| // SPDX-License-Identifier: GPL-2.0 | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/page_ext.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/page_owner.h> | 
 | #include <linux/page_idle.h> | 
 |  | 
 | /* | 
 |  * struct page extension | 
 |  * | 
 |  * This is the feature to manage memory for extended data per page. | 
 |  * | 
 |  * Until now, we must modify struct page itself to store extra data per page. | 
 |  * This requires rebuilding the kernel and it is really time consuming process. | 
 |  * And, sometimes, rebuild is impossible due to third party module dependency. | 
 |  * At last, enlarging struct page could cause un-wanted system behaviour change. | 
 |  * | 
 |  * This feature is intended to overcome above mentioned problems. This feature | 
 |  * allocates memory for extended data per page in certain place rather than | 
 |  * the struct page itself. This memory can be accessed by the accessor | 
 |  * functions provided by this code. During the boot process, it checks whether | 
 |  * allocation of huge chunk of memory is needed or not. If not, it avoids | 
 |  * allocating memory at all. With this advantage, we can include this feature | 
 |  * into the kernel in default and can avoid rebuild and solve related problems. | 
 |  * | 
 |  * To help these things to work well, there are two callbacks for clients. One | 
 |  * is the need callback which is mandatory if user wants to avoid useless | 
 |  * memory allocation at boot-time. The other is optional, init callback, which | 
 |  * is used to do proper initialization after memory is allocated. | 
 |  * | 
 |  * The need callback is used to decide whether extended memory allocation is | 
 |  * needed or not. Sometimes users want to deactivate some features in this | 
 |  * boot and extra memory would be unneccessary. In this case, to avoid | 
 |  * allocating huge chunk of memory, each clients represent their need of | 
 |  * extra memory through the need callback. If one of the need callbacks | 
 |  * returns true, it means that someone needs extra memory so that | 
 |  * page extension core should allocates memory for page extension. If | 
 |  * none of need callbacks return true, memory isn't needed at all in this boot | 
 |  * and page extension core can skip to allocate memory. As result, | 
 |  * none of memory is wasted. | 
 |  * | 
 |  * When need callback returns true, page_ext checks if there is a request for | 
 |  * extra memory through size in struct page_ext_operations. If it is non-zero, | 
 |  * extra space is allocated for each page_ext entry and offset is returned to | 
 |  * user through offset in struct page_ext_operations. | 
 |  * | 
 |  * The init callback is used to do proper initialization after page extension | 
 |  * is completely initialized. In sparse memory system, extra memory is | 
 |  * allocated some time later than memmap is allocated. In other words, lifetime | 
 |  * of memory for page extension isn't same with memmap for struct page. | 
 |  * Therefore, clients can't store extra data until page extension is | 
 |  * initialized, even if pages are allocated and used freely. This could | 
 |  * cause inadequate state of extra data per page, so, to prevent it, client | 
 |  * can utilize this callback to initialize the state of it correctly. | 
 |  */ | 
 |  | 
 | static struct page_ext_operations *page_ext_ops[] = { | 
 | #ifdef CONFIG_PAGE_OWNER | 
 | 	&page_owner_ops, | 
 | #endif | 
 | #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) | 
 | 	&page_idle_ops, | 
 | #endif | 
 | }; | 
 |  | 
 | unsigned long page_ext_size = sizeof(struct page_ext); | 
 |  | 
 | static unsigned long total_usage; | 
 |  | 
 | static bool __init invoke_need_callbacks(void) | 
 | { | 
 | 	int i; | 
 | 	int entries = ARRAY_SIZE(page_ext_ops); | 
 | 	bool need = false; | 
 |  | 
 | 	for (i = 0; i < entries; i++) { | 
 | 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { | 
 | 			page_ext_ops[i]->offset = page_ext_size; | 
 | 			page_ext_size += page_ext_ops[i]->size; | 
 | 			need = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return need; | 
 | } | 
 |  | 
 | static void __init invoke_init_callbacks(void) | 
 | { | 
 | 	int i; | 
 | 	int entries = ARRAY_SIZE(page_ext_ops); | 
 |  | 
 | 	for (i = 0; i < entries; i++) { | 
 | 		if (page_ext_ops[i]->init) | 
 | 			page_ext_ops[i]->init(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct page_ext *get_entry(void *base, unsigned long index) | 
 | { | 
 | 	return base + page_ext_size * index; | 
 | } | 
 |  | 
 | #if !defined(CONFIG_SPARSEMEM) | 
 |  | 
 |  | 
 | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | 
 | { | 
 | 	pgdat->node_page_ext = NULL; | 
 | } | 
 |  | 
 | struct page_ext *lookup_page_ext(const struct page *page) | 
 | { | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long index; | 
 | 	struct page_ext *base; | 
 |  | 
 | 	base = NODE_DATA(page_to_nid(page))->node_page_ext; | 
 | 	/* | 
 | 	 * The sanity checks the page allocator does upon freeing a | 
 | 	 * page can reach here before the page_ext arrays are | 
 | 	 * allocated when feeding a range of pages to the allocator | 
 | 	 * for the first time during bootup or memory hotplug. | 
 | 	 */ | 
 | 	if (unlikely(!base)) | 
 | 		return NULL; | 
 | 	index = pfn - round_down(node_start_pfn(page_to_nid(page)), | 
 | 					MAX_ORDER_NR_PAGES); | 
 | 	return get_entry(base, index); | 
 | } | 
 |  | 
 | static int __init alloc_node_page_ext(int nid) | 
 | { | 
 | 	struct page_ext *base; | 
 | 	unsigned long table_size; | 
 | 	unsigned long nr_pages; | 
 |  | 
 | 	nr_pages = NODE_DATA(nid)->node_spanned_pages; | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Need extra space if node range is not aligned with | 
 | 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm | 
 | 	 * checks buddy's status, range could be out of exact node range. | 
 | 	 */ | 
 | 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || | 
 | 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) | 
 | 		nr_pages += MAX_ORDER_NR_PAGES; | 
 |  | 
 | 	table_size = page_ext_size * nr_pages; | 
 |  | 
 | 	base = memblock_alloc_try_nid( | 
 | 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), | 
 | 			MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
 | 	if (!base) | 
 | 		return -ENOMEM; | 
 | 	NODE_DATA(nid)->node_page_ext = base; | 
 | 	total_usage += table_size; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init page_ext_init_flatmem(void) | 
 | { | 
 |  | 
 | 	int nid, fail; | 
 |  | 
 | 	if (!invoke_need_callbacks()) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(nid)  { | 
 | 		fail = alloc_node_page_ext(nid); | 
 | 		if (fail) | 
 | 			goto fail; | 
 | 	} | 
 | 	pr_info("allocated %ld bytes of page_ext\n", total_usage); | 
 | 	invoke_init_callbacks(); | 
 | 	return; | 
 |  | 
 | fail: | 
 | 	pr_crit("allocation of page_ext failed.\n"); | 
 | 	panic("Out of memory"); | 
 | } | 
 |  | 
 | #else /* CONFIG_FLAT_NODE_MEM_MAP */ | 
 |  | 
 | struct page_ext *lookup_page_ext(const struct page *page) | 
 | { | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	struct mem_section *section = __pfn_to_section(pfn); | 
 | 	/* | 
 | 	 * The sanity checks the page allocator does upon freeing a | 
 | 	 * page can reach here before the page_ext arrays are | 
 | 	 * allocated when feeding a range of pages to the allocator | 
 | 	 * for the first time during bootup or memory hotplug. | 
 | 	 */ | 
 | 	if (!section->page_ext) | 
 | 		return NULL; | 
 | 	return get_entry(section->page_ext, pfn); | 
 | } | 
 |  | 
 | static void *__meminit alloc_page_ext(size_t size, int nid) | 
 | { | 
 | 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; | 
 | 	void *addr = NULL; | 
 |  | 
 | 	addr = alloc_pages_exact_nid(nid, size, flags); | 
 | 	if (addr) { | 
 | 		kmemleak_alloc(addr, size, 1, flags); | 
 | 		return addr; | 
 | 	} | 
 |  | 
 | 	addr = vzalloc_node(size, nid); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static int __meminit init_section_page_ext(unsigned long pfn, int nid) | 
 | { | 
 | 	struct mem_section *section; | 
 | 	struct page_ext *base; | 
 | 	unsigned long table_size; | 
 |  | 
 | 	section = __pfn_to_section(pfn); | 
 |  | 
 | 	if (section->page_ext) | 
 | 		return 0; | 
 |  | 
 | 	table_size = page_ext_size * PAGES_PER_SECTION; | 
 | 	base = alloc_page_ext(table_size, nid); | 
 |  | 
 | 	/* | 
 | 	 * The value stored in section->page_ext is (base - pfn) | 
 | 	 * and it does not point to the memory block allocated above, | 
 | 	 * causing kmemleak false positives. | 
 | 	 */ | 
 | 	kmemleak_not_leak(base); | 
 |  | 
 | 	if (!base) { | 
 | 		pr_err("page ext allocation failure\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation | 
 | 	 * we need to apply a mask. | 
 | 	 */ | 
 | 	pfn &= PAGE_SECTION_MASK; | 
 | 	section->page_ext = (void *)base - page_ext_size * pfn; | 
 | 	total_usage += table_size; | 
 | 	return 0; | 
 | } | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static void free_page_ext(void *addr) | 
 | { | 
 | 	if (is_vmalloc_addr(addr)) { | 
 | 		vfree(addr); | 
 | 	} else { | 
 | 		struct page *page = virt_to_page(addr); | 
 | 		size_t table_size; | 
 |  | 
 | 		table_size = page_ext_size * PAGES_PER_SECTION; | 
 |  | 
 | 		BUG_ON(PageReserved(page)); | 
 | 		kmemleak_free(addr); | 
 | 		free_pages_exact(addr, table_size); | 
 | 	} | 
 | } | 
 |  | 
 | static void __free_page_ext(unsigned long pfn) | 
 | { | 
 | 	struct mem_section *ms; | 
 | 	struct page_ext *base; | 
 |  | 
 | 	ms = __pfn_to_section(pfn); | 
 | 	if (!ms || !ms->page_ext) | 
 | 		return; | 
 | 	base = get_entry(ms->page_ext, pfn); | 
 | 	free_page_ext(base); | 
 | 	ms->page_ext = NULL; | 
 | } | 
 |  | 
 | static int __meminit online_page_ext(unsigned long start_pfn, | 
 | 				unsigned long nr_pages, | 
 | 				int nid) | 
 | { | 
 | 	unsigned long start, end, pfn; | 
 | 	int fail = 0; | 
 |  | 
 | 	start = SECTION_ALIGN_DOWN(start_pfn); | 
 | 	end = SECTION_ALIGN_UP(start_pfn + nr_pages); | 
 |  | 
 | 	if (nid == NUMA_NO_NODE) { | 
 | 		/* | 
 | 		 * In this case, "nid" already exists and contains valid memory. | 
 | 		 * "start_pfn" passed to us is a pfn which is an arg for | 
 | 		 * online__pages(), and start_pfn should exist. | 
 | 		 */ | 
 | 		nid = pfn_to_nid(start_pfn); | 
 | 		VM_BUG_ON(!node_state(nid, N_ONLINE)); | 
 | 	} | 
 |  | 
 | 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { | 
 | 		if (!pfn_present(pfn)) | 
 | 			continue; | 
 | 		fail = init_section_page_ext(pfn, nid); | 
 | 	} | 
 | 	if (!fail) | 
 | 		return 0; | 
 |  | 
 | 	/* rollback */ | 
 | 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | 
 | 		__free_page_ext(pfn); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int __meminit offline_page_ext(unsigned long start_pfn, | 
 | 				unsigned long nr_pages, int nid) | 
 | { | 
 | 	unsigned long start, end, pfn; | 
 |  | 
 | 	start = SECTION_ALIGN_DOWN(start_pfn); | 
 | 	end = SECTION_ALIGN_UP(start_pfn + nr_pages); | 
 |  | 
 | 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | 
 | 		__free_page_ext(pfn); | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | static int __meminit page_ext_callback(struct notifier_block *self, | 
 | 			       unsigned long action, void *arg) | 
 | { | 
 | 	struct memory_notify *mn = arg; | 
 | 	int ret = 0; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: | 
 | 		ret = online_page_ext(mn->start_pfn, | 
 | 				   mn->nr_pages, mn->status_change_nid); | 
 | 		break; | 
 | 	case MEM_OFFLINE: | 
 | 		offline_page_ext(mn->start_pfn, | 
 | 				mn->nr_pages, mn->status_change_nid); | 
 | 		break; | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 		offline_page_ext(mn->start_pfn, | 
 | 				mn->nr_pages, mn->status_change_nid); | 
 | 		break; | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		break; | 
 | 	case MEM_ONLINE: | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return notifier_from_errno(ret); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void __init page_ext_init(void) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	int nid; | 
 |  | 
 | 	if (!invoke_need_callbacks()) | 
 | 		return; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		start_pfn = node_start_pfn(nid); | 
 | 		end_pfn = node_end_pfn(nid); | 
 | 		/* | 
 | 		 * start_pfn and end_pfn may not be aligned to SECTION and the | 
 | 		 * page->flags of out of node pages are not initialized.  So we | 
 | 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here. | 
 | 		 */ | 
 | 		for (pfn = start_pfn; pfn < end_pfn; | 
 | 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { | 
 |  | 
 | 			if (!pfn_valid(pfn)) | 
 | 				continue; | 
 | 			/* | 
 | 			 * Nodes's pfns can be overlapping. | 
 | 			 * We know some arch can have a nodes layout such as | 
 | 			 * -------------pfn--------------> | 
 | 			 * N0 | N1 | N2 | N0 | N1 | N2|.... | 
 | 			 */ | 
 | 			if (pfn_to_nid(pfn) != nid) | 
 | 				continue; | 
 | 			if (init_section_page_ext(pfn, nid)) | 
 | 				goto oom; | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 | 	hotplug_memory_notifier(page_ext_callback, 0); | 
 | 	pr_info("allocated %ld bytes of page_ext\n", total_usage); | 
 | 	invoke_init_callbacks(); | 
 | 	return; | 
 |  | 
 | oom: | 
 | 	panic("Out of memory"); | 
 | } | 
 |  | 
 | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | 
 | { | 
 | } | 
 |  | 
 | #endif |