | 
 | 	for (i = 0; i < HASH_SIZE; i++) | 
 | 		INIT_LIST_HEAD(&chunk_hash_heads[i]); | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(audit_tree_init); |