| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * Restartable sequences system call | 
 |  * | 
 |  * Copyright (C) 2015, Google, Inc., | 
 |  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com> | 
 |  * Copyright (C) 2015-2018, EfficiOS Inc., | 
 |  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com> | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/rseq.h> | 
 | #include <linux/types.h> | 
 | #include <asm/ptrace.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/rseq.h> | 
 |  | 
 | #define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \ | 
 | 				       RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT) | 
 |  | 
 | /* | 
 |  * | 
 |  * Restartable sequences are a lightweight interface that allows | 
 |  * user-level code to be executed atomically relative to scheduler | 
 |  * preemption and signal delivery. Typically used for implementing | 
 |  * per-cpu operations. | 
 |  * | 
 |  * It allows user-space to perform update operations on per-cpu data | 
 |  * without requiring heavy-weight atomic operations. | 
 |  * | 
 |  * Detailed algorithm of rseq user-space assembly sequences: | 
 |  * | 
 |  *                     init(rseq_cs) | 
 |  *                     cpu = TLS->rseq::cpu_id_start | 
 |  *   [1]               TLS->rseq::rseq_cs = rseq_cs | 
 |  *   [start_ip]        ---------------------------- | 
 |  *   [2]               if (cpu != TLS->rseq::cpu_id) | 
 |  *                             goto abort_ip; | 
 |  *   [3]               <last_instruction_in_cs> | 
 |  *   [post_commit_ip]  ---------------------------- | 
 |  * | 
 |  *   The address of jump target abort_ip must be outside the critical | 
 |  *   region, i.e.: | 
 |  * | 
 |  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip] | 
 |  * | 
 |  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in | 
 |  *   userspace that can handle being interrupted between any of those | 
 |  *   instructions, and then resumed to the abort_ip. | 
 |  * | 
 |  *   1.  Userspace stores the address of the struct rseq_cs assembly | 
 |  *       block descriptor into the rseq_cs field of the registered | 
 |  *       struct rseq TLS area. This update is performed through a single | 
 |  *       store within the inline assembly instruction sequence. | 
 |  *       [start_ip] | 
 |  * | 
 |  *   2.  Userspace tests to check whether the current cpu_id field match | 
 |  *       the cpu number loaded before start_ip, branching to abort_ip | 
 |  *       in case of a mismatch. | 
 |  * | 
 |  *       If the sequence is preempted or interrupted by a signal | 
 |  *       at or after start_ip and before post_commit_ip, then the kernel | 
 |  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return | 
 |  *       ip to abort_ip before returning to user-space, so the preempted | 
 |  *       execution resumes at abort_ip. | 
 |  * | 
 |  *   3.  Userspace critical section final instruction before | 
 |  *       post_commit_ip is the commit. The critical section is | 
 |  *       self-terminating. | 
 |  *       [post_commit_ip] | 
 |  * | 
 |  *   4.  <success> | 
 |  * | 
 |  *   On failure at [2], or if interrupted by preempt or signal delivery | 
 |  *   between [1] and [3]: | 
 |  * | 
 |  *       [abort_ip] | 
 |  *   F1. <failure> | 
 |  */ | 
 |  | 
 | static int rseq_update_cpu_id(struct task_struct *t) | 
 | { | 
 | 	u32 cpu_id = raw_smp_processor_id(); | 
 |  | 
 | 	if (put_user(cpu_id, &t->rseq->cpu_id_start)) | 
 | 		return -EFAULT; | 
 | 	if (put_user(cpu_id, &t->rseq->cpu_id)) | 
 | 		return -EFAULT; | 
 | 	trace_rseq_update(t); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rseq_reset_rseq_cpu_id(struct task_struct *t) | 
 | { | 
 | 	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED; | 
 |  | 
 | 	/* | 
 | 	 * Reset cpu_id_start to its initial state (0). | 
 | 	 */ | 
 | 	if (put_user(cpu_id_start, &t->rseq->cpu_id_start)) | 
 | 		return -EFAULT; | 
 | 	/* | 
 | 	 * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming | 
 | 	 * in after unregistration can figure out that rseq needs to be | 
 | 	 * registered again. | 
 | 	 */ | 
 | 	if (put_user(cpu_id, &t->rseq->cpu_id)) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs) | 
 | { | 
 | 	struct rseq_cs __user *urseq_cs; | 
 | 	u64 ptr; | 
 | 	u32 __user *usig; | 
 | 	u32 sig; | 
 | 	int ret; | 
 |  | 
 | 	if (copy_from_user(&ptr, &t->rseq->rseq_cs.ptr64, sizeof(ptr))) | 
 | 		return -EFAULT; | 
 | 	if (!ptr) { | 
 | 		memset(rseq_cs, 0, sizeof(*rseq_cs)); | 
 | 		return 0; | 
 | 	} | 
 | 	if (ptr >= TASK_SIZE) | 
 | 		return -EINVAL; | 
 | 	urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr; | 
 | 	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (rseq_cs->start_ip >= TASK_SIZE || | 
 | 	    rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE || | 
 | 	    rseq_cs->abort_ip >= TASK_SIZE || | 
 | 	    rseq_cs->version > 0) | 
 | 		return -EINVAL; | 
 | 	/* Check for overflow. */ | 
 | 	if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip) | 
 | 		return -EINVAL; | 
 | 	/* Ensure that abort_ip is not in the critical section. */ | 
 | 	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset) | 
 | 		return -EINVAL; | 
 |  | 
 | 	usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32)); | 
 | 	ret = get_user(sig, usig); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (current->rseq_sig != sig) { | 
 | 		printk_ratelimited(KERN_WARNING | 
 | 			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n", | 
 | 			sig, current->rseq_sig, current->pid, usig); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rseq_need_restart(struct task_struct *t, u32 cs_flags) | 
 | { | 
 | 	u32 flags, event_mask; | 
 | 	int ret; | 
 |  | 
 | 	/* Get thread flags. */ | 
 | 	ret = get_user(flags, &t->rseq->flags); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Take critical section flags into account. */ | 
 | 	flags |= cs_flags; | 
 |  | 
 | 	/* | 
 | 	 * Restart on signal can only be inhibited when restart on | 
 | 	 * preempt and restart on migrate are inhibited too. Otherwise, | 
 | 	 * a preempted signal handler could fail to restart the prior | 
 | 	 * execution context on sigreturn. | 
 | 	 */ | 
 | 	if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) && | 
 | 		     (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) != | 
 | 		     RSEQ_CS_PREEMPT_MIGRATE_FLAGS)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Load and clear event mask atomically with respect to | 
 | 	 * scheduler preemption. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	event_mask = t->rseq_event_mask; | 
 | 	t->rseq_event_mask = 0; | 
 | 	preempt_enable(); | 
 |  | 
 | 	return !!(event_mask & ~flags); | 
 | } | 
 |  | 
 | static int clear_rseq_cs(struct task_struct *t) | 
 | { | 
 | 	/* | 
 | 	 * The rseq_cs field is set to NULL on preemption or signal | 
 | 	 * delivery on top of rseq assembly block, as well as on top | 
 | 	 * of code outside of the rseq assembly block. This performs | 
 | 	 * a lazy clear of the rseq_cs field. | 
 | 	 * | 
 | 	 * Set rseq_cs to NULL. | 
 | 	 */ | 
 | 	if (clear_user(&t->rseq->rseq_cs.ptr64, sizeof(t->rseq->rseq_cs.ptr64))) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Unsigned comparison will be true when ip >= start_ip, and when | 
 |  * ip < start_ip + post_commit_offset. | 
 |  */ | 
 | static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs) | 
 | { | 
 | 	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset; | 
 | } | 
 |  | 
 | static int rseq_ip_fixup(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long ip = instruction_pointer(regs); | 
 | 	struct task_struct *t = current; | 
 | 	struct rseq_cs rseq_cs; | 
 | 	int ret; | 
 |  | 
 | 	ret = rseq_get_rseq_cs(t, &rseq_cs); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Handle potentially not being within a critical section. | 
 | 	 * If not nested over a rseq critical section, restart is useless. | 
 | 	 * Clear the rseq_cs pointer and return. | 
 | 	 */ | 
 | 	if (!in_rseq_cs(ip, &rseq_cs)) | 
 | 		return clear_rseq_cs(t); | 
 | 	ret = rseq_need_restart(t, rseq_cs.flags); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	ret = clear_rseq_cs(t); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset, | 
 | 			    rseq_cs.abort_ip); | 
 | 	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This resume handler must always be executed between any of: | 
 |  * - preemption, | 
 |  * - signal delivery, | 
 |  * and return to user-space. | 
 |  * | 
 |  * This is how we can ensure that the entire rseq critical section | 
 |  * will issue the commit instruction only if executed atomically with | 
 |  * respect to other threads scheduled on the same CPU, and with respect | 
 |  * to signal handlers. | 
 |  */ | 
 | void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) | 
 | { | 
 | 	struct task_struct *t = current; | 
 | 	int ret, sig; | 
 |  | 
 | 	if (unlikely(t->flags & PF_EXITING)) | 
 | 		return; | 
 | 	if (unlikely(!access_ok(t->rseq, sizeof(*t->rseq)))) | 
 | 		goto error; | 
 | 	ret = rseq_ip_fixup(regs); | 
 | 	if (unlikely(ret < 0)) | 
 | 		goto error; | 
 | 	if (unlikely(rseq_update_cpu_id(t))) | 
 | 		goto error; | 
 | 	return; | 
 |  | 
 | error: | 
 | 	sig = ksig ? ksig->sig : 0; | 
 | 	force_sigsegv(sig); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_RSEQ | 
 |  | 
 | /* | 
 |  * Terminate the process if a syscall is issued within a restartable | 
 |  * sequence. | 
 |  */ | 
 | void rseq_syscall(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long ip = instruction_pointer(regs); | 
 | 	struct task_struct *t = current; | 
 | 	struct rseq_cs rseq_cs; | 
 |  | 
 | 	if (!t->rseq) | 
 | 		return; | 
 | 	if (!access_ok(t->rseq, sizeof(*t->rseq)) || | 
 | 	    rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs)) | 
 | 		force_sig(SIGSEGV); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * sys_rseq - setup restartable sequences for caller thread. | 
 |  */ | 
 | SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, | 
 | 		int, flags, u32, sig) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (flags & RSEQ_FLAG_UNREGISTER) { | 
 | 		/* Unregister rseq for current thread. */ | 
 | 		if (current->rseq != rseq || !current->rseq) | 
 | 			return -EINVAL; | 
 | 		if (rseq_len != sizeof(*rseq)) | 
 | 			return -EINVAL; | 
 | 		if (current->rseq_sig != sig) | 
 | 			return -EPERM; | 
 | 		ret = rseq_reset_rseq_cpu_id(current); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		current->rseq = NULL; | 
 | 		current->rseq_sig = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (current->rseq) { | 
 | 		/* | 
 | 		 * If rseq is already registered, check whether | 
 | 		 * the provided address differs from the prior | 
 | 		 * one. | 
 | 		 */ | 
 | 		if (current->rseq != rseq || rseq_len != sizeof(*rseq)) | 
 | 			return -EINVAL; | 
 | 		if (current->rseq_sig != sig) | 
 | 			return -EPERM; | 
 | 		/* Already registered. */ | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there was no rseq previously registered, | 
 | 	 * ensure the provided rseq is properly aligned and valid. | 
 | 	 */ | 
 | 	if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) || | 
 | 	    rseq_len != sizeof(*rseq)) | 
 | 		return -EINVAL; | 
 | 	if (!access_ok(rseq, rseq_len)) | 
 | 		return -EFAULT; | 
 | 	current->rseq = rseq; | 
 | 	current->rseq_sig = sig; | 
 | 	/* | 
 | 	 * If rseq was previously inactive, and has just been | 
 | 	 * registered, ensure the cpu_id_start and cpu_id fields | 
 | 	 * are updated before returning to user-space. | 
 | 	 */ | 
 | 	rseq_set_notify_resume(current); | 
 |  | 
 | 	return 0; | 
 | } |