| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * Read-Copy Update mechanism for mutual exclusion | 
 |  * | 
 |  * Copyright IBM Corporation, 2001 | 
 |  * | 
 |  * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 
 |  *	    Manfred Spraul <manfred@colorfullife.com> | 
 |  * | 
 |  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> | 
 |  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 
 |  * Papers: | 
 |  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf | 
 |  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 
 |  * | 
 |  * For detailed explanation of Read-Copy Update mechanism see - | 
 |  *		http://lse.sourceforge.net/locking/rcupdate.html | 
 |  * | 
 |  */ | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/export.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/rcupdate_wait.h> | 
 | #include <linux/sched/isolation.h> | 
 | #include <linux/kprobes.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 |  | 
 | #include "rcu.h" | 
 |  | 
 | #ifdef MODULE_PARAM_PREFIX | 
 | #undef MODULE_PARAM_PREFIX | 
 | #endif | 
 | #define MODULE_PARAM_PREFIX "rcupdate." | 
 |  | 
 | #ifndef CONFIG_TINY_RCU | 
 | extern int rcu_expedited; /* from sysctl */ | 
 | module_param(rcu_expedited, int, 0); | 
 | extern int rcu_normal; /* from sysctl */ | 
 | module_param(rcu_normal, int, 0); | 
 | static int rcu_normal_after_boot; | 
 | module_param(rcu_normal_after_boot, int, 0); | 
 | #endif /* #ifndef CONFIG_TINY_RCU */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | /** | 
 |  * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section? | 
 |  * @ret:	Best guess answer if lockdep cannot be relied on | 
 |  * | 
 |  * Returns true if lockdep must be ignored, in which case *ret contains | 
 |  * the best guess described below.  Otherwise returns false, in which | 
 |  * case *ret tells the caller nothing and the caller should instead | 
 |  * consult lockdep. | 
 |  * | 
 |  * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an | 
 |  * RCU-sched read-side critical section.  In absence of | 
 |  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side | 
 |  * critical section unless it can prove otherwise.  Note that disabling | 
 |  * of preemption (including disabling irqs) counts as an RCU-sched | 
 |  * read-side critical section.  This is useful for debug checks in functions | 
 |  * that required that they be called within an RCU-sched read-side | 
 |  * critical section. | 
 |  * | 
 |  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot | 
 |  * and while lockdep is disabled. | 
 |  * | 
 |  * Note that if the CPU is in the idle loop from an RCU point of view (ie: | 
 |  * that we are in the section between rcu_idle_enter() and rcu_idle_exit()) | 
 |  * then rcu_read_lock_held() sets *ret to false even if the CPU did an | 
 |  * rcu_read_lock().  The reason for this is that RCU ignores CPUs that are | 
 |  * in such a section, considering these as in extended quiescent state, | 
 |  * so such a CPU is effectively never in an RCU read-side critical section | 
 |  * regardless of what RCU primitives it invokes.  This state of affairs is | 
 |  * required --- we need to keep an RCU-free window in idle where the CPU may | 
 |  * possibly enter into low power mode. This way we can notice an extended | 
 |  * quiescent state to other CPUs that started a grace period. Otherwise | 
 |  * we would delay any grace period as long as we run in the idle task. | 
 |  * | 
 |  * Similarly, we avoid claiming an RCU read lock held if the current | 
 |  * CPU is offline. | 
 |  */ | 
 | static bool rcu_read_lock_held_common(bool *ret) | 
 | { | 
 | 	if (!debug_lockdep_rcu_enabled()) { | 
 | 		*ret = 1; | 
 | 		return true; | 
 | 	} | 
 | 	if (!rcu_is_watching()) { | 
 | 		*ret = 0; | 
 | 		return true; | 
 | 	} | 
 | 	if (!rcu_lockdep_current_cpu_online()) { | 
 | 		*ret = 0; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | int rcu_read_lock_sched_held(void) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	if (rcu_read_lock_held_common(&ret)) | 
 | 		return ret; | 
 | 	return lock_is_held(&rcu_sched_lock_map) || !preemptible(); | 
 | } | 
 | EXPORT_SYMBOL(rcu_read_lock_sched_held); | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_TINY_RCU | 
 |  | 
 | /* | 
 |  * Should expedited grace-period primitives always fall back to their | 
 |  * non-expedited counterparts?  Intended for use within RCU.  Note | 
 |  * that if the user specifies both rcu_expedited and rcu_normal, then | 
 |  * rcu_normal wins.  (Except during the time period during boot from | 
 |  * when the first task is spawned until the rcu_set_runtime_mode() | 
 |  * core_initcall() is invoked, at which point everything is expedited.) | 
 |  */ | 
 | bool rcu_gp_is_normal(void) | 
 | { | 
 | 	return READ_ONCE(rcu_normal) && | 
 | 	       rcu_scheduler_active != RCU_SCHEDULER_INIT; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_gp_is_normal); | 
 |  | 
 | static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); | 
 |  | 
 | /* | 
 |  * Should normal grace-period primitives be expedited?  Intended for | 
 |  * use within RCU.  Note that this function takes the rcu_expedited | 
 |  * sysfs/boot variable and rcu_scheduler_active into account as well | 
 |  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp() | 
 |  * until rcu_gp_is_expedited() returns false is a -really- bad idea. | 
 |  */ | 
 | bool rcu_gp_is_expedited(void) | 
 | { | 
 | 	return rcu_expedited || atomic_read(&rcu_expedited_nesting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); | 
 |  | 
 | /** | 
 |  * rcu_expedite_gp - Expedite future RCU grace periods | 
 |  * | 
 |  * After a call to this function, future calls to synchronize_rcu() and | 
 |  * friends act as the corresponding synchronize_rcu_expedited() function | 
 |  * had instead been called. | 
 |  */ | 
 | void rcu_expedite_gp(void) | 
 | { | 
 | 	atomic_inc(&rcu_expedited_nesting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_expedite_gp); | 
 |  | 
 | /** | 
 |  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation | 
 |  * | 
 |  * Undo a prior call to rcu_expedite_gp().  If all prior calls to | 
 |  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), | 
 |  * and if the rcu_expedited sysfs/boot parameter is not set, then all | 
 |  * subsequent calls to synchronize_rcu() and friends will return to | 
 |  * their normal non-expedited behavior. | 
 |  */ | 
 | void rcu_unexpedite_gp(void) | 
 | { | 
 | 	atomic_dec(&rcu_expedited_nesting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); | 
 |  | 
 | /* | 
 |  * Inform RCU of the end of the in-kernel boot sequence. | 
 |  */ | 
 | void rcu_end_inkernel_boot(void) | 
 | { | 
 | 	rcu_unexpedite_gp(); | 
 | 	if (rcu_normal_after_boot) | 
 | 		WRITE_ONCE(rcu_normal, 1); | 
 | } | 
 |  | 
 | #endif /* #ifndef CONFIG_TINY_RCU */ | 
 |  | 
 | /* | 
 |  * Test each non-SRCU synchronous grace-period wait API.  This is | 
 |  * useful just after a change in mode for these primitives, and | 
 |  * during early boot. | 
 |  */ | 
 | void rcu_test_sync_prims(void) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_PROVE_RCU)) | 
 | 		return; | 
 | 	synchronize_rcu(); | 
 | 	synchronize_rcu_expedited(); | 
 | } | 
 |  | 
 | #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) | 
 |  | 
 | /* | 
 |  * Switch to run-time mode once RCU has fully initialized. | 
 |  */ | 
 | static int __init rcu_set_runtime_mode(void) | 
 | { | 
 | 	rcu_test_sync_prims(); | 
 | 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING; | 
 | 	rcu_test_sync_prims(); | 
 | 	return 0; | 
 | } | 
 | core_initcall(rcu_set_runtime_mode); | 
 |  | 
 | #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | static struct lock_class_key rcu_lock_key; | 
 | struct lockdep_map rcu_lock_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | 
 | EXPORT_SYMBOL_GPL(rcu_lock_map); | 
 |  | 
 | static struct lock_class_key rcu_bh_lock_key; | 
 | struct lockdep_map rcu_bh_lock_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); | 
 | EXPORT_SYMBOL_GPL(rcu_bh_lock_map); | 
 |  | 
 | static struct lock_class_key rcu_sched_lock_key; | 
 | struct lockdep_map rcu_sched_lock_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); | 
 | EXPORT_SYMBOL_GPL(rcu_sched_lock_map); | 
 |  | 
 | static struct lock_class_key rcu_callback_key; | 
 | struct lockdep_map rcu_callback_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); | 
 | EXPORT_SYMBOL_GPL(rcu_callback_map); | 
 |  | 
 | int notrace debug_lockdep_rcu_enabled(void) | 
 | { | 
 | 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && | 
 | 	       current->lockdep_recursion == 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); | 
 | NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled); | 
 |  | 
 | /** | 
 |  * rcu_read_lock_held() - might we be in RCU read-side critical section? | 
 |  * | 
 |  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU | 
 |  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC, | 
 |  * this assumes we are in an RCU read-side critical section unless it can | 
 |  * prove otherwise.  This is useful for debug checks in functions that | 
 |  * require that they be called within an RCU read-side critical section. | 
 |  * | 
 |  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot | 
 |  * and while lockdep is disabled. | 
 |  * | 
 |  * Note that rcu_read_lock() and the matching rcu_read_unlock() must | 
 |  * occur in the same context, for example, it is illegal to invoke | 
 |  * rcu_read_unlock() in process context if the matching rcu_read_lock() | 
 |  * was invoked from within an irq handler. | 
 |  * | 
 |  * Note that rcu_read_lock() is disallowed if the CPU is either idle or | 
 |  * offline from an RCU perspective, so check for those as well. | 
 |  */ | 
 | int rcu_read_lock_held(void) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	if (rcu_read_lock_held_common(&ret)) | 
 | 		return ret; | 
 | 	return lock_is_held(&rcu_lock_map); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_read_lock_held); | 
 |  | 
 | /** | 
 |  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? | 
 |  * | 
 |  * Check for bottom half being disabled, which covers both the | 
 |  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses | 
 |  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) | 
 |  * will show the situation.  This is useful for debug checks in functions | 
 |  * that require that they be called within an RCU read-side critical | 
 |  * section. | 
 |  * | 
 |  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. | 
 |  * | 
 |  * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or | 
 |  * offline from an RCU perspective, so check for those as well. | 
 |  */ | 
 | int rcu_read_lock_bh_held(void) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	if (rcu_read_lock_held_common(&ret)) | 
 | 		return ret; | 
 | 	return in_softirq() || irqs_disabled(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); | 
 |  | 
 | int rcu_read_lock_any_held(void) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	if (rcu_read_lock_held_common(&ret)) | 
 | 		return ret; | 
 | 	if (lock_is_held(&rcu_lock_map) || | 
 | 	    lock_is_held(&rcu_bh_lock_map) || | 
 | 	    lock_is_held(&rcu_sched_lock_map)) | 
 | 		return 1; | 
 | 	return !preemptible(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_read_lock_any_held); | 
 |  | 
 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | 
 |  | 
 | /** | 
 |  * wakeme_after_rcu() - Callback function to awaken a task after grace period | 
 |  * @head: Pointer to rcu_head member within rcu_synchronize structure | 
 |  * | 
 |  * Awaken the corresponding task now that a grace period has elapsed. | 
 |  */ | 
 | void wakeme_after_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct rcu_synchronize *rcu; | 
 |  | 
 | 	rcu = container_of(head, struct rcu_synchronize, head); | 
 | 	complete(&rcu->completion); | 
 | } | 
 | EXPORT_SYMBOL_GPL(wakeme_after_rcu); | 
 |  | 
 | void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, | 
 | 		   struct rcu_synchronize *rs_array) | 
 | { | 
 | 	int i; | 
 | 	int j; | 
 |  | 
 | 	/* Initialize and register callbacks for each crcu_array element. */ | 
 | 	for (i = 0; i < n; i++) { | 
 | 		if (checktiny && | 
 | 		    (crcu_array[i] == call_rcu)) { | 
 | 			might_sleep(); | 
 | 			continue; | 
 | 		} | 
 | 		init_rcu_head_on_stack(&rs_array[i].head); | 
 | 		init_completion(&rs_array[i].completion); | 
 | 		for (j = 0; j < i; j++) | 
 | 			if (crcu_array[j] == crcu_array[i]) | 
 | 				break; | 
 | 		if (j == i) | 
 | 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); | 
 | 	} | 
 |  | 
 | 	/* Wait for all callbacks to be invoked. */ | 
 | 	for (i = 0; i < n; i++) { | 
 | 		if (checktiny && | 
 | 		    (crcu_array[i] == call_rcu)) | 
 | 			continue; | 
 | 		for (j = 0; j < i; j++) | 
 | 			if (crcu_array[j] == crcu_array[i]) | 
 | 				break; | 
 | 		if (j == i) | 
 | 			wait_for_completion(&rs_array[i].completion); | 
 | 		destroy_rcu_head_on_stack(&rs_array[i].head); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(__wait_rcu_gp); | 
 |  | 
 | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | 
 | void init_rcu_head(struct rcu_head *head) | 
 | { | 
 | 	debug_object_init(head, &rcuhead_debug_descr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(init_rcu_head); | 
 |  | 
 | void destroy_rcu_head(struct rcu_head *head) | 
 | { | 
 | 	debug_object_free(head, &rcuhead_debug_descr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(destroy_rcu_head); | 
 |  | 
 | static bool rcuhead_is_static_object(void *addr) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects | 
 |  * @head: pointer to rcu_head structure to be initialized | 
 |  * | 
 |  * This function informs debugobjects of a new rcu_head structure that | 
 |  * has been allocated as an auto variable on the stack.  This function | 
 |  * is not required for rcu_head structures that are statically defined or | 
 |  * that are dynamically allocated on the heap.  This function has no | 
 |  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | 
 |  */ | 
 | void init_rcu_head_on_stack(struct rcu_head *head) | 
 | { | 
 | 	debug_object_init_on_stack(head, &rcuhead_debug_descr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); | 
 |  | 
 | /** | 
 |  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects | 
 |  * @head: pointer to rcu_head structure to be initialized | 
 |  * | 
 |  * This function informs debugobjects that an on-stack rcu_head structure | 
 |  * is about to go out of scope.  As with init_rcu_head_on_stack(), this | 
 |  * function is not required for rcu_head structures that are statically | 
 |  * defined or that are dynamically allocated on the heap.  Also as with | 
 |  * init_rcu_head_on_stack(), this function has no effect for | 
 |  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | 
 |  */ | 
 | void destroy_rcu_head_on_stack(struct rcu_head *head) | 
 | { | 
 | 	debug_object_free(head, &rcuhead_debug_descr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); | 
 |  | 
 | struct debug_obj_descr rcuhead_debug_descr = { | 
 | 	.name = "rcu_head", | 
 | 	.is_static_object = rcuhead_is_static_object, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(rcuhead_debug_descr); | 
 | #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ | 
 |  | 
 | #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) | 
 | void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, | 
 | 			       unsigned long secs, | 
 | 			       unsigned long c_old, unsigned long c) | 
 | { | 
 | 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); | 
 | } | 
 | EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); | 
 | #else | 
 | #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ | 
 | 	do { } while (0) | 
 | #endif | 
 |  | 
 | #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) | 
 | /* Get rcutorture access to sched_setaffinity(). */ | 
 | long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = sched_setaffinity(pid, in_mask); | 
 | 	WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RCU_STALL_COMMON | 
 | int rcu_cpu_stall_ftrace_dump __read_mostly; | 
 | module_param(rcu_cpu_stall_ftrace_dump, int, 0644); | 
 | int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ | 
 | EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); | 
 | module_param(rcu_cpu_stall_suppress, int, 0644); | 
 | int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; | 
 | module_param(rcu_cpu_stall_timeout, int, 0644); | 
 | #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ | 
 |  | 
 | #ifdef CONFIG_TASKS_RCU | 
 |  | 
 | /* | 
 |  * Simple variant of RCU whose quiescent states are voluntary context | 
 |  * switch, cond_resched_rcu_qs(), user-space execution, and idle. | 
 |  * As such, grace periods can take one good long time.  There are no | 
 |  * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() | 
 |  * because this implementation is intended to get the system into a safe | 
 |  * state for some of the manipulations involved in tracing and the like. | 
 |  * Finally, this implementation does not support high call_rcu_tasks() | 
 |  * rates from multiple CPUs.  If this is required, per-CPU callback lists | 
 |  * will be needed. | 
 |  */ | 
 |  | 
 | /* Global list of callbacks and associated lock. */ | 
 | static struct rcu_head *rcu_tasks_cbs_head; | 
 | static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; | 
 | static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); | 
 | static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); | 
 |  | 
 | /* Track exiting tasks in order to allow them to be waited for. */ | 
 | DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); | 
 |  | 
 | /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */ | 
 | #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) | 
 | static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; | 
 | module_param(rcu_task_stall_timeout, int, 0644); | 
 |  | 
 | static struct task_struct *rcu_tasks_kthread_ptr; | 
 |  | 
 | /** | 
 |  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period | 
 |  * @rhp: structure to be used for queueing the RCU updates. | 
 |  * @func: actual callback function to be invoked after the grace period | 
 |  * | 
 |  * The callback function will be invoked some time after a full grace | 
 |  * period elapses, in other words after all currently executing RCU | 
 |  * read-side critical sections have completed. call_rcu_tasks() assumes | 
 |  * that the read-side critical sections end at a voluntary context | 
 |  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, | 
 |  * or transition to usermode execution.  As such, there are no read-side | 
 |  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because | 
 |  * this primitive is intended to determine that all tasks have passed | 
 |  * through a safe state, not so much for data-strcuture synchronization. | 
 |  * | 
 |  * See the description of call_rcu() for more detailed information on | 
 |  * memory ordering guarantees. | 
 |  */ | 
 | void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool needwake; | 
 |  | 
 | 	rhp->next = NULL; | 
 | 	rhp->func = func; | 
 | 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); | 
 | 	needwake = !rcu_tasks_cbs_head; | 
 | 	*rcu_tasks_cbs_tail = rhp; | 
 | 	rcu_tasks_cbs_tail = &rhp->next; | 
 | 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); | 
 | 	/* We can't create the thread unless interrupts are enabled. */ | 
 | 	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) | 
 | 		wake_up(&rcu_tasks_cbs_wq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(call_rcu_tasks); | 
 |  | 
 | /** | 
 |  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. | 
 |  * | 
 |  * Control will return to the caller some time after a full rcu-tasks | 
 |  * grace period has elapsed, in other words after all currently | 
 |  * executing rcu-tasks read-side critical sections have elapsed.  These | 
 |  * read-side critical sections are delimited by calls to schedule(), | 
 |  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls | 
 |  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). | 
 |  * | 
 |  * This is a very specialized primitive, intended only for a few uses in | 
 |  * tracing and other situations requiring manipulation of function | 
 |  * preambles and profiling hooks.  The synchronize_rcu_tasks() function | 
 |  * is not (yet) intended for heavy use from multiple CPUs. | 
 |  * | 
 |  * Note that this guarantee implies further memory-ordering guarantees. | 
 |  * On systems with more than one CPU, when synchronize_rcu_tasks() returns, | 
 |  * each CPU is guaranteed to have executed a full memory barrier since the | 
 |  * end of its last RCU-tasks read-side critical section whose beginning | 
 |  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU | 
 |  * having an RCU-tasks read-side critical section that extends beyond | 
 |  * the return from synchronize_rcu_tasks() is guaranteed to have executed | 
 |  * a full memory barrier after the beginning of synchronize_rcu_tasks() | 
 |  * and before the beginning of that RCU-tasks read-side critical section. | 
 |  * Note that these guarantees include CPUs that are offline, idle, or | 
 |  * executing in user mode, as well as CPUs that are executing in the kernel. | 
 |  * | 
 |  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned | 
 |  * to its caller on CPU B, then both CPU A and CPU B are guaranteed | 
 |  * to have executed a full memory barrier during the execution of | 
 |  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU | 
 |  * (but again only if the system has more than one CPU). | 
 |  */ | 
 | void synchronize_rcu_tasks(void) | 
 | { | 
 | 	/* Complain if the scheduler has not started.  */ | 
 | 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, | 
 | 			 "synchronize_rcu_tasks called too soon"); | 
 |  | 
 | 	/* Wait for the grace period. */ | 
 | 	wait_rcu_gp(call_rcu_tasks); | 
 | } | 
 | EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); | 
 |  | 
 | /** | 
 |  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. | 
 |  * | 
 |  * Although the current implementation is guaranteed to wait, it is not | 
 |  * obligated to, for example, if there are no pending callbacks. | 
 |  */ | 
 | void rcu_barrier_tasks(void) | 
 | { | 
 | 	/* There is only one callback queue, so this is easy.  ;-) */ | 
 | 	synchronize_rcu_tasks(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_barrier_tasks); | 
 |  | 
 | /* See if tasks are still holding out, complain if so. */ | 
 | static void check_holdout_task(struct task_struct *t, | 
 | 			       bool needreport, bool *firstreport) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (!READ_ONCE(t->rcu_tasks_holdout) || | 
 | 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || | 
 | 	    !READ_ONCE(t->on_rq) || | 
 | 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) && | 
 | 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { | 
 | 		WRITE_ONCE(t->rcu_tasks_holdout, false); | 
 | 		list_del_init(&t->rcu_tasks_holdout_list); | 
 | 		put_task_struct(t); | 
 | 		return; | 
 | 	} | 
 | 	rcu_request_urgent_qs_task(t); | 
 | 	if (!needreport) | 
 | 		return; | 
 | 	if (*firstreport) { | 
 | 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); | 
 | 		*firstreport = false; | 
 | 	} | 
 | 	cpu = task_cpu(t); | 
 | 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", | 
 | 		 t, ".I"[is_idle_task(t)], | 
 | 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], | 
 | 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, | 
 | 		 t->rcu_tasks_idle_cpu, cpu); | 
 | 	sched_show_task(t); | 
 | } | 
 |  | 
 | /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ | 
 | static int __noreturn rcu_tasks_kthread(void *arg) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct task_struct *g, *t; | 
 | 	unsigned long lastreport; | 
 | 	struct rcu_head *list; | 
 | 	struct rcu_head *next; | 
 | 	LIST_HEAD(rcu_tasks_holdouts); | 
 | 	int fract; | 
 |  | 
 | 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */ | 
 | 	housekeeping_affine(current, HK_FLAG_RCU); | 
 |  | 
 | 	/* | 
 | 	 * Each pass through the following loop makes one check for | 
 | 	 * newly arrived callbacks, and, if there are some, waits for | 
 | 	 * one RCU-tasks grace period and then invokes the callbacks. | 
 | 	 * This loop is terminated by the system going down.  ;-) | 
 | 	 */ | 
 | 	for (;;) { | 
 |  | 
 | 		/* Pick up any new callbacks. */ | 
 | 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); | 
 | 		list = rcu_tasks_cbs_head; | 
 | 		rcu_tasks_cbs_head = NULL; | 
 | 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; | 
 | 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); | 
 |  | 
 | 		/* If there were none, wait a bit and start over. */ | 
 | 		if (!list) { | 
 | 			wait_event_interruptible(rcu_tasks_cbs_wq, | 
 | 						 rcu_tasks_cbs_head); | 
 | 			if (!rcu_tasks_cbs_head) { | 
 | 				WARN_ON(signal_pending(current)); | 
 | 				schedule_timeout_interruptible(HZ/10); | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Wait for all pre-existing t->on_rq and t->nvcsw | 
 | 		 * transitions to complete.  Invoking synchronize_rcu() | 
 | 		 * suffices because all these transitions occur with | 
 | 		 * interrupts disabled.  Without this synchronize_rcu(), | 
 | 		 * a read-side critical section that started before the | 
 | 		 * grace period might be incorrectly seen as having started | 
 | 		 * after the grace period. | 
 | 		 * | 
 | 		 * This synchronize_rcu() also dispenses with the | 
 | 		 * need for a memory barrier on the first store to | 
 | 		 * ->rcu_tasks_holdout, as it forces the store to happen | 
 | 		 * after the beginning of the grace period. | 
 | 		 */ | 
 | 		synchronize_rcu(); | 
 |  | 
 | 		/* | 
 | 		 * There were callbacks, so we need to wait for an | 
 | 		 * RCU-tasks grace period.  Start off by scanning | 
 | 		 * the task list for tasks that are not already | 
 | 		 * voluntarily blocked.  Mark these tasks and make | 
 | 		 * a list of them in rcu_tasks_holdouts. | 
 | 		 */ | 
 | 		rcu_read_lock(); | 
 | 		for_each_process_thread(g, t) { | 
 | 			if (t != current && READ_ONCE(t->on_rq) && | 
 | 			    !is_idle_task(t)) { | 
 | 				get_task_struct(t); | 
 | 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); | 
 | 				WRITE_ONCE(t->rcu_tasks_holdout, true); | 
 | 				list_add(&t->rcu_tasks_holdout_list, | 
 | 					 &rcu_tasks_holdouts); | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		/* | 
 | 		 * Wait for tasks that are in the process of exiting. | 
 | 		 * This does only part of the job, ensuring that all | 
 | 		 * tasks that were previously exiting reach the point | 
 | 		 * where they have disabled preemption, allowing the | 
 | 		 * later synchronize_rcu() to finish the job. | 
 | 		 */ | 
 | 		synchronize_srcu(&tasks_rcu_exit_srcu); | 
 |  | 
 | 		/* | 
 | 		 * Each pass through the following loop scans the list | 
 | 		 * of holdout tasks, removing any that are no longer | 
 | 		 * holdouts.  When the list is empty, we are done. | 
 | 		 */ | 
 | 		lastreport = jiffies; | 
 |  | 
 | 		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ | 
 | 		fract = 10; | 
 |  | 
 | 		for (;;) { | 
 | 			bool firstreport; | 
 | 			bool needreport; | 
 | 			int rtst; | 
 | 			struct task_struct *t1; | 
 |  | 
 | 			if (list_empty(&rcu_tasks_holdouts)) | 
 | 				break; | 
 |  | 
 | 			/* Slowly back off waiting for holdouts */ | 
 | 			schedule_timeout_interruptible(HZ/fract); | 
 |  | 
 | 			if (fract > 1) | 
 | 				fract--; | 
 |  | 
 | 			rtst = READ_ONCE(rcu_task_stall_timeout); | 
 | 			needreport = rtst > 0 && | 
 | 				     time_after(jiffies, lastreport + rtst); | 
 | 			if (needreport) | 
 | 				lastreport = jiffies; | 
 | 			firstreport = true; | 
 | 			WARN_ON(signal_pending(current)); | 
 | 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, | 
 | 						rcu_tasks_holdout_list) { | 
 | 				check_holdout_task(t, needreport, &firstreport); | 
 | 				cond_resched(); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Because ->on_rq and ->nvcsw are not guaranteed | 
 | 		 * to have a full memory barriers prior to them in the | 
 | 		 * schedule() path, memory reordering on other CPUs could | 
 | 		 * cause their RCU-tasks read-side critical sections to | 
 | 		 * extend past the end of the grace period.  However, | 
 | 		 * because these ->nvcsw updates are carried out with | 
 | 		 * interrupts disabled, we can use synchronize_rcu() | 
 | 		 * to force the needed ordering on all such CPUs. | 
 | 		 * | 
 | 		 * This synchronize_rcu() also confines all | 
 | 		 * ->rcu_tasks_holdout accesses to be within the grace | 
 | 		 * period, avoiding the need for memory barriers for | 
 | 		 * ->rcu_tasks_holdout accesses. | 
 | 		 * | 
 | 		 * In addition, this synchronize_rcu() waits for exiting | 
 | 		 * tasks to complete their final preempt_disable() region | 
 | 		 * of execution, cleaning up after the synchronize_srcu() | 
 | 		 * above. | 
 | 		 */ | 
 | 		synchronize_rcu(); | 
 |  | 
 | 		/* Invoke the callbacks. */ | 
 | 		while (list) { | 
 | 			next = list->next; | 
 | 			local_bh_disable(); | 
 | 			list->func(list); | 
 | 			local_bh_enable(); | 
 | 			list = next; | 
 | 			cond_resched(); | 
 | 		} | 
 | 		/* Paranoid sleep to keep this from entering a tight loop */ | 
 | 		schedule_timeout_uninterruptible(HZ/10); | 
 | 	} | 
 | } | 
 |  | 
 | /* Spawn rcu_tasks_kthread() at core_initcall() time. */ | 
 | static int __init rcu_spawn_tasks_kthread(void) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); | 
 | 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) | 
 | 		return 0; | 
 | 	smp_mb(); /* Ensure others see full kthread. */ | 
 | 	WRITE_ONCE(rcu_tasks_kthread_ptr, t); | 
 | 	return 0; | 
 | } | 
 | core_initcall(rcu_spawn_tasks_kthread); | 
 |  | 
 | /* Do the srcu_read_lock() for the above synchronize_srcu().  */ | 
 | void exit_tasks_rcu_start(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* Do the srcu_read_unlock() for the above synchronize_srcu().  */ | 
 | void exit_tasks_rcu_finish(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
 |  | 
 | #ifndef CONFIG_TINY_RCU | 
 |  | 
 | /* | 
 |  * Print any non-default Tasks RCU settings. | 
 |  */ | 
 | static void __init rcu_tasks_bootup_oddness(void) | 
 | { | 
 | #ifdef CONFIG_TASKS_RCU | 
 | 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) | 
 | 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); | 
 | 	else | 
 | 		pr_info("\tTasks RCU enabled.\n"); | 
 | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
 | } | 
 |  | 
 | #endif /* #ifndef CONFIG_TINY_RCU */ | 
 |  | 
 | #ifdef CONFIG_PROVE_RCU | 
 |  | 
 | /* | 
 |  * Early boot self test parameters. | 
 |  */ | 
 | static bool rcu_self_test; | 
 | module_param(rcu_self_test, bool, 0444); | 
 |  | 
 | static int rcu_self_test_counter; | 
 |  | 
 | static void test_callback(struct rcu_head *r) | 
 | { | 
 | 	rcu_self_test_counter++; | 
 | 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter); | 
 | } | 
 |  | 
 | DEFINE_STATIC_SRCU(early_srcu); | 
 |  | 
 | static void early_boot_test_call_rcu(void) | 
 | { | 
 | 	static struct rcu_head head; | 
 | 	static struct rcu_head shead; | 
 |  | 
 | 	call_rcu(&head, test_callback); | 
 | 	if (IS_ENABLED(CONFIG_SRCU)) | 
 | 		call_srcu(&early_srcu, &shead, test_callback); | 
 | } | 
 |  | 
 | void rcu_early_boot_tests(void) | 
 | { | 
 | 	pr_info("Running RCU self tests\n"); | 
 |  | 
 | 	if (rcu_self_test) | 
 | 		early_boot_test_call_rcu(); | 
 | 	rcu_test_sync_prims(); | 
 | } | 
 |  | 
 | static int rcu_verify_early_boot_tests(void) | 
 | { | 
 | 	int ret = 0; | 
 | 	int early_boot_test_counter = 0; | 
 |  | 
 | 	if (rcu_self_test) { | 
 | 		early_boot_test_counter++; | 
 | 		rcu_barrier(); | 
 | 		if (IS_ENABLED(CONFIG_SRCU)) { | 
 | 			early_boot_test_counter++; | 
 | 			srcu_barrier(&early_srcu); | 
 | 		} | 
 | 	} | 
 | 	if (rcu_self_test_counter != early_boot_test_counter) { | 
 | 		WARN_ON(1); | 
 | 		ret = -1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | late_initcall(rcu_verify_early_boot_tests); | 
 | #else | 
 | void rcu_early_boot_tests(void) {} | 
 | #endif /* CONFIG_PROVE_RCU */ | 
 |  | 
 | #ifndef CONFIG_TINY_RCU | 
 |  | 
 | /* | 
 |  * Print any significant non-default boot-time settings. | 
 |  */ | 
 | void __init rcupdate_announce_bootup_oddness(void) | 
 | { | 
 | 	if (rcu_normal) | 
 | 		pr_info("\tNo expedited grace period (rcu_normal).\n"); | 
 | 	else if (rcu_normal_after_boot) | 
 | 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); | 
 | 	else if (rcu_expedited) | 
 | 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); | 
 | 	if (rcu_cpu_stall_suppress) | 
 | 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); | 
 | 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) | 
 | 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); | 
 | 	rcu_tasks_bootup_oddness(); | 
 | } | 
 |  | 
 | #endif /* #ifndef CONFIG_TINY_RCU */ |