| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2008, 2009 Intel Corporation | 
 |  * Authors: Andi Kleen, Fengguang Wu | 
 |  * | 
 |  * High level machine check handler. Handles pages reported by the | 
 |  * hardware as being corrupted usually due to a multi-bit ECC memory or cache | 
 |  * failure. | 
 |  *  | 
 |  * In addition there is a "soft offline" entry point that allows stop using | 
 |  * not-yet-corrupted-by-suspicious pages without killing anything. | 
 |  * | 
 |  * Handles page cache pages in various states.	The tricky part | 
 |  * here is that we can access any page asynchronously in respect to  | 
 |  * other VM users, because memory failures could happen anytime and  | 
 |  * anywhere. This could violate some of their assumptions. This is why  | 
 |  * this code has to be extremely careful. Generally it tries to use  | 
 |  * normal locking rules, as in get the standard locks, even if that means  | 
 |  * the error handling takes potentially a long time. | 
 |  * | 
 |  * It can be very tempting to add handling for obscure cases here. | 
 |  * In general any code for handling new cases should only be added iff: | 
 |  * - You know how to test it. | 
 |  * - You have a test that can be added to mce-test | 
 |  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ | 
 |  * - The case actually shows up as a frequent (top 10) page state in | 
 |  *   tools/vm/page-types when running a real workload. | 
 |  *  | 
 |  * There are several operations here with exponential complexity because | 
 |  * of unsuitable VM data structures. For example the operation to map back  | 
 |  * from RMAP chains to processes has to walk the complete process list and  | 
 |  * has non linear complexity with the number. But since memory corruptions | 
 |  * are rare we hope to get away with this. This avoids impacting the core  | 
 |  * VM. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/kernel-page-flags.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/export.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/memory_hotplug.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/kfifo.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/page-isolation.h> | 
 | #include "internal.h" | 
 | #include "ras/ras_event.h" | 
 |  | 
 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 
 |  | 
 | int sysctl_memory_failure_recovery __read_mostly = 1; | 
 |  | 
 | atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); | 
 |  | 
 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) | 
 |  | 
 | u32 hwpoison_filter_enable = 0; | 
 | u32 hwpoison_filter_dev_major = ~0U; | 
 | u32 hwpoison_filter_dev_minor = ~0U; | 
 | u64 hwpoison_filter_flags_mask; | 
 | u64 hwpoison_filter_flags_value; | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | 
 |  | 
 | static int hwpoison_filter_dev(struct page *p) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	dev_t dev; | 
 |  | 
 | 	if (hwpoison_filter_dev_major == ~0U && | 
 | 	    hwpoison_filter_dev_minor == ~0U) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * page_mapping() does not accept slab pages. | 
 | 	 */ | 
 | 	if (PageSlab(p)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mapping = page_mapping(p); | 
 | 	if (mapping == NULL || mapping->host == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dev = mapping->host->i_sb->s_dev; | 
 | 	if (hwpoison_filter_dev_major != ~0U && | 
 | 	    hwpoison_filter_dev_major != MAJOR(dev)) | 
 | 		return -EINVAL; | 
 | 	if (hwpoison_filter_dev_minor != ~0U && | 
 | 	    hwpoison_filter_dev_minor != MINOR(dev)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hwpoison_filter_flags(struct page *p) | 
 | { | 
 | 	if (!hwpoison_filter_flags_mask) | 
 | 		return 0; | 
 |  | 
 | 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | 
 | 				    hwpoison_filter_flags_value) | 
 | 		return 0; | 
 | 	else | 
 | 		return -EINVAL; | 
 | } | 
 |  | 
 | /* | 
 |  * This allows stress tests to limit test scope to a collection of tasks | 
 |  * by putting them under some memcg. This prevents killing unrelated/important | 
 |  * processes such as /sbin/init. Note that the target task may share clean | 
 |  * pages with init (eg. libc text), which is harmless. If the target task | 
 |  * share _dirty_ pages with another task B, the test scheme must make sure B | 
 |  * is also included in the memcg. At last, due to race conditions this filter | 
 |  * can only guarantee that the page either belongs to the memcg tasks, or is | 
 |  * a freed page. | 
 |  */ | 
 | #ifdef CONFIG_MEMCG | 
 | u64 hwpoison_filter_memcg; | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | 
 | static int hwpoison_filter_task(struct page *p) | 
 | { | 
 | 	if (!hwpoison_filter_memcg) | 
 | 		return 0; | 
 |  | 
 | 	if (page_cgroup_ino(p) != hwpoison_filter_memcg) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int hwpoison_filter_task(struct page *p) { return 0; } | 
 | #endif | 
 |  | 
 | int hwpoison_filter(struct page *p) | 
 | { | 
 | 	if (!hwpoison_filter_enable) | 
 | 		return 0; | 
 |  | 
 | 	if (hwpoison_filter_dev(p)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (hwpoison_filter_flags(p)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (hwpoison_filter_task(p)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | int hwpoison_filter(struct page *p) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | EXPORT_SYMBOL_GPL(hwpoison_filter); | 
 |  | 
 | /* | 
 |  * Kill all processes that have a poisoned page mapped and then isolate | 
 |  * the page. | 
 |  * | 
 |  * General strategy: | 
 |  * Find all processes having the page mapped and kill them. | 
 |  * But we keep a page reference around so that the page is not | 
 |  * actually freed yet. | 
 |  * Then stash the page away | 
 |  * | 
 |  * There's no convenient way to get back to mapped processes | 
 |  * from the VMAs. So do a brute-force search over all | 
 |  * running processes. | 
 |  * | 
 |  * Remember that machine checks are not common (or rather | 
 |  * if they are common you have other problems), so this shouldn't | 
 |  * be a performance issue. | 
 |  * | 
 |  * Also there are some races possible while we get from the | 
 |  * error detection to actually handle it. | 
 |  */ | 
 |  | 
 | struct to_kill { | 
 | 	struct list_head nd; | 
 | 	struct task_struct *tsk; | 
 | 	unsigned long addr; | 
 | 	short size_shift; | 
 | }; | 
 |  | 
 | /* | 
 |  * Send all the processes who have the page mapped a signal. | 
 |  * ``action optional'' if they are not immediately affected by the error | 
 |  * ``action required'' if error happened in current execution context | 
 |  */ | 
 | static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) | 
 | { | 
 | 	struct task_struct *t = tk->tsk; | 
 | 	short addr_lsb = tk->size_shift; | 
 | 	int ret; | 
 |  | 
 | 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", | 
 | 		pfn, t->comm, t->pid); | 
 |  | 
 | 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { | 
 | 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, | 
 | 				       addr_lsb); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Don't use force here, it's convenient if the signal | 
 | 		 * can be temporarily blocked. | 
 | 		 * This could cause a loop when the user sets SIGBUS | 
 | 		 * to SIG_IGN, but hopefully no one will do that? | 
 | 		 */ | 
 | 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, | 
 | 				      addr_lsb, t);  /* synchronous? */ | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n", | 
 | 			t->comm, t->pid, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * When a unknown page type is encountered drain as many buffers as possible | 
 |  * in the hope to turn the page into a LRU or free page, which we can handle. | 
 |  */ | 
 | void shake_page(struct page *p, int access) | 
 | { | 
 | 	if (PageHuge(p)) | 
 | 		return; | 
 |  | 
 | 	if (!PageSlab(p)) { | 
 | 		lru_add_drain_all(); | 
 | 		if (PageLRU(p)) | 
 | 			return; | 
 | 		drain_all_pages(page_zone(p)); | 
 | 		if (PageLRU(p) || is_free_buddy_page(p)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only call shrink_node_slabs here (which would also shrink | 
 | 	 * other caches) if access is not potentially fatal. | 
 | 	 */ | 
 | 	if (access) | 
 | 		drop_slab_node(page_to_nid(p)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(shake_page); | 
 |  | 
 | static unsigned long dev_pagemap_mapping_shift(struct page *page, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long address = vma_address(page, vma); | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	pgd = pgd_offset(vma->vm_mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		return 0; | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (!p4d_present(*p4d)) | 
 | 		return 0; | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		return 0; | 
 | 	if (pud_devmap(*pud)) | 
 | 		return PUD_SHIFT; | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		return 0; | 
 | 	if (pmd_devmap(*pmd)) | 
 | 		return PMD_SHIFT; | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	if (!pte_present(*pte)) | 
 | 		return 0; | 
 | 	if (pte_devmap(*pte)) | 
 | 		return PAGE_SHIFT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Failure handling: if we can't find or can't kill a process there's | 
 |  * not much we can do.	We just print a message and ignore otherwise. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Schedule a process for later kill. | 
 |  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | 
 |  * TBD would GFP_NOIO be enough? | 
 |  */ | 
 | static void add_to_kill(struct task_struct *tsk, struct page *p, | 
 | 		       struct vm_area_struct *vma, | 
 | 		       struct list_head *to_kill, | 
 | 		       struct to_kill **tkc) | 
 | { | 
 | 	struct to_kill *tk; | 
 |  | 
 | 	if (*tkc) { | 
 | 		tk = *tkc; | 
 | 		*tkc = NULL; | 
 | 	} else { | 
 | 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | 
 | 		if (!tk) { | 
 | 			pr_err("Memory failure: Out of memory while machine check handling\n"); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	tk->addr = page_address_in_vma(p, vma); | 
 | 	if (is_zone_device_page(p)) | 
 | 		tk->size_shift = dev_pagemap_mapping_shift(p, vma); | 
 | 	else | 
 | 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as | 
 | 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(), | 
 | 	 * so "tk->size_shift == 0" effectively checks no mapping on | 
 | 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times | 
 | 	 * to a process' address space, it's possible not all N VMAs | 
 | 	 * contain mappings for the page, but at least one VMA does. | 
 | 	 * Only deliver SIGBUS with payload derived from the VMA that | 
 | 	 * has a mapping for the page. | 
 | 	 */ | 
 | 	if (tk->addr == -EFAULT) { | 
 | 		pr_info("Memory failure: Unable to find user space address %lx in %s\n", | 
 | 			page_to_pfn(p), tsk->comm); | 
 | 	} else if (tk->size_shift == 0) { | 
 | 		kfree(tk); | 
 | 		return; | 
 | 	} | 
 | 	get_task_struct(tsk); | 
 | 	tk->tsk = tsk; | 
 | 	list_add_tail(&tk->nd, to_kill); | 
 | } | 
 |  | 
 | /* | 
 |  * Kill the processes that have been collected earlier. | 
 |  * | 
 |  * Only do anything when DOIT is set, otherwise just free the list | 
 |  * (this is used for clean pages which do not need killing) | 
 |  * Also when FAIL is set do a force kill because something went | 
 |  * wrong earlier. | 
 |  */ | 
 | static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, | 
 | 		unsigned long pfn, int flags) | 
 | { | 
 | 	struct to_kill *tk, *next; | 
 |  | 
 | 	list_for_each_entry_safe (tk, next, to_kill, nd) { | 
 | 		if (forcekill) { | 
 | 			/* | 
 | 			 * In case something went wrong with munmapping | 
 | 			 * make sure the process doesn't catch the | 
 | 			 * signal and then access the memory. Just kill it. | 
 | 			 */ | 
 | 			if (fail || tk->addr == -EFAULT) { | 
 | 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | 
 | 				       pfn, tk->tsk->comm, tk->tsk->pid); | 
 | 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV, | 
 | 						 tk->tsk, PIDTYPE_PID); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * In theory the process could have mapped | 
 | 			 * something else on the address in-between. We could | 
 | 			 * check for that, but we need to tell the | 
 | 			 * process anyways. | 
 | 			 */ | 
 | 			else if (kill_proc(tk, pfn, flags) < 0) | 
 | 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", | 
 | 				       pfn, tk->tsk->comm, tk->tsk->pid); | 
 | 		} | 
 | 		put_task_struct(tk->tsk); | 
 | 		kfree(tk); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) | 
 |  * on behalf of the thread group. Return task_struct of the (first found) | 
 |  * dedicated thread if found, and return NULL otherwise. | 
 |  * | 
 |  * We already hold read_lock(&tasklist_lock) in the caller, so we don't | 
 |  * have to call rcu_read_lock/unlock() in this function. | 
 |  */ | 
 | static struct task_struct *find_early_kill_thread(struct task_struct *tsk) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	for_each_thread(tsk, t) | 
 | 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) | 
 | 			return t; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine whether a given process is "early kill" process which expects | 
 |  * to be signaled when some page under the process is hwpoisoned. | 
 |  * Return task_struct of the dedicated thread (main thread unless explicitly | 
 |  * specified) if the process is "early kill," and otherwise returns NULL. | 
 |  */ | 
 | static struct task_struct *task_early_kill(struct task_struct *tsk, | 
 | 					   int force_early) | 
 | { | 
 | 	struct task_struct *t; | 
 | 	if (!tsk->mm) | 
 | 		return NULL; | 
 | 	if (force_early) | 
 | 		return tsk; | 
 | 	t = find_early_kill_thread(tsk); | 
 | 	if (t) | 
 | 		return t; | 
 | 	if (sysctl_memory_failure_early_kill) | 
 | 		return tsk; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Collect processes when the error hit an anonymous page. | 
 |  */ | 
 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | 
 | 			      struct to_kill **tkc, int force_early) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct task_struct *tsk; | 
 | 	struct anon_vma *av; | 
 | 	pgoff_t pgoff; | 
 |  | 
 | 	av = page_lock_anon_vma_read(page); | 
 | 	if (av == NULL)	/* Not actually mapped anymore */ | 
 | 		return; | 
 |  | 
 | 	pgoff = page_to_pgoff(page); | 
 | 	read_lock(&tasklist_lock); | 
 | 	for_each_process (tsk) { | 
 | 		struct anon_vma_chain *vmac; | 
 | 		struct task_struct *t = task_early_kill(tsk, force_early); | 
 |  | 
 | 		if (!t) | 
 | 			continue; | 
 | 		anon_vma_interval_tree_foreach(vmac, &av->rb_root, | 
 | 					       pgoff, pgoff) { | 
 | 			vma = vmac->vma; | 
 | 			if (!page_mapped_in_vma(page, vma)) | 
 | 				continue; | 
 | 			if (vma->vm_mm == t->mm) | 
 | 				add_to_kill(t, page, vma, to_kill, tkc); | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 | 	page_unlock_anon_vma_read(av); | 
 | } | 
 |  | 
 | /* | 
 |  * Collect processes when the error hit a file mapped page. | 
 |  */ | 
 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | 
 | 			      struct to_kill **tkc, int force_early) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct task_struct *tsk; | 
 | 	struct address_space *mapping = page->mapping; | 
 |  | 
 | 	i_mmap_lock_read(mapping); | 
 | 	read_lock(&tasklist_lock); | 
 | 	for_each_process(tsk) { | 
 | 		pgoff_t pgoff = page_to_pgoff(page); | 
 | 		struct task_struct *t = task_early_kill(tsk, force_early); | 
 |  | 
 | 		if (!t) | 
 | 			continue; | 
 | 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, | 
 | 				      pgoff) { | 
 | 			/* | 
 | 			 * Send early kill signal to tasks where a vma covers | 
 | 			 * the page but the corrupted page is not necessarily | 
 | 			 * mapped it in its pte. | 
 | 			 * Assume applications who requested early kill want | 
 | 			 * to be informed of all such data corruptions. | 
 | 			 */ | 
 | 			if (vma->vm_mm == t->mm) | 
 | 				add_to_kill(t, page, vma, to_kill, tkc); | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 | 	i_mmap_unlock_read(mapping); | 
 | } | 
 |  | 
 | /* | 
 |  * Collect the processes who have the corrupted page mapped to kill. | 
 |  * This is done in two steps for locking reasons. | 
 |  * First preallocate one tokill structure outside the spin locks, | 
 |  * so that we can kill at least one process reasonably reliable. | 
 |  */ | 
 | static void collect_procs(struct page *page, struct list_head *tokill, | 
 | 				int force_early) | 
 | { | 
 | 	struct to_kill *tk; | 
 |  | 
 | 	if (!page->mapping) | 
 | 		return; | 
 |  | 
 | 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | 
 | 	if (!tk) | 
 | 		return; | 
 | 	if (PageAnon(page)) | 
 | 		collect_procs_anon(page, tokill, &tk, force_early); | 
 | 	else | 
 | 		collect_procs_file(page, tokill, &tk, force_early); | 
 | 	kfree(tk); | 
 | } | 
 |  | 
 | static const char *action_name[] = { | 
 | 	[MF_IGNORED] = "Ignored", | 
 | 	[MF_FAILED] = "Failed", | 
 | 	[MF_DELAYED] = "Delayed", | 
 | 	[MF_RECOVERED] = "Recovered", | 
 | }; | 
 |  | 
 | static const char * const action_page_types[] = { | 
 | 	[MF_MSG_KERNEL]			= "reserved kernel page", | 
 | 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page", | 
 | 	[MF_MSG_SLAB]			= "kernel slab page", | 
 | 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking", | 
 | 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned", | 
 | 	[MF_MSG_HUGE]			= "huge page", | 
 | 	[MF_MSG_FREE_HUGE]		= "free huge page", | 
 | 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page", | 
 | 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page", | 
 | 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page", | 
 | 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page", | 
 | 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page", | 
 | 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page", | 
 | 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page", | 
 | 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page", | 
 | 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page", | 
 | 	[MF_MSG_CLEAN_LRU]		= "clean LRU page", | 
 | 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page", | 
 | 	[MF_MSG_BUDDY]			= "free buddy page", | 
 | 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)", | 
 | 	[MF_MSG_DAX]			= "dax page", | 
 | 	[MF_MSG_UNKNOWN]		= "unknown page", | 
 | }; | 
 |  | 
 | /* | 
 |  * XXX: It is possible that a page is isolated from LRU cache, | 
 |  * and then kept in swap cache or failed to remove from page cache. | 
 |  * The page count will stop it from being freed by unpoison. | 
 |  * Stress tests should be aware of this memory leak problem. | 
 |  */ | 
 | static int delete_from_lru_cache(struct page *p) | 
 | { | 
 | 	if (!isolate_lru_page(p)) { | 
 | 		/* | 
 | 		 * Clear sensible page flags, so that the buddy system won't | 
 | 		 * complain when the page is unpoison-and-freed. | 
 | 		 */ | 
 | 		ClearPageActive(p); | 
 | 		ClearPageUnevictable(p); | 
 |  | 
 | 		/* | 
 | 		 * Poisoned page might never drop its ref count to 0 so we have | 
 | 		 * to uncharge it manually from its memcg. | 
 | 		 */ | 
 | 		mem_cgroup_uncharge(p); | 
 |  | 
 | 		/* | 
 | 		 * drop the page count elevated by isolate_lru_page() | 
 | 		 */ | 
 | 		put_page(p); | 
 | 		return 0; | 
 | 	} | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int truncate_error_page(struct page *p, unsigned long pfn, | 
 | 				struct address_space *mapping) | 
 | { | 
 | 	int ret = MF_FAILED; | 
 |  | 
 | 	if (mapping->a_ops->error_remove_page) { | 
 | 		int err = mapping->a_ops->error_remove_page(mapping, p); | 
 |  | 
 | 		if (err != 0) { | 
 | 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n", | 
 | 				pfn, err); | 
 | 		} else if (page_has_private(p) && | 
 | 			   !try_to_release_page(p, GFP_NOIO)) { | 
 | 			pr_info("Memory failure: %#lx: failed to release buffers\n", | 
 | 				pfn); | 
 | 		} else { | 
 | 			ret = MF_RECOVERED; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * If the file system doesn't support it just invalidate | 
 | 		 * This fails on dirty or anything with private pages | 
 | 		 */ | 
 | 		if (invalidate_inode_page(p)) | 
 | 			ret = MF_RECOVERED; | 
 | 		else | 
 | 			pr_info("Memory failure: %#lx: Failed to invalidate\n", | 
 | 				pfn); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Error hit kernel page. | 
 |  * Do nothing, try to be lucky and not touch this instead. For a few cases we | 
 |  * could be more sophisticated. | 
 |  */ | 
 | static int me_kernel(struct page *p, unsigned long pfn) | 
 | { | 
 | 	return MF_IGNORED; | 
 | } | 
 |  | 
 | /* | 
 |  * Page in unknown state. Do nothing. | 
 |  */ | 
 | static int me_unknown(struct page *p, unsigned long pfn) | 
 | { | 
 | 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn); | 
 | 	return MF_FAILED; | 
 | } | 
 |  | 
 | /* | 
 |  * Clean (or cleaned) page cache page. | 
 |  */ | 
 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | 
 | { | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	delete_from_lru_cache(p); | 
 |  | 
 | 	/* | 
 | 	 * For anonymous pages we're done the only reference left | 
 | 	 * should be the one m_f() holds. | 
 | 	 */ | 
 | 	if (PageAnon(p)) | 
 | 		return MF_RECOVERED; | 
 |  | 
 | 	/* | 
 | 	 * Now truncate the page in the page cache. This is really | 
 | 	 * more like a "temporary hole punch" | 
 | 	 * Don't do this for block devices when someone else | 
 | 	 * has a reference, because it could be file system metadata | 
 | 	 * and that's not safe to truncate. | 
 | 	 */ | 
 | 	mapping = page_mapping(p); | 
 | 	if (!mapping) { | 
 | 		/* | 
 | 		 * Page has been teared down in the meanwhile | 
 | 		 */ | 
 | 		return MF_FAILED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Truncation is a bit tricky. Enable it per file system for now. | 
 | 	 * | 
 | 	 * Open: to take i_mutex or not for this? Right now we don't. | 
 | 	 */ | 
 | 	return truncate_error_page(p, pfn, mapping); | 
 | } | 
 |  | 
 | /* | 
 |  * Dirty pagecache page | 
 |  * Issues: when the error hit a hole page the error is not properly | 
 |  * propagated. | 
 |  */ | 
 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(p); | 
 |  | 
 | 	SetPageError(p); | 
 | 	/* TBD: print more information about the file. */ | 
 | 	if (mapping) { | 
 | 		/* | 
 | 		 * IO error will be reported by write(), fsync(), etc. | 
 | 		 * who check the mapping. | 
 | 		 * This way the application knows that something went | 
 | 		 * wrong with its dirty file data. | 
 | 		 * | 
 | 		 * There's one open issue: | 
 | 		 * | 
 | 		 * The EIO will be only reported on the next IO | 
 | 		 * operation and then cleared through the IO map. | 
 | 		 * Normally Linux has two mechanisms to pass IO error | 
 | 		 * first through the AS_EIO flag in the address space | 
 | 		 * and then through the PageError flag in the page. | 
 | 		 * Since we drop pages on memory failure handling the | 
 | 		 * only mechanism open to use is through AS_AIO. | 
 | 		 * | 
 | 		 * This has the disadvantage that it gets cleared on | 
 | 		 * the first operation that returns an error, while | 
 | 		 * the PageError bit is more sticky and only cleared | 
 | 		 * when the page is reread or dropped.  If an | 
 | 		 * application assumes it will always get error on | 
 | 		 * fsync, but does other operations on the fd before | 
 | 		 * and the page is dropped between then the error | 
 | 		 * will not be properly reported. | 
 | 		 * | 
 | 		 * This can already happen even without hwpoisoned | 
 | 		 * pages: first on metadata IO errors (which only | 
 | 		 * report through AS_EIO) or when the page is dropped | 
 | 		 * at the wrong time. | 
 | 		 * | 
 | 		 * So right now we assume that the application DTRT on | 
 | 		 * the first EIO, but we're not worse than other parts | 
 | 		 * of the kernel. | 
 | 		 */ | 
 | 		mapping_set_error(mapping, -EIO); | 
 | 	} | 
 |  | 
 | 	return me_pagecache_clean(p, pfn); | 
 | } | 
 |  | 
 | /* | 
 |  * Clean and dirty swap cache. | 
 |  * | 
 |  * Dirty swap cache page is tricky to handle. The page could live both in page | 
 |  * cache and swap cache(ie. page is freshly swapped in). So it could be | 
 |  * referenced concurrently by 2 types of PTEs: | 
 |  * normal PTEs and swap PTEs. We try to handle them consistently by calling | 
 |  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | 
 |  * and then | 
 |  *      - clear dirty bit to prevent IO | 
 |  *      - remove from LRU | 
 |  *      - but keep in the swap cache, so that when we return to it on | 
 |  *        a later page fault, we know the application is accessing | 
 |  *        corrupted data and shall be killed (we installed simple | 
 |  *        interception code in do_swap_page to catch it). | 
 |  * | 
 |  * Clean swap cache pages can be directly isolated. A later page fault will | 
 |  * bring in the known good data from disk. | 
 |  */ | 
 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | 
 | { | 
 | 	ClearPageDirty(p); | 
 | 	/* Trigger EIO in shmem: */ | 
 | 	ClearPageUptodate(p); | 
 |  | 
 | 	if (!delete_from_lru_cache(p)) | 
 | 		return MF_DELAYED; | 
 | 	else | 
 | 		return MF_FAILED; | 
 | } | 
 |  | 
 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | 
 | { | 
 | 	delete_from_swap_cache(p); | 
 |  | 
 | 	if (!delete_from_lru_cache(p)) | 
 | 		return MF_RECOVERED; | 
 | 	else | 
 | 		return MF_FAILED; | 
 | } | 
 |  | 
 | /* | 
 |  * Huge pages. Needs work. | 
 |  * Issues: | 
 |  * - Error on hugepage is contained in hugepage unit (not in raw page unit.) | 
 |  *   To narrow down kill region to one page, we need to break up pmd. | 
 |  */ | 
 | static int me_huge_page(struct page *p, unsigned long pfn) | 
 | { | 
 | 	int res = 0; | 
 | 	struct page *hpage = compound_head(p); | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	if (!PageHuge(hpage)) | 
 | 		return MF_DELAYED; | 
 |  | 
 | 	mapping = page_mapping(hpage); | 
 | 	if (mapping) { | 
 | 		res = truncate_error_page(hpage, pfn, mapping); | 
 | 	} else { | 
 | 		unlock_page(hpage); | 
 | 		/* | 
 | 		 * migration entry prevents later access on error anonymous | 
 | 		 * hugepage, so we can free and dissolve it into buddy to | 
 | 		 * save healthy subpages. | 
 | 		 */ | 
 | 		if (PageAnon(hpage)) | 
 | 			put_page(hpage); | 
 | 		dissolve_free_huge_page(p); | 
 | 		res = MF_RECOVERED; | 
 | 		lock_page(hpage); | 
 | 	} | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * Various page states we can handle. | 
 |  * | 
 |  * A page state is defined by its current page->flags bits. | 
 |  * The table matches them in order and calls the right handler. | 
 |  * | 
 |  * This is quite tricky because we can access page at any time | 
 |  * in its live cycle, so all accesses have to be extremely careful. | 
 |  * | 
 |  * This is not complete. More states could be added. | 
 |  * For any missing state don't attempt recovery. | 
 |  */ | 
 |  | 
 | #define dirty		(1UL << PG_dirty) | 
 | #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked)) | 
 | #define unevict		(1UL << PG_unevictable) | 
 | #define mlock		(1UL << PG_mlocked) | 
 | #define writeback	(1UL << PG_writeback) | 
 | #define lru		(1UL << PG_lru) | 
 | #define head		(1UL << PG_head) | 
 | #define slab		(1UL << PG_slab) | 
 | #define reserved	(1UL << PG_reserved) | 
 |  | 
 | static struct page_state { | 
 | 	unsigned long mask; | 
 | 	unsigned long res; | 
 | 	enum mf_action_page_type type; | 
 | 	int (*action)(struct page *p, unsigned long pfn); | 
 | } error_states[] = { | 
 | 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel }, | 
 | 	/* | 
 | 	 * free pages are specially detected outside this table: | 
 | 	 * PG_buddy pages only make a small fraction of all free pages. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Could in theory check if slab page is free or if we can drop | 
 | 	 * currently unused objects without touching them. But just | 
 | 	 * treat it as standard kernel for now. | 
 | 	 */ | 
 | 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel }, | 
 |  | 
 | 	{ head,		head,		MF_MSG_HUGE,		me_huge_page }, | 
 |  | 
 | 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty }, | 
 | 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean }, | 
 |  | 
 | 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty }, | 
 | 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean }, | 
 |  | 
 | 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty }, | 
 | 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean }, | 
 |  | 
 | 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty }, | 
 | 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean }, | 
 |  | 
 | 	/* | 
 | 	 * Catchall entry: must be at end. | 
 | 	 */ | 
 | 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown }, | 
 | }; | 
 |  | 
 | #undef dirty | 
 | #undef sc | 
 | #undef unevict | 
 | #undef mlock | 
 | #undef writeback | 
 | #undef lru | 
 | #undef head | 
 | #undef slab | 
 | #undef reserved | 
 |  | 
 | /* | 
 |  * "Dirty/Clean" indication is not 100% accurate due to the possibility of | 
 |  * setting PG_dirty outside page lock. See also comment above set_page_dirty(). | 
 |  */ | 
 | static void action_result(unsigned long pfn, enum mf_action_page_type type, | 
 | 			  enum mf_result result) | 
 | { | 
 | 	trace_memory_failure_event(pfn, type, result); | 
 |  | 
 | 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n", | 
 | 		pfn, action_page_types[type], action_name[result]); | 
 | } | 
 |  | 
 | static int page_action(struct page_state *ps, struct page *p, | 
 | 			unsigned long pfn) | 
 | { | 
 | 	int result; | 
 | 	int count; | 
 |  | 
 | 	result = ps->action(p, pfn); | 
 |  | 
 | 	count = page_count(p) - 1; | 
 | 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED) | 
 | 		count--; | 
 | 	if (count > 0) { | 
 | 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n", | 
 | 		       pfn, action_page_types[ps->type], count); | 
 | 		result = MF_FAILED; | 
 | 	} | 
 | 	action_result(pfn, ps->type, result); | 
 |  | 
 | 	/* Could do more checks here if page looks ok */ | 
 | 	/* | 
 | 	 * Could adjust zone counters here to correct for the missing page. | 
 | 	 */ | 
 |  | 
 | 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; | 
 | } | 
 |  | 
 | /** | 
 |  * get_hwpoison_page() - Get refcount for memory error handling: | 
 |  * @page:	raw error page (hit by memory error) | 
 |  * | 
 |  * Return: return 0 if failed to grab the refcount, otherwise true (some | 
 |  * non-zero value.) | 
 |  */ | 
 | int get_hwpoison_page(struct page *page) | 
 | { | 
 | 	struct page *head = compound_head(page); | 
 |  | 
 | 	if (!PageHuge(head) && PageTransHuge(head)) { | 
 | 		/* | 
 | 		 * Non anonymous thp exists only in allocation/free time. We | 
 | 		 * can't handle such a case correctly, so let's give it up. | 
 | 		 * This should be better than triggering BUG_ON when kernel | 
 | 		 * tries to touch the "partially handled" page. | 
 | 		 */ | 
 | 		if (!PageAnon(head)) { | 
 | 			pr_err("Memory failure: %#lx: non anonymous thp\n", | 
 | 				page_to_pfn(page)); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (get_page_unless_zero(head)) { | 
 | 		if (head == compound_head(page)) | 
 | 			return 1; | 
 |  | 
 | 		pr_info("Memory failure: %#lx cannot catch tail\n", | 
 | 			page_to_pfn(page)); | 
 | 		put_page(head); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_hwpoison_page); | 
 |  | 
 | /* | 
 |  * Do all that is necessary to remove user space mappings. Unmap | 
 |  * the pages and send SIGBUS to the processes if the data was dirty. | 
 |  */ | 
 | static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, | 
 | 				  int flags, struct page **hpagep) | 
 | { | 
 | 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | 
 | 	struct address_space *mapping; | 
 | 	LIST_HEAD(tokill); | 
 | 	bool unmap_success; | 
 | 	int kill = 1, forcekill; | 
 | 	struct page *hpage = *hpagep; | 
 | 	bool mlocked = PageMlocked(hpage); | 
 |  | 
 | 	/* | 
 | 	 * Here we are interested only in user-mapped pages, so skip any | 
 | 	 * other types of pages. | 
 | 	 */ | 
 | 	if (PageReserved(p) || PageSlab(p)) | 
 | 		return true; | 
 | 	if (!(PageLRU(hpage) || PageHuge(p))) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * This check implies we don't kill processes if their pages | 
 | 	 * are in the swap cache early. Those are always late kills. | 
 | 	 */ | 
 | 	if (!page_mapped(p)) | 
 | 		return true; | 
 |  | 
 | 	if (PageKsm(p)) { | 
 | 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (PageSwapCache(p)) { | 
 | 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", | 
 | 			pfn); | 
 | 		ttu |= TTU_IGNORE_HWPOISON; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Propagate the dirty bit from PTEs to struct page first, because we | 
 | 	 * need this to decide if we should kill or just drop the page. | 
 | 	 * XXX: the dirty test could be racy: set_page_dirty() may not always | 
 | 	 * be called inside page lock (it's recommended but not enforced). | 
 | 	 */ | 
 | 	mapping = page_mapping(hpage); | 
 | 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && | 
 | 	    mapping_cap_writeback_dirty(mapping)) { | 
 | 		if (page_mkclean(hpage)) { | 
 | 			SetPageDirty(hpage); | 
 | 		} else { | 
 | 			kill = 0; | 
 | 			ttu |= TTU_IGNORE_HWPOISON; | 
 | 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", | 
 | 				pfn); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First collect all the processes that have the page | 
 | 	 * mapped in dirty form.  This has to be done before try_to_unmap, | 
 | 	 * because ttu takes the rmap data structures down. | 
 | 	 * | 
 | 	 * Error handling: We ignore errors here because | 
 | 	 * there's nothing that can be done. | 
 | 	 */ | 
 | 	if (kill) | 
 | 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); | 
 |  | 
 | 	unmap_success = try_to_unmap(hpage, ttu); | 
 | 	if (!unmap_success) | 
 | 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", | 
 | 		       pfn, page_mapcount(p)); | 
 |  | 
 | 	/* | 
 | 	 * try_to_unmap() might put mlocked page in lru cache, so call | 
 | 	 * shake_page() again to ensure that it's flushed. | 
 | 	 */ | 
 | 	if (mlocked) | 
 | 		shake_page(hpage, 0); | 
 |  | 
 | 	/* | 
 | 	 * Now that the dirty bit has been propagated to the | 
 | 	 * struct page and all unmaps done we can decide if | 
 | 	 * killing is needed or not.  Only kill when the page | 
 | 	 * was dirty or the process is not restartable, | 
 | 	 * otherwise the tokill list is merely | 
 | 	 * freed.  When there was a problem unmapping earlier | 
 | 	 * use a more force-full uncatchable kill to prevent | 
 | 	 * any accesses to the poisoned memory. | 
 | 	 */ | 
 | 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); | 
 | 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); | 
 |  | 
 | 	return unmap_success; | 
 | } | 
 |  | 
 | static int identify_page_state(unsigned long pfn, struct page *p, | 
 | 				unsigned long page_flags) | 
 | { | 
 | 	struct page_state *ps; | 
 |  | 
 | 	/* | 
 | 	 * The first check uses the current page flags which may not have any | 
 | 	 * relevant information. The second check with the saved page flags is | 
 | 	 * carried out only if the first check can't determine the page status. | 
 | 	 */ | 
 | 	for (ps = error_states;; ps++) | 
 | 		if ((p->flags & ps->mask) == ps->res) | 
 | 			break; | 
 |  | 
 | 	page_flags |= (p->flags & (1UL << PG_dirty)); | 
 |  | 
 | 	if (!ps->mask) | 
 | 		for (ps = error_states;; ps++) | 
 | 			if ((page_flags & ps->mask) == ps->res) | 
 | 				break; | 
 | 	return page_action(ps, p, pfn); | 
 | } | 
 |  | 
 | static int memory_failure_hugetlb(unsigned long pfn, int flags) | 
 | { | 
 | 	struct page *p = pfn_to_page(pfn); | 
 | 	struct page *head = compound_head(p); | 
 | 	int res; | 
 | 	unsigned long page_flags; | 
 |  | 
 | 	if (TestSetPageHWPoison(head)) { | 
 | 		pr_err("Memory failure: %#lx: already hardware poisoned\n", | 
 | 		       pfn); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	num_poisoned_pages_inc(); | 
 |  | 
 | 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { | 
 | 		/* | 
 | 		 * Check "filter hit" and "race with other subpage." | 
 | 		 */ | 
 | 		lock_page(head); | 
 | 		if (PageHWPoison(head)) { | 
 | 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) | 
 | 			    || (p != head && TestSetPageHWPoison(head))) { | 
 | 				num_poisoned_pages_dec(); | 
 | 				unlock_page(head); | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		unlock_page(head); | 
 | 		dissolve_free_huge_page(p); | 
 | 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	lock_page(head); | 
 | 	page_flags = head->flags; | 
 |  | 
 | 	if (!PageHWPoison(head)) { | 
 | 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); | 
 | 		num_poisoned_pages_dec(); | 
 | 		unlock_page(head); | 
 | 		put_hwpoison_page(head); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so | 
 | 	 * simply disable it. In order to make it work properly, we need | 
 | 	 * make sure that: | 
 | 	 *  - conversion of a pud that maps an error hugetlb into hwpoison | 
 | 	 *    entry properly works, and | 
 | 	 *  - other mm code walking over page table is aware of pud-aligned | 
 | 	 *    hwpoison entries. | 
 | 	 */ | 
 | 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) { | 
 | 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); | 
 | 		res = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) { | 
 | 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); | 
 | 		res = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	res = identify_page_state(pfn, p, page_flags); | 
 | out: | 
 | 	unlock_page(head); | 
 | 	return res; | 
 | } | 
 |  | 
 | static int memory_failure_dev_pagemap(unsigned long pfn, int flags, | 
 | 		struct dev_pagemap *pgmap) | 
 | { | 
 | 	struct page *page = pfn_to_page(pfn); | 
 | 	const bool unmap_success = true; | 
 | 	unsigned long size = 0; | 
 | 	struct to_kill *tk; | 
 | 	LIST_HEAD(tokill); | 
 | 	int rc = -EBUSY; | 
 | 	loff_t start; | 
 | 	dax_entry_t cookie; | 
 |  | 
 | 	/* | 
 | 	 * Prevent the inode from being freed while we are interrogating | 
 | 	 * the address_space, typically this would be handled by | 
 | 	 * lock_page(), but dax pages do not use the page lock. This | 
 | 	 * also prevents changes to the mapping of this pfn until | 
 | 	 * poison signaling is complete. | 
 | 	 */ | 
 | 	cookie = dax_lock_page(page); | 
 | 	if (!cookie) | 
 | 		goto out; | 
 |  | 
 | 	if (hwpoison_filter(page)) { | 
 | 		rc = 0; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) { | 
 | 		/* | 
 | 		 * TODO: Handle HMM pages which may need coordination | 
 | 		 * with device-side memory. | 
 | 		 */ | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Use this flag as an indication that the dax page has been | 
 | 	 * remapped UC to prevent speculative consumption of poison. | 
 | 	 */ | 
 | 	SetPageHWPoison(page); | 
 |  | 
 | 	/* | 
 | 	 * Unlike System-RAM there is no possibility to swap in a | 
 | 	 * different physical page at a given virtual address, so all | 
 | 	 * userspace consumption of ZONE_DEVICE memory necessitates | 
 | 	 * SIGBUS (i.e. MF_MUST_KILL) | 
 | 	 */ | 
 | 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | 
 | 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); | 
 |  | 
 | 	list_for_each_entry(tk, &tokill, nd) | 
 | 		if (tk->size_shift) | 
 | 			size = max(size, 1UL << tk->size_shift); | 
 | 	if (size) { | 
 | 		/* | 
 | 		 * Unmap the largest mapping to avoid breaking up | 
 | 		 * device-dax mappings which are constant size. The | 
 | 		 * actual size of the mapping being torn down is | 
 | 		 * communicated in siginfo, see kill_proc() | 
 | 		 */ | 
 | 		start = (page->index << PAGE_SHIFT) & ~(size - 1); | 
 | 		unmap_mapping_range(page->mapping, start, size, 0); | 
 | 	} | 
 | 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); | 
 | 	rc = 0; | 
 | unlock: | 
 | 	dax_unlock_page(page, cookie); | 
 | out: | 
 | 	/* drop pgmap ref acquired in caller */ | 
 | 	put_dev_pagemap(pgmap); | 
 | 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * memory_failure - Handle memory failure of a page. | 
 |  * @pfn: Page Number of the corrupted page | 
 |  * @flags: fine tune action taken | 
 |  * | 
 |  * This function is called by the low level machine check code | 
 |  * of an architecture when it detects hardware memory corruption | 
 |  * of a page. It tries its best to recover, which includes | 
 |  * dropping pages, killing processes etc. | 
 |  * | 
 |  * The function is primarily of use for corruptions that | 
 |  * happen outside the current execution context (e.g. when | 
 |  * detected by a background scrubber) | 
 |  * | 
 |  * Must run in process context (e.g. a work queue) with interrupts | 
 |  * enabled and no spinlocks hold. | 
 |  */ | 
 | int memory_failure(unsigned long pfn, int flags) | 
 | { | 
 | 	struct page *p; | 
 | 	struct page *hpage; | 
 | 	struct page *orig_head; | 
 | 	struct dev_pagemap *pgmap; | 
 | 	int res; | 
 | 	unsigned long page_flags; | 
 |  | 
 | 	if (!sysctl_memory_failure_recovery) | 
 | 		panic("Memory failure on page %lx", pfn); | 
 |  | 
 | 	p = pfn_to_online_page(pfn); | 
 | 	if (!p) { | 
 | 		if (pfn_valid(pfn)) { | 
 | 			pgmap = get_dev_pagemap(pfn, NULL); | 
 | 			if (pgmap) | 
 | 				return memory_failure_dev_pagemap(pfn, flags, | 
 | 								  pgmap); | 
 | 		} | 
 | 		pr_err("Memory failure: %#lx: memory outside kernel control\n", | 
 | 			pfn); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	if (PageHuge(p)) | 
 | 		return memory_failure_hugetlb(pfn, flags); | 
 | 	if (TestSetPageHWPoison(p)) { | 
 | 		pr_err("Memory failure: %#lx: already hardware poisoned\n", | 
 | 			pfn); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	orig_head = hpage = compound_head(p); | 
 | 	num_poisoned_pages_inc(); | 
 |  | 
 | 	/* | 
 | 	 * We need/can do nothing about count=0 pages. | 
 | 	 * 1) it's a free page, and therefore in safe hand: | 
 | 	 *    prep_new_page() will be the gate keeper. | 
 | 	 * 2) it's part of a non-compound high order page. | 
 | 	 *    Implies some kernel user: cannot stop them from | 
 | 	 *    R/W the page; let's pray that the page has been | 
 | 	 *    used and will be freed some time later. | 
 | 	 * In fact it's dangerous to directly bump up page count from 0, | 
 | 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. | 
 | 	 */ | 
 | 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { | 
 | 		if (is_free_buddy_page(p)) { | 
 | 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); | 
 | 			return 0; | 
 | 		} else { | 
 | 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (PageTransHuge(hpage)) { | 
 | 		lock_page(p); | 
 | 		if (!PageAnon(p) || unlikely(split_huge_page(p))) { | 
 | 			unlock_page(p); | 
 | 			if (!PageAnon(p)) | 
 | 				pr_err("Memory failure: %#lx: non anonymous thp\n", | 
 | 					pfn); | 
 | 			else | 
 | 				pr_err("Memory failure: %#lx: thp split failed\n", | 
 | 					pfn); | 
 | 			if (TestClearPageHWPoison(p)) | 
 | 				num_poisoned_pages_dec(); | 
 | 			put_hwpoison_page(p); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		unlock_page(p); | 
 | 		VM_BUG_ON_PAGE(!page_count(p), p); | 
 | 		hpage = compound_head(p); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We ignore non-LRU pages for good reasons. | 
 | 	 * - PG_locked is only well defined for LRU pages and a few others | 
 | 	 * - to avoid races with __SetPageLocked() | 
 | 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | 
 | 	 * The check (unnecessarily) ignores LRU pages being isolated and | 
 | 	 * walked by the page reclaim code, however that's not a big loss. | 
 | 	 */ | 
 | 	shake_page(p, 0); | 
 | 	/* shake_page could have turned it free. */ | 
 | 	if (!PageLRU(p) && is_free_buddy_page(p)) { | 
 | 		if (flags & MF_COUNT_INCREASED) | 
 | 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); | 
 | 		else | 
 | 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	lock_page(p); | 
 |  | 
 | 	/* | 
 | 	 * The page could have changed compound pages during the locking. | 
 | 	 * If this happens just bail out. | 
 | 	 */ | 
 | 	if (PageCompound(p) && compound_head(p) != orig_head) { | 
 | 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); | 
 | 		res = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We use page flags to determine what action should be taken, but | 
 | 	 * the flags can be modified by the error containment action.  One | 
 | 	 * example is an mlocked page, where PG_mlocked is cleared by | 
 | 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status | 
 | 	 * correctly, we save a copy of the page flags at this time. | 
 | 	 */ | 
 | 	if (PageHuge(p)) | 
 | 		page_flags = hpage->flags; | 
 | 	else | 
 | 		page_flags = p->flags; | 
 |  | 
 | 	/* | 
 | 	 * unpoison always clear PG_hwpoison inside page lock | 
 | 	 */ | 
 | 	if (!PageHWPoison(p)) { | 
 | 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); | 
 | 		num_poisoned_pages_dec(); | 
 | 		unlock_page(p); | 
 | 		put_hwpoison_page(p); | 
 | 		return 0; | 
 | 	} | 
 | 	if (hwpoison_filter(p)) { | 
 | 		if (TestClearPageHWPoison(p)) | 
 | 			num_poisoned_pages_dec(); | 
 | 		unlock_page(p); | 
 | 		put_hwpoison_page(p); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * __munlock_pagevec may clear a writeback page's LRU flag without | 
 | 	 * page_lock. We need wait writeback completion for this page or it | 
 | 	 * may trigger vfs BUG while evict inode. | 
 | 	 */ | 
 | 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) | 
 | 		goto identify_page_state; | 
 |  | 
 | 	/* | 
 | 	 * It's very difficult to mess with pages currently under IO | 
 | 	 * and in many cases impossible, so we just avoid it here. | 
 | 	 */ | 
 | 	wait_on_page_writeback(p); | 
 |  | 
 | 	/* | 
 | 	 * Now take care of user space mappings. | 
 | 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page. | 
 | 	 * | 
 | 	 * When the raw error page is thp tail page, hpage points to the raw | 
 | 	 * page after thp split. | 
 | 	 */ | 
 | 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { | 
 | 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); | 
 | 		res = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Torn down by someone else? | 
 | 	 */ | 
 | 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { | 
 | 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); | 
 | 		res = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | identify_page_state: | 
 | 	res = identify_page_state(pfn, p, page_flags); | 
 | out: | 
 | 	unlock_page(p); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL_GPL(memory_failure); | 
 |  | 
 | #define MEMORY_FAILURE_FIFO_ORDER	4 | 
 | #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER) | 
 |  | 
 | struct memory_failure_entry { | 
 | 	unsigned long pfn; | 
 | 	int flags; | 
 | }; | 
 |  | 
 | struct memory_failure_cpu { | 
 | 	DECLARE_KFIFO(fifo, struct memory_failure_entry, | 
 | 		      MEMORY_FAILURE_FIFO_SIZE); | 
 | 	spinlock_t lock; | 
 | 	struct work_struct work; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); | 
 |  | 
 | /** | 
 |  * memory_failure_queue - Schedule handling memory failure of a page. | 
 |  * @pfn: Page Number of the corrupted page | 
 |  * @flags: Flags for memory failure handling | 
 |  * | 
 |  * This function is called by the low level hardware error handler | 
 |  * when it detects hardware memory corruption of a page. It schedules | 
 |  * the recovering of error page, including dropping pages, killing | 
 |  * processes etc. | 
 |  * | 
 |  * The function is primarily of use for corruptions that | 
 |  * happen outside the current execution context (e.g. when | 
 |  * detected by a background scrubber) | 
 |  * | 
 |  * Can run in IRQ context. | 
 |  */ | 
 | void memory_failure_queue(unsigned long pfn, int flags) | 
 | { | 
 | 	struct memory_failure_cpu *mf_cpu; | 
 | 	unsigned long proc_flags; | 
 | 	struct memory_failure_entry entry = { | 
 | 		.pfn =		pfn, | 
 | 		.flags =	flags, | 
 | 	}; | 
 |  | 
 | 	mf_cpu = &get_cpu_var(memory_failure_cpu); | 
 | 	spin_lock_irqsave(&mf_cpu->lock, proc_flags); | 
 | 	if (kfifo_put(&mf_cpu->fifo, entry)) | 
 | 		schedule_work_on(smp_processor_id(), &mf_cpu->work); | 
 | 	else | 
 | 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", | 
 | 		       pfn); | 
 | 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | 
 | 	put_cpu_var(memory_failure_cpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(memory_failure_queue); | 
 |  | 
 | static void memory_failure_work_func(struct work_struct *work) | 
 | { | 
 | 	struct memory_failure_cpu *mf_cpu; | 
 | 	struct memory_failure_entry entry = { 0, }; | 
 | 	unsigned long proc_flags; | 
 | 	int gotten; | 
 |  | 
 | 	mf_cpu = this_cpu_ptr(&memory_failure_cpu); | 
 | 	for (;;) { | 
 | 		spin_lock_irqsave(&mf_cpu->lock, proc_flags); | 
 | 		gotten = kfifo_get(&mf_cpu->fifo, &entry); | 
 | 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | 
 | 		if (!gotten) | 
 | 			break; | 
 | 		if (entry.flags & MF_SOFT_OFFLINE) | 
 | 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags); | 
 | 		else | 
 | 			memory_failure(entry.pfn, entry.flags); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init memory_failure_init(void) | 
 | { | 
 | 	struct memory_failure_cpu *mf_cpu; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		mf_cpu = &per_cpu(memory_failure_cpu, cpu); | 
 | 		spin_lock_init(&mf_cpu->lock); | 
 | 		INIT_KFIFO(mf_cpu->fifo); | 
 | 		INIT_WORK(&mf_cpu->work, memory_failure_work_func); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | core_initcall(memory_failure_init); | 
 |  | 
 | #define unpoison_pr_info(fmt, pfn, rs)			\ | 
 | ({							\ | 
 | 	if (__ratelimit(rs))				\ | 
 | 		pr_info(fmt, pfn);			\ | 
 | }) | 
 |  | 
 | /** | 
 |  * unpoison_memory - Unpoison a previously poisoned page | 
 |  * @pfn: Page number of the to be unpoisoned page | 
 |  * | 
 |  * Software-unpoison a page that has been poisoned by | 
 |  * memory_failure() earlier. | 
 |  * | 
 |  * This is only done on the software-level, so it only works | 
 |  * for linux injected failures, not real hardware failures | 
 |  * | 
 |  * Returns 0 for success, otherwise -errno. | 
 |  */ | 
 | int unpoison_memory(unsigned long pfn) | 
 | { | 
 | 	struct page *page; | 
 | 	struct page *p; | 
 | 	int freeit = 0; | 
 | 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 					DEFAULT_RATELIMIT_BURST); | 
 |  | 
 | 	if (!pfn_valid(pfn)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	p = pfn_to_page(pfn); | 
 | 	page = compound_head(p); | 
 |  | 
 | 	if (!PageHWPoison(p)) { | 
 | 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (page_count(page) > 1) { | 
 | 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (page_mapped(page)) { | 
 | 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (page_mapping(page)) { | 
 | 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * unpoison_memory() can encounter thp only when the thp is being | 
 | 	 * worked by memory_failure() and the page lock is not held yet. | 
 | 	 * In such case, we yield to memory_failure() and make unpoison fail. | 
 | 	 */ | 
 | 	if (!PageHuge(page) && PageTransHuge(page)) { | 
 | 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!get_hwpoison_page(p)) { | 
 | 		if (TestClearPageHWPoison(p)) | 
 | 			num_poisoned_pages_dec(); | 
 | 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	lock_page(page); | 
 | 	/* | 
 | 	 * This test is racy because PG_hwpoison is set outside of page lock. | 
 | 	 * That's acceptable because that won't trigger kernel panic. Instead, | 
 | 	 * the PG_hwpoison page will be caught and isolated on the entrance to | 
 | 	 * the free buddy page pool. | 
 | 	 */ | 
 | 	if (TestClearPageHWPoison(page)) { | 
 | 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", | 
 | 				 pfn, &unpoison_rs); | 
 | 		num_poisoned_pages_dec(); | 
 | 		freeit = 1; | 
 | 	} | 
 | 	unlock_page(page); | 
 |  | 
 | 	put_hwpoison_page(page); | 
 | 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) | 
 | 		put_hwpoison_page(page); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(unpoison_memory); | 
 |  | 
 | static struct page *new_page(struct page *p, unsigned long private) | 
 | { | 
 | 	int nid = page_to_nid(p); | 
 |  | 
 | 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]); | 
 | } | 
 |  | 
 | /* | 
 |  * Safely get reference count of an arbitrary page. | 
 |  * Returns 0 for a free page, -EIO for a zero refcount page | 
 |  * that is not free, and 1 for any other page type. | 
 |  * For 1 the page is returned with increased page count, otherwise not. | 
 |  */ | 
 | static int __get_any_page(struct page *p, unsigned long pfn, int flags) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (flags & MF_COUNT_INCREASED) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * When the target page is a free hugepage, just remove it | 
 | 	 * from free hugepage list. | 
 | 	 */ | 
 | 	if (!get_hwpoison_page(p)) { | 
 | 		if (PageHuge(p)) { | 
 | 			pr_info("%s: %#lx free huge page\n", __func__, pfn); | 
 | 			ret = 0; | 
 | 		} else if (is_free_buddy_page(p)) { | 
 | 			pr_info("%s: %#lx free buddy page\n", __func__, pfn); | 
 | 			ret = 0; | 
 | 		} else { | 
 | 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n", | 
 | 				__func__, pfn, p->flags); | 
 | 			ret = -EIO; | 
 | 		} | 
 | 	} else { | 
 | 		/* Not a free page */ | 
 | 		ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int get_any_page(struct page *page, unsigned long pfn, int flags) | 
 | { | 
 | 	int ret = __get_any_page(page, pfn, flags); | 
 |  | 
 | 	if (ret == 1 && !PageHuge(page) && | 
 | 	    !PageLRU(page) && !__PageMovable(page)) { | 
 | 		/* | 
 | 		 * Try to free it. | 
 | 		 */ | 
 | 		put_hwpoison_page(page); | 
 | 		shake_page(page, 1); | 
 |  | 
 | 		/* | 
 | 		 * Did it turn free? | 
 | 		 */ | 
 | 		ret = __get_any_page(page, pfn, 0); | 
 | 		if (ret == 1 && !PageLRU(page)) { | 
 | 			/* Drop page reference which is from __get_any_page() */ | 
 | 			put_hwpoison_page(page); | 
 | 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", | 
 | 				pfn, page->flags, &page->flags); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int soft_offline_huge_page(struct page *page, int flags) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	struct page *hpage = compound_head(page); | 
 | 	LIST_HEAD(pagelist); | 
 |  | 
 | 	/* | 
 | 	 * This double-check of PageHWPoison is to avoid the race with | 
 | 	 * memory_failure(). See also comment in __soft_offline_page(). | 
 | 	 */ | 
 | 	lock_page(hpage); | 
 | 	if (PageHWPoison(hpage)) { | 
 | 		unlock_page(hpage); | 
 | 		put_hwpoison_page(hpage); | 
 | 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	unlock_page(hpage); | 
 |  | 
 | 	ret = isolate_huge_page(hpage, &pagelist); | 
 | 	/* | 
 | 	 * get_any_page() and isolate_huge_page() takes a refcount each, | 
 | 	 * so need to drop one here. | 
 | 	 */ | 
 | 	put_hwpoison_page(hpage); | 
 | 	if (!ret) { | 
 | 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, | 
 | 				MIGRATE_SYNC, MR_MEMORY_FAILURE); | 
 | 	if (ret) { | 
 | 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", | 
 | 			pfn, ret, page->flags, &page->flags); | 
 | 		if (!list_empty(&pagelist)) | 
 | 			putback_movable_pages(&pagelist); | 
 | 		if (ret > 0) | 
 | 			ret = -EIO; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We set PG_hwpoison only when the migration source hugepage | 
 | 		 * was successfully dissolved, because otherwise hwpoisoned | 
 | 		 * hugepage remains on free hugepage list, then userspace will | 
 | 		 * find it as SIGBUS by allocation failure. That's not expected | 
 | 		 * in soft-offlining. | 
 | 		 */ | 
 | 		ret = dissolve_free_huge_page(page); | 
 | 		if (!ret) { | 
 | 			if (set_hwpoison_free_buddy_page(page)) | 
 | 				num_poisoned_pages_inc(); | 
 | 			else | 
 | 				ret = -EBUSY; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __soft_offline_page(struct page *page, int flags) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	/* | 
 | 	 * Check PageHWPoison again inside page lock because PageHWPoison | 
 | 	 * is set by memory_failure() outside page lock. Note that | 
 | 	 * memory_failure() also double-checks PageHWPoison inside page lock, | 
 | 	 * so there's no race between soft_offline_page() and memory_failure(). | 
 | 	 */ | 
 | 	lock_page(page); | 
 | 	wait_on_page_writeback(page); | 
 | 	if (PageHWPoison(page)) { | 
 | 		unlock_page(page); | 
 | 		put_hwpoison_page(page); | 
 | 		pr_info("soft offline: %#lx page already poisoned\n", pfn); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	/* | 
 | 	 * Try to invalidate first. This should work for | 
 | 	 * non dirty unmapped page cache pages. | 
 | 	 */ | 
 | 	ret = invalidate_inode_page(page); | 
 | 	unlock_page(page); | 
 | 	/* | 
 | 	 * RED-PEN would be better to keep it isolated here, but we | 
 | 	 * would need to fix isolation locking first. | 
 | 	 */ | 
 | 	if (ret == 1) { | 
 | 		put_hwpoison_page(page); | 
 | 		pr_info("soft_offline: %#lx: invalidated\n", pfn); | 
 | 		SetPageHWPoison(page); | 
 | 		num_poisoned_pages_inc(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Simple invalidation didn't work. | 
 | 	 * Try to migrate to a new page instead. migrate.c | 
 | 	 * handles a large number of cases for us. | 
 | 	 */ | 
 | 	if (PageLRU(page)) | 
 | 		ret = isolate_lru_page(page); | 
 | 	else | 
 | 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); | 
 | 	/* | 
 | 	 * Drop page reference which is came from get_any_page() | 
 | 	 * successful isolate_lru_page() already took another one. | 
 | 	 */ | 
 | 	put_hwpoison_page(page); | 
 | 	if (!ret) { | 
 | 		LIST_HEAD(pagelist); | 
 | 		/* | 
 | 		 * After isolated lru page, the PageLRU will be cleared, | 
 | 		 * so use !__PageMovable instead for LRU page's mapping | 
 | 		 * cannot have PAGE_MAPPING_MOVABLE. | 
 | 		 */ | 
 | 		if (!__PageMovable(page)) | 
 | 			inc_node_page_state(page, NR_ISOLATED_ANON + | 
 | 						page_is_file_cache(page)); | 
 | 		list_add(&page->lru, &pagelist); | 
 | 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, | 
 | 					MIGRATE_SYNC, MR_MEMORY_FAILURE); | 
 | 		if (ret) { | 
 | 			if (!list_empty(&pagelist)) | 
 | 				putback_movable_pages(&pagelist); | 
 |  | 
 | 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", | 
 | 				pfn, ret, page->flags, &page->flags); | 
 | 			if (ret > 0) | 
 | 				ret = -EIO; | 
 | 		} | 
 | 	} else { | 
 | 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", | 
 | 			pfn, ret, page_count(page), page->flags, &page->flags); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int soft_offline_in_use_page(struct page *page, int flags) | 
 | { | 
 | 	int ret; | 
 | 	int mt; | 
 | 	struct page *hpage = compound_head(page); | 
 |  | 
 | 	if (!PageHuge(page) && PageTransHuge(hpage)) { | 
 | 		lock_page(page); | 
 | 		if (!PageAnon(page) || unlikely(split_huge_page(page))) { | 
 | 			unlock_page(page); | 
 | 			if (!PageAnon(page)) | 
 | 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); | 
 | 			else | 
 | 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); | 
 | 			put_hwpoison_page(page); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 		unlock_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked | 
 | 	 * to free list immediately (not via pcplist) when released after | 
 | 	 * successful page migration. Otherwise we can't guarantee that the | 
 | 	 * page is really free after put_page() returns, so | 
 | 	 * set_hwpoison_free_buddy_page() highly likely fails. | 
 | 	 */ | 
 | 	mt = get_pageblock_migratetype(page); | 
 | 	set_pageblock_migratetype(page, MIGRATE_ISOLATE); | 
 | 	if (PageHuge(page)) | 
 | 		ret = soft_offline_huge_page(page, flags); | 
 | 	else | 
 | 		ret = __soft_offline_page(page, flags); | 
 | 	set_pageblock_migratetype(page, mt); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int soft_offline_free_page(struct page *page) | 
 | { | 
 | 	int rc = dissolve_free_huge_page(page); | 
 |  | 
 | 	if (!rc) { | 
 | 		if (set_hwpoison_free_buddy_page(page)) | 
 | 			num_poisoned_pages_inc(); | 
 | 		else | 
 | 			rc = -EBUSY; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * soft_offline_page - Soft offline a page. | 
 |  * @page: page to offline | 
 |  * @flags: flags. Same as memory_failure(). | 
 |  * | 
 |  * Returns 0 on success, otherwise negated errno. | 
 |  * | 
 |  * Soft offline a page, by migration or invalidation, | 
 |  * without killing anything. This is for the case when | 
 |  * a page is not corrupted yet (so it's still valid to access), | 
 |  * but has had a number of corrected errors and is better taken | 
 |  * out. | 
 |  * | 
 |  * The actual policy on when to do that is maintained by | 
 |  * user space. | 
 |  * | 
 |  * This should never impact any application or cause data loss, | 
 |  * however it might take some time. | 
 |  * | 
 |  * This is not a 100% solution for all memory, but tries to be | 
 |  * ``good enough'' for the majority of memory. | 
 |  */ | 
 | int soft_offline_page(struct page *page, int flags) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	if (is_zone_device_page(page)) { | 
 | 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n", | 
 | 				pfn); | 
 | 		if (flags & MF_COUNT_INCREASED) | 
 | 			put_page(page); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (PageHWPoison(page)) { | 
 | 		pr_info("soft offline: %#lx page already poisoned\n", pfn); | 
 | 		if (flags & MF_COUNT_INCREASED) | 
 | 			put_hwpoison_page(page); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	get_online_mems(); | 
 | 	ret = get_any_page(page, pfn, flags); | 
 | 	put_online_mems(); | 
 |  | 
 | 	if (ret > 0) | 
 | 		ret = soft_offline_in_use_page(page, flags); | 
 | 	else if (ret == 0) | 
 | 		ret = soft_offline_free_page(page); | 
 |  | 
 | 	return ret; | 
 | } |