| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/mm/vmalloc.c | 
 |  * | 
 |  *  Copyright (C) 1993  Linus Torvalds | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | 
 |  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | 
 |  *  Numa awareness, Christoph Lameter, SGI, June 2005 | 
 |  */ | 
 |  | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/set_memory.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/list.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/llist.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/rbtree_augmented.h> | 
 | #include <linux/overflow.h> | 
 |  | 
 | #include <linux/uaccess.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/shmparam.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | struct vfree_deferred { | 
 | 	struct llist_head list; | 
 | 	struct work_struct wq; | 
 | }; | 
 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | 
 |  | 
 | static void __vunmap(const void *, int); | 
 |  | 
 | static void free_work(struct work_struct *w) | 
 | { | 
 | 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | 
 | 	struct llist_node *t, *llnode; | 
 |  | 
 | 	llist_for_each_safe(llnode, t, llist_del_all(&p->list)) | 
 | 		__vunmap((void *)llnode, 1); | 
 | } | 
 |  | 
 | /*** Page table manipulation functions ***/ | 
 |  | 
 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	do { | 
 | 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | 
 | 		WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_clear_huge(pmd)) | 
 | 			continue; | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		vunmap_pte_range(pmd, addr, next); | 
 |  | 
 | 		cond_resched(); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_clear_huge(pud)) | 
 | 			continue; | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		vunmap_pmd_range(pud, addr, next); | 
 | 	} while (pud++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 |  | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (p4d_clear_huge(p4d)) | 
 | 			continue; | 
 | 		if (p4d_none_or_clear_bad(p4d)) | 
 | 			continue; | 
 | 		vunmap_pud_range(p4d, addr, next); | 
 | 	} while (p4d++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_page_range(unsigned long addr, unsigned long end) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		vunmap_p4d_range(pgd, addr, next); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	/* | 
 | 	 * nr is a running index into the array which helps higher level | 
 | 	 * callers keep track of where we're up to. | 
 | 	 */ | 
 |  | 
 | 	pte = pte_alloc_kernel(pmd, addr); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		struct page *page = pages[*nr]; | 
 |  | 
 | 		if (WARN_ON(!pte_none(*pte))) | 
 | 			return -EBUSY; | 
 | 		if (WARN_ON(!page)) | 
 | 			return -ENOMEM; | 
 | 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | 
 | 		(*nr)++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_alloc(&init_mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_alloc(&init_mm, p4d, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 |  | 
 | 	p4d = p4d_alloc(&init_mm, pgd, addr); | 
 | 	if (!p4d) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) | 
 | 			return -ENOMEM; | 
 | 	} while (p4d++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | 
 |  * will have pfns corresponding to the "pages" array. | 
 |  * | 
 |  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | 
 |  */ | 
 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, | 
 | 				   pgprot_t prot, struct page **pages) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long addr = start; | 
 | 	int err = 0; | 
 | 	int nr = 0; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int vmap_page_range(unsigned long start, unsigned long end, | 
 | 			   pgprot_t prot, struct page **pages) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = vmap_page_range_noflush(start, end, prot, pages); | 
 | 	flush_cache_vmap(start, end); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int is_vmalloc_or_module_addr(const void *x) | 
 | { | 
 | 	/* | 
 | 	 * ARM, x86-64 and sparc64 put modules in a special place, | 
 | 	 * and fall back on vmalloc() if that fails. Others | 
 | 	 * just put it in the vmalloc space. | 
 | 	 */ | 
 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | 
 | 	unsigned long addr = (unsigned long)x; | 
 | 	if (addr >= MODULES_VADDR && addr < MODULES_END) | 
 | 		return 1; | 
 | #endif | 
 | 	return is_vmalloc_addr(x); | 
 | } | 
 |  | 
 | /* | 
 |  * Walk a vmap address to the struct page it maps. | 
 |  */ | 
 | struct page *vmalloc_to_page(const void *vmalloc_addr) | 
 | { | 
 | 	unsigned long addr = (unsigned long) vmalloc_addr; | 
 | 	struct page *page = NULL; | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 |  | 
 | 	/* | 
 | 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for | 
 | 	 * architectures that do not vmalloc module space | 
 | 	 */ | 
 | 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); | 
 |  | 
 | 	if (pgd_none(*pgd)) | 
 | 		return NULL; | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return NULL; | 
 | 	pud = pud_offset(p4d, addr); | 
 |  | 
 | 	/* | 
 | 	 * Don't dereference bad PUD or PMD (below) entries. This will also | 
 | 	 * identify huge mappings, which we may encounter on architectures | 
 | 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be | 
 | 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are | 
 | 	 * not [unambiguously] associated with a struct page, so there is | 
 | 	 * no correct value to return for them. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(pud_bad(*pud)); | 
 | 	if (pud_none(*pud) || pud_bad(*pud)) | 
 | 		return NULL; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	WARN_ON_ONCE(pmd_bad(*pmd)); | 
 | 	if (pmd_none(*pmd) || pmd_bad(*pmd)) | 
 | 		return NULL; | 
 |  | 
 | 	ptep = pte_offset_map(pmd, addr); | 
 | 	pte = *ptep; | 
 | 	if (pte_present(pte)) | 
 | 		page = pte_page(pte); | 
 | 	pte_unmap(ptep); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_page); | 
 |  | 
 | /* | 
 |  * Map a vmalloc()-space virtual address to the physical page frame number. | 
 |  */ | 
 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | 
 | { | 
 | 	return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
 |  | 
 |  | 
 | /*** Global kva allocator ***/ | 
 |  | 
 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 | 
 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 | 
 |  | 
 |  | 
 | static DEFINE_SPINLOCK(vmap_area_lock); | 
 | /* Export for kexec only */ | 
 | LIST_HEAD(vmap_area_list); | 
 | static LLIST_HEAD(vmap_purge_list); | 
 | static struct rb_root vmap_area_root = RB_ROOT; | 
 | static bool vmap_initialized __read_mostly; | 
 |  | 
 | /* | 
 |  * This kmem_cache is used for vmap_area objects. Instead of | 
 |  * allocating from slab we reuse an object from this cache to | 
 |  * make things faster. Especially in "no edge" splitting of | 
 |  * free block. | 
 |  */ | 
 | static struct kmem_cache *vmap_area_cachep; | 
 |  | 
 | /* | 
 |  * This linked list is used in pair with free_vmap_area_root. | 
 |  * It gives O(1) access to prev/next to perform fast coalescing. | 
 |  */ | 
 | static LIST_HEAD(free_vmap_area_list); | 
 |  | 
 | /* | 
 |  * This augment red-black tree represents the free vmap space. | 
 |  * All vmap_area objects in this tree are sorted by va->va_start | 
 |  * address. It is used for allocation and merging when a vmap | 
 |  * object is released. | 
 |  * | 
 |  * Each vmap_area node contains a maximum available free block | 
 |  * of its sub-tree, right or left. Therefore it is possible to | 
 |  * find a lowest match of free area. | 
 |  */ | 
 | static struct rb_root free_vmap_area_root = RB_ROOT; | 
 |  | 
 | /* | 
 |  * Preload a CPU with one object for "no edge" split case. The | 
 |  * aim is to get rid of allocations from the atomic context, thus | 
 |  * to use more permissive allocation masks. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | 
 |  | 
 | static __always_inline unsigned long | 
 | va_size(struct vmap_area *va) | 
 | { | 
 | 	return (va->va_end - va->va_start); | 
 | } | 
 |  | 
 | static __always_inline unsigned long | 
 | get_subtree_max_size(struct rb_node *node) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = rb_entry_safe(node, struct vmap_area, rb_node); | 
 | 	return va ? va->subtree_max_size : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Gets called when remove the node and rotate. | 
 |  */ | 
 | static __always_inline unsigned long | 
 | compute_subtree_max_size(struct vmap_area *va) | 
 | { | 
 | 	return max3(va_size(va), | 
 | 		get_subtree_max_size(va->rb_node.rb_left), | 
 | 		get_subtree_max_size(va->rb_node.rb_right)); | 
 | } | 
 |  | 
 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, | 
 | 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | 
 |  | 
 | static void purge_vmap_area_lazy(void); | 
 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); | 
 | static unsigned long lazy_max_pages(void); | 
 |  | 
 | static atomic_long_t nr_vmalloc_pages; | 
 |  | 
 | unsigned long vmalloc_nr_pages(void) | 
 | { | 
 | 	return atomic_long_read(&nr_vmalloc_pages); | 
 | } | 
 |  | 
 | static struct vmap_area *__find_vmap_area(unsigned long addr) | 
 | { | 
 | 	struct rb_node *n = vmap_area_root.rb_node; | 
 |  | 
 | 	while (n) { | 
 | 		struct vmap_area *va; | 
 |  | 
 | 		va = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (addr < va->va_start) | 
 | 			n = n->rb_left; | 
 | 		else if (addr >= va->va_end) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return va; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns back addresses of parent node | 
 |  * and its left or right link for further processing. | 
 |  */ | 
 | static __always_inline struct rb_node ** | 
 | find_va_links(struct vmap_area *va, | 
 | 	struct rb_root *root, struct rb_node *from, | 
 | 	struct rb_node **parent) | 
 | { | 
 | 	struct vmap_area *tmp_va; | 
 | 	struct rb_node **link; | 
 |  | 
 | 	if (root) { | 
 | 		link = &root->rb_node; | 
 | 		if (unlikely(!*link)) { | 
 | 			*parent = NULL; | 
 | 			return link; | 
 | 		} | 
 | 	} else { | 
 | 		link = &from; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Go to the bottom of the tree. When we hit the last point | 
 | 	 * we end up with parent rb_node and correct direction, i name | 
 | 	 * it link, where the new va->rb_node will be attached to. | 
 | 	 */ | 
 | 	do { | 
 | 		tmp_va = rb_entry(*link, struct vmap_area, rb_node); | 
 |  | 
 | 		/* | 
 | 		 * During the traversal we also do some sanity check. | 
 | 		 * Trigger the BUG() if there are sides(left/right) | 
 | 		 * or full overlaps. | 
 | 		 */ | 
 | 		if (va->va_start < tmp_va->va_end && | 
 | 				va->va_end <= tmp_va->va_start) | 
 | 			link = &(*link)->rb_left; | 
 | 		else if (va->va_end > tmp_va->va_start && | 
 | 				va->va_start >= tmp_va->va_end) | 
 | 			link = &(*link)->rb_right; | 
 | 		else | 
 | 			BUG(); | 
 | 	} while (*link); | 
 |  | 
 | 	*parent = &tmp_va->rb_node; | 
 | 	return link; | 
 | } | 
 |  | 
 | static __always_inline struct list_head * | 
 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | 
 | { | 
 | 	struct list_head *list; | 
 |  | 
 | 	if (unlikely(!parent)) | 
 | 		/* | 
 | 		 * The red-black tree where we try to find VA neighbors | 
 | 		 * before merging or inserting is empty, i.e. it means | 
 | 		 * there is no free vmap space. Normally it does not | 
 | 		 * happen but we handle this case anyway. | 
 | 		 */ | 
 | 		return NULL; | 
 |  | 
 | 	list = &rb_entry(parent, struct vmap_area, rb_node)->list; | 
 | 	return (&parent->rb_right == link ? list->next : list); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | link_va(struct vmap_area *va, struct rb_root *root, | 
 | 	struct rb_node *parent, struct rb_node **link, struct list_head *head) | 
 | { | 
 | 	/* | 
 | 	 * VA is still not in the list, but we can | 
 | 	 * identify its future previous list_head node. | 
 | 	 */ | 
 | 	if (likely(parent)) { | 
 | 		head = &rb_entry(parent, struct vmap_area, rb_node)->list; | 
 | 		if (&parent->rb_right != link) | 
 | 			head = head->prev; | 
 | 	} | 
 |  | 
 | 	/* Insert to the rb-tree */ | 
 | 	rb_link_node(&va->rb_node, parent, link); | 
 | 	if (root == &free_vmap_area_root) { | 
 | 		/* | 
 | 		 * Some explanation here. Just perform simple insertion | 
 | 		 * to the tree. We do not set va->subtree_max_size to | 
 | 		 * its current size before calling rb_insert_augmented(). | 
 | 		 * It is because of we populate the tree from the bottom | 
 | 		 * to parent levels when the node _is_ in the tree. | 
 | 		 * | 
 | 		 * Therefore we set subtree_max_size to zero after insertion, | 
 | 		 * to let __augment_tree_propagate_from() puts everything to | 
 | 		 * the correct order later on. | 
 | 		 */ | 
 | 		rb_insert_augmented(&va->rb_node, | 
 | 			root, &free_vmap_area_rb_augment_cb); | 
 | 		va->subtree_max_size = 0; | 
 | 	} else { | 
 | 		rb_insert_color(&va->rb_node, root); | 
 | 	} | 
 |  | 
 | 	/* Address-sort this list */ | 
 | 	list_add(&va->list, head); | 
 | } | 
 |  | 
 | static __always_inline void | 
 | unlink_va(struct vmap_area *va, struct rb_root *root) | 
 | { | 
 | 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) | 
 | 		return; | 
 |  | 
 | 	if (root == &free_vmap_area_root) | 
 | 		rb_erase_augmented(&va->rb_node, | 
 | 			root, &free_vmap_area_rb_augment_cb); | 
 | 	else | 
 | 		rb_erase(&va->rb_node, root); | 
 |  | 
 | 	list_del(&va->list); | 
 | 	RB_CLEAR_NODE(&va->rb_node); | 
 | } | 
 |  | 
 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | 
 | static void | 
 | augment_tree_propagate_check(struct rb_node *n) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct rb_node *node; | 
 | 	unsigned long size; | 
 | 	bool found = false; | 
 |  | 
 | 	if (n == NULL) | 
 | 		return; | 
 |  | 
 | 	va = rb_entry(n, struct vmap_area, rb_node); | 
 | 	size = va->subtree_max_size; | 
 | 	node = n; | 
 |  | 
 | 	while (node) { | 
 | 		va = rb_entry(node, struct vmap_area, rb_node); | 
 |  | 
 | 		if (get_subtree_max_size(node->rb_left) == size) { | 
 | 			node = node->rb_left; | 
 | 		} else { | 
 | 			if (va_size(va) == size) { | 
 | 				found = true; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			node = node->rb_right; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!found) { | 
 | 		va = rb_entry(n, struct vmap_area, rb_node); | 
 | 		pr_emerg("tree is corrupted: %lu, %lu\n", | 
 | 			va_size(va), va->subtree_max_size); | 
 | 	} | 
 |  | 
 | 	augment_tree_propagate_check(n->rb_left); | 
 | 	augment_tree_propagate_check(n->rb_right); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This function populates subtree_max_size from bottom to upper | 
 |  * levels starting from VA point. The propagation must be done | 
 |  * when VA size is modified by changing its va_start/va_end. Or | 
 |  * in case of newly inserting of VA to the tree. | 
 |  * | 
 |  * It means that __augment_tree_propagate_from() must be called: | 
 |  * - After VA has been inserted to the tree(free path); | 
 |  * - After VA has been shrunk(allocation path); | 
 |  * - After VA has been increased(merging path). | 
 |  * | 
 |  * Please note that, it does not mean that upper parent nodes | 
 |  * and their subtree_max_size are recalculated all the time up | 
 |  * to the root node. | 
 |  * | 
 |  *       4--8 | 
 |  *        /\ | 
 |  *       /  \ | 
 |  *      /    \ | 
 |  *    2--2  8--8 | 
 |  * | 
 |  * For example if we modify the node 4, shrinking it to 2, then | 
 |  * no any modification is required. If we shrink the node 2 to 1 | 
 |  * its subtree_max_size is updated only, and set to 1. If we shrink | 
 |  * the node 8 to 6, then its subtree_max_size is set to 6 and parent | 
 |  * node becomes 4--6. | 
 |  */ | 
 | static __always_inline void | 
 | augment_tree_propagate_from(struct vmap_area *va) | 
 | { | 
 | 	struct rb_node *node = &va->rb_node; | 
 | 	unsigned long new_va_sub_max_size; | 
 |  | 
 | 	while (node) { | 
 | 		va = rb_entry(node, struct vmap_area, rb_node); | 
 | 		new_va_sub_max_size = compute_subtree_max_size(va); | 
 |  | 
 | 		/* | 
 | 		 * If the newly calculated maximum available size of the | 
 | 		 * subtree is equal to the current one, then it means that | 
 | 		 * the tree is propagated correctly. So we have to stop at | 
 | 		 * this point to save cycles. | 
 | 		 */ | 
 | 		if (va->subtree_max_size == new_va_sub_max_size) | 
 | 			break; | 
 |  | 
 | 		va->subtree_max_size = new_va_sub_max_size; | 
 | 		node = rb_parent(&va->rb_node); | 
 | 	} | 
 |  | 
 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | 
 | 	augment_tree_propagate_check(free_vmap_area_root.rb_node); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | insert_vmap_area(struct vmap_area *va, | 
 | 	struct rb_root *root, struct list_head *head) | 
 | { | 
 | 	struct rb_node **link; | 
 | 	struct rb_node *parent; | 
 |  | 
 | 	link = find_va_links(va, root, NULL, &parent); | 
 | 	link_va(va, root, parent, link, head); | 
 | } | 
 |  | 
 | static void | 
 | insert_vmap_area_augment(struct vmap_area *va, | 
 | 	struct rb_node *from, struct rb_root *root, | 
 | 	struct list_head *head) | 
 | { | 
 | 	struct rb_node **link; | 
 | 	struct rb_node *parent; | 
 |  | 
 | 	if (from) | 
 | 		link = find_va_links(va, NULL, from, &parent); | 
 | 	else | 
 | 		link = find_va_links(va, root, NULL, &parent); | 
 |  | 
 | 	link_va(va, root, parent, link, head); | 
 | 	augment_tree_propagate_from(va); | 
 | } | 
 |  | 
 | /* | 
 |  * Merge de-allocated chunk of VA memory with previous | 
 |  * and next free blocks. If coalesce is not done a new | 
 |  * free area is inserted. If VA has been merged, it is | 
 |  * freed. | 
 |  */ | 
 | static __always_inline void | 
 | merge_or_add_vmap_area(struct vmap_area *va, | 
 | 	struct rb_root *root, struct list_head *head) | 
 | { | 
 | 	struct vmap_area *sibling; | 
 | 	struct list_head *next; | 
 | 	struct rb_node **link; | 
 | 	struct rb_node *parent; | 
 | 	bool merged = false; | 
 |  | 
 | 	/* | 
 | 	 * Find a place in the tree where VA potentially will be | 
 | 	 * inserted, unless it is merged with its sibling/siblings. | 
 | 	 */ | 
 | 	link = find_va_links(va, root, NULL, &parent); | 
 |  | 
 | 	/* | 
 | 	 * Get next node of VA to check if merging can be done. | 
 | 	 */ | 
 | 	next = get_va_next_sibling(parent, link); | 
 | 	if (unlikely(next == NULL)) | 
 | 		goto insert; | 
 |  | 
 | 	/* | 
 | 	 * start            end | 
 | 	 * |                | | 
 | 	 * |<------VA------>|<-----Next----->| | 
 | 	 *                  |                | | 
 | 	 *                  start            end | 
 | 	 */ | 
 | 	if (next != head) { | 
 | 		sibling = list_entry(next, struct vmap_area, list); | 
 | 		if (sibling->va_start == va->va_end) { | 
 | 			sibling->va_start = va->va_start; | 
 |  | 
 | 			/* Check and update the tree if needed. */ | 
 | 			augment_tree_propagate_from(sibling); | 
 |  | 
 | 			/* Free vmap_area object. */ | 
 | 			kmem_cache_free(vmap_area_cachep, va); | 
 |  | 
 | 			/* Point to the new merged area. */ | 
 | 			va = sibling; | 
 | 			merged = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * start            end | 
 | 	 * |                | | 
 | 	 * |<-----Prev----->|<------VA------>| | 
 | 	 *                  |                | | 
 | 	 *                  start            end | 
 | 	 */ | 
 | 	if (next->prev != head) { | 
 | 		sibling = list_entry(next->prev, struct vmap_area, list); | 
 | 		if (sibling->va_end == va->va_start) { | 
 | 			sibling->va_end = va->va_end; | 
 |  | 
 | 			/* Check and update the tree if needed. */ | 
 | 			augment_tree_propagate_from(sibling); | 
 |  | 
 | 			if (merged) | 
 | 				unlink_va(va, root); | 
 |  | 
 | 			/* Free vmap_area object. */ | 
 | 			kmem_cache_free(vmap_area_cachep, va); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | insert: | 
 | 	if (!merged) { | 
 | 		link_va(va, root, parent, link, head); | 
 | 		augment_tree_propagate_from(va); | 
 | 	} | 
 | } | 
 |  | 
 | static __always_inline bool | 
 | is_within_this_va(struct vmap_area *va, unsigned long size, | 
 | 	unsigned long align, unsigned long vstart) | 
 | { | 
 | 	unsigned long nva_start_addr; | 
 |  | 
 | 	if (va->va_start > vstart) | 
 | 		nva_start_addr = ALIGN(va->va_start, align); | 
 | 	else | 
 | 		nva_start_addr = ALIGN(vstart, align); | 
 |  | 
 | 	/* Can be overflowed due to big size or alignment. */ | 
 | 	if (nva_start_addr + size < nva_start_addr || | 
 | 			nva_start_addr < vstart) | 
 | 		return false; | 
 |  | 
 | 	return (nva_start_addr + size <= va->va_end); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the first free block(lowest start address) in the tree, | 
 |  * that will accomplish the request corresponding to passing | 
 |  * parameters. | 
 |  */ | 
 | static __always_inline struct vmap_area * | 
 | find_vmap_lowest_match(unsigned long size, | 
 | 	unsigned long align, unsigned long vstart) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct rb_node *node; | 
 | 	unsigned long length; | 
 |  | 
 | 	/* Start from the root. */ | 
 | 	node = free_vmap_area_root.rb_node; | 
 |  | 
 | 	/* Adjust the search size for alignment overhead. */ | 
 | 	length = size + align - 1; | 
 |  | 
 | 	while (node) { | 
 | 		va = rb_entry(node, struct vmap_area, rb_node); | 
 |  | 
 | 		if (get_subtree_max_size(node->rb_left) >= length && | 
 | 				vstart < va->va_start) { | 
 | 			node = node->rb_left; | 
 | 		} else { | 
 | 			if (is_within_this_va(va, size, align, vstart)) | 
 | 				return va; | 
 |  | 
 | 			/* | 
 | 			 * Does not make sense to go deeper towards the right | 
 | 			 * sub-tree if it does not have a free block that is | 
 | 			 * equal or bigger to the requested search length. | 
 | 			 */ | 
 | 			if (get_subtree_max_size(node->rb_right) >= length) { | 
 | 				node = node->rb_right; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * OK. We roll back and find the first right sub-tree, | 
 | 			 * that will satisfy the search criteria. It can happen | 
 | 			 * only once due to "vstart" restriction. | 
 | 			 */ | 
 | 			while ((node = rb_parent(node))) { | 
 | 				va = rb_entry(node, struct vmap_area, rb_node); | 
 | 				if (is_within_this_va(va, size, align, vstart)) | 
 | 					return va; | 
 |  | 
 | 				if (get_subtree_max_size(node->rb_right) >= length && | 
 | 						vstart <= va->va_start) { | 
 | 					node = node->rb_right; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | 
 | #include <linux/random.h> | 
 |  | 
 | static struct vmap_area * | 
 | find_vmap_lowest_linear_match(unsigned long size, | 
 | 	unsigned long align, unsigned long vstart) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	list_for_each_entry(va, &free_vmap_area_list, list) { | 
 | 		if (!is_within_this_va(va, size, align, vstart)) | 
 | 			continue; | 
 |  | 
 | 		return va; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void | 
 | find_vmap_lowest_match_check(unsigned long size) | 
 | { | 
 | 	struct vmap_area *va_1, *va_2; | 
 | 	unsigned long vstart; | 
 | 	unsigned int rnd; | 
 |  | 
 | 	get_random_bytes(&rnd, sizeof(rnd)); | 
 | 	vstart = VMALLOC_START + rnd; | 
 |  | 
 | 	va_1 = find_vmap_lowest_match(size, 1, vstart); | 
 | 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart); | 
 |  | 
 | 	if (va_1 != va_2) | 
 | 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | 
 | 			va_1, va_2, vstart); | 
 | } | 
 | #endif | 
 |  | 
 | enum fit_type { | 
 | 	NOTHING_FIT = 0, | 
 | 	FL_FIT_TYPE = 1,	/* full fit */ | 
 | 	LE_FIT_TYPE = 2,	/* left edge fit */ | 
 | 	RE_FIT_TYPE = 3,	/* right edge fit */ | 
 | 	NE_FIT_TYPE = 4		/* no edge fit */ | 
 | }; | 
 |  | 
 | static __always_inline enum fit_type | 
 | classify_va_fit_type(struct vmap_area *va, | 
 | 	unsigned long nva_start_addr, unsigned long size) | 
 | { | 
 | 	enum fit_type type; | 
 |  | 
 | 	/* Check if it is within VA. */ | 
 | 	if (nva_start_addr < va->va_start || | 
 | 			nva_start_addr + size > va->va_end) | 
 | 		return NOTHING_FIT; | 
 |  | 
 | 	/* Now classify. */ | 
 | 	if (va->va_start == nva_start_addr) { | 
 | 		if (va->va_end == nva_start_addr + size) | 
 | 			type = FL_FIT_TYPE; | 
 | 		else | 
 | 			type = LE_FIT_TYPE; | 
 | 	} else if (va->va_end == nva_start_addr + size) { | 
 | 		type = RE_FIT_TYPE; | 
 | 	} else { | 
 | 		type = NE_FIT_TYPE; | 
 | 	} | 
 |  | 
 | 	return type; | 
 | } | 
 |  | 
 | static __always_inline int | 
 | adjust_va_to_fit_type(struct vmap_area *va, | 
 | 	unsigned long nva_start_addr, unsigned long size, | 
 | 	enum fit_type type) | 
 | { | 
 | 	struct vmap_area *lva = NULL; | 
 |  | 
 | 	if (type == FL_FIT_TYPE) { | 
 | 		/* | 
 | 		 * No need to split VA, it fully fits. | 
 | 		 * | 
 | 		 * |               | | 
 | 		 * V      NVA      V | 
 | 		 * |---------------| | 
 | 		 */ | 
 | 		unlink_va(va, &free_vmap_area_root); | 
 | 		kmem_cache_free(vmap_area_cachep, va); | 
 | 	} else if (type == LE_FIT_TYPE) { | 
 | 		/* | 
 | 		 * Split left edge of fit VA. | 
 | 		 * | 
 | 		 * |       | | 
 | 		 * V  NVA  V   R | 
 | 		 * |-------|-------| | 
 | 		 */ | 
 | 		va->va_start += size; | 
 | 	} else if (type == RE_FIT_TYPE) { | 
 | 		/* | 
 | 		 * Split right edge of fit VA. | 
 | 		 * | 
 | 		 *         |       | | 
 | 		 *     L   V  NVA  V | 
 | 		 * |-------|-------| | 
 | 		 */ | 
 | 		va->va_end = nva_start_addr; | 
 | 	} else if (type == NE_FIT_TYPE) { | 
 | 		/* | 
 | 		 * Split no edge of fit VA. | 
 | 		 * | 
 | 		 *     |       | | 
 | 		 *   L V  NVA  V R | 
 | 		 * |---|-------|---| | 
 | 		 */ | 
 | 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL); | 
 | 		if (unlikely(!lva)) { | 
 | 			/* | 
 | 			 * For percpu allocator we do not do any pre-allocation | 
 | 			 * and leave it as it is. The reason is it most likely | 
 | 			 * never ends up with NE_FIT_TYPE splitting. In case of | 
 | 			 * percpu allocations offsets and sizes are aligned to | 
 | 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | 
 | 			 * are its main fitting cases. | 
 | 			 * | 
 | 			 * There are a few exceptions though, as an example it is | 
 | 			 * a first allocation (early boot up) when we have "one" | 
 | 			 * big free space that has to be split. | 
 | 			 */ | 
 | 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 			if (!lva) | 
 | 				return -1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Build the remainder. | 
 | 		 */ | 
 | 		lva->va_start = va->va_start; | 
 | 		lva->va_end = nva_start_addr; | 
 |  | 
 | 		/* | 
 | 		 * Shrink this VA to remaining size. | 
 | 		 */ | 
 | 		va->va_start = nva_start_addr + size; | 
 | 	} else { | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (type != FL_FIT_TYPE) { | 
 | 		augment_tree_propagate_from(va); | 
 |  | 
 | 		if (lva)	/* type == NE_FIT_TYPE */ | 
 | 			insert_vmap_area_augment(lva, &va->rb_node, | 
 | 				&free_vmap_area_root, &free_vmap_area_list); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a start address of the newly allocated area, if success. | 
 |  * Otherwise a vend is returned that indicates failure. | 
 |  */ | 
 | static __always_inline unsigned long | 
 | __alloc_vmap_area(unsigned long size, unsigned long align, | 
 | 	unsigned long vstart, unsigned long vend) | 
 | { | 
 | 	unsigned long nva_start_addr; | 
 | 	struct vmap_area *va; | 
 | 	enum fit_type type; | 
 | 	int ret; | 
 |  | 
 | 	va = find_vmap_lowest_match(size, align, vstart); | 
 | 	if (unlikely(!va)) | 
 | 		return vend; | 
 |  | 
 | 	if (va->va_start > vstart) | 
 | 		nva_start_addr = ALIGN(va->va_start, align); | 
 | 	else | 
 | 		nva_start_addr = ALIGN(vstart, align); | 
 |  | 
 | 	/* Check the "vend" restriction. */ | 
 | 	if (nva_start_addr + size > vend) | 
 | 		return vend; | 
 |  | 
 | 	/* Classify what we have found. */ | 
 | 	type = classify_va_fit_type(va, nva_start_addr, size); | 
 | 	if (WARN_ON_ONCE(type == NOTHING_FIT)) | 
 | 		return vend; | 
 |  | 
 | 	/* Update the free vmap_area. */ | 
 | 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); | 
 | 	if (ret) | 
 | 		return vend; | 
 |  | 
 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | 
 | 	find_vmap_lowest_match_check(size); | 
 | #endif | 
 |  | 
 | 	return nva_start_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a region of KVA of the specified size and alignment, within the | 
 |  * vstart and vend. | 
 |  */ | 
 | static struct vmap_area *alloc_vmap_area(unsigned long size, | 
 | 				unsigned long align, | 
 | 				unsigned long vstart, unsigned long vend, | 
 | 				int node, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_area *va, *pva; | 
 | 	unsigned long addr; | 
 | 	int purged = 0; | 
 |  | 
 | 	BUG_ON(!size); | 
 | 	BUG_ON(offset_in_page(size)); | 
 | 	BUG_ON(!is_power_of_2(align)); | 
 |  | 
 | 	if (unlikely(!vmap_initialized)) | 
 | 		return ERR_PTR(-EBUSY); | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	va = kmem_cache_alloc_node(vmap_area_cachep, | 
 | 			gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!va)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * Only scan the relevant parts containing pointers to other objects | 
 | 	 * to avoid false negatives. | 
 | 	 */ | 
 | 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); | 
 |  | 
 | retry: | 
 | 	/* | 
 | 	 * Preload this CPU with one extra vmap_area object to ensure | 
 | 	 * that we have it available when fit type of free area is | 
 | 	 * NE_FIT_TYPE. | 
 | 	 * | 
 | 	 * The preload is done in non-atomic context, thus it allows us | 
 | 	 * to use more permissive allocation masks to be more stable under | 
 | 	 * low memory condition and high memory pressure. | 
 | 	 * | 
 | 	 * Even if it fails we do not really care about that. Just proceed | 
 | 	 * as it is. "overflow" path will refill the cache we allocate from. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	if (!__this_cpu_read(ne_fit_preload_node)) { | 
 | 		preempt_enable(); | 
 | 		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); | 
 | 		preempt_disable(); | 
 |  | 
 | 		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) { | 
 | 			if (pva) | 
 | 				kmem_cache_free(vmap_area_cachep, pva); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	preempt_enable(); | 
 |  | 
 | 	/* | 
 | 	 * If an allocation fails, the "vend" address is | 
 | 	 * returned. Therefore trigger the overflow path. | 
 | 	 */ | 
 | 	addr = __alloc_vmap_area(size, align, vstart, vend); | 
 | 	if (unlikely(addr == vend)) | 
 | 		goto overflow; | 
 |  | 
 | 	va->va_start = addr; | 
 | 	va->va_end = addr + size; | 
 | 	va->vm = NULL; | 
 | 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | 
 |  | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	BUG_ON(!IS_ALIGNED(va->va_start, align)); | 
 | 	BUG_ON(va->va_start < vstart); | 
 | 	BUG_ON(va->va_end > vend); | 
 |  | 
 | 	return va; | 
 |  | 
 | overflow: | 
 | 	spin_unlock(&vmap_area_lock); | 
 | 	if (!purged) { | 
 | 		purge_vmap_area_lazy(); | 
 | 		purged = 1; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (gfpflags_allow_blocking(gfp_mask)) { | 
 | 		unsigned long freed = 0; | 
 | 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | 
 | 		if (freed > 0) { | 
 | 			purged = 0; | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) | 
 | 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", | 
 | 			size); | 
 |  | 
 | 	kmem_cache_free(vmap_area_cachep, va); | 
 | 	return ERR_PTR(-EBUSY); | 
 | } | 
 |  | 
 | int register_vmap_purge_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_register(&vmap_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | 
 |  | 
 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | 
 | { | 
 | 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | 
 |  | 
 | static void __free_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	/* | 
 | 	 * Remove from the busy tree/list. | 
 | 	 */ | 
 | 	unlink_va(va, &vmap_area_root); | 
 |  | 
 | 	/* | 
 | 	 * Merge VA with its neighbors, otherwise just add it. | 
 | 	 */ | 
 | 	merge_or_add_vmap_area(va, | 
 | 		&free_vmap_area_root, &free_vmap_area_list); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a region of KVA allocated by alloc_vmap_area | 
 |  */ | 
 | static void free_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	__free_vmap_area(va); | 
 | 	spin_unlock(&vmap_area_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the pagetable entries of a given vmap_area | 
 |  */ | 
 | static void unmap_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	vunmap_page_range(va->va_start, va->va_end); | 
 | } | 
 |  | 
 | /* | 
 |  * lazy_max_pages is the maximum amount of virtual address space we gather up | 
 |  * before attempting to purge with a TLB flush. | 
 |  * | 
 |  * There is a tradeoff here: a larger number will cover more kernel page tables | 
 |  * and take slightly longer to purge, but it will linearly reduce the number of | 
 |  * global TLB flushes that must be performed. It would seem natural to scale | 
 |  * this number up linearly with the number of CPUs (because vmapping activity | 
 |  * could also scale linearly with the number of CPUs), however it is likely | 
 |  * that in practice, workloads might be constrained in other ways that mean | 
 |  * vmap activity will not scale linearly with CPUs. Also, I want to be | 
 |  * conservative and not introduce a big latency on huge systems, so go with | 
 |  * a less aggressive log scale. It will still be an improvement over the old | 
 |  * code, and it will be simple to change the scale factor if we find that it | 
 |  * becomes a problem on bigger systems. | 
 |  */ | 
 | static unsigned long lazy_max_pages(void) | 
 | { | 
 | 	unsigned int log; | 
 |  | 
 | 	log = fls(num_online_cpus()); | 
 |  | 
 | 	return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 
 | } | 
 |  | 
 | static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); | 
 |  | 
 | /* | 
 |  * Serialize vmap purging.  There is no actual criticial section protected | 
 |  * by this look, but we want to avoid concurrent calls for performance | 
 |  * reasons and to make the pcpu_get_vm_areas more deterministic. | 
 |  */ | 
 | static DEFINE_MUTEX(vmap_purge_lock); | 
 |  | 
 | /* for per-CPU blocks */ | 
 | static void purge_fragmented_blocks_allcpus(void); | 
 |  | 
 | /* | 
 |  * called before a call to iounmap() if the caller wants vm_area_struct's | 
 |  * immediately freed. | 
 |  */ | 
 | void set_iounmap_nonlazy(void) | 
 | { | 
 | 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); | 
 | } | 
 |  | 
 | /* | 
 |  * Purges all lazily-freed vmap areas. | 
 |  */ | 
 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long resched_threshold; | 
 | 	struct llist_node *valist; | 
 | 	struct vmap_area *va; | 
 | 	struct vmap_area *n_va; | 
 |  | 
 | 	lockdep_assert_held(&vmap_purge_lock); | 
 |  | 
 | 	valist = llist_del_all(&vmap_purge_list); | 
 | 	if (unlikely(valist == NULL)) | 
 | 		return false; | 
 |  | 
 | 	/* assert on wrong valist */ | 
 | 	if (unlikely((ulong)valist < PAGE_OFFSET)) { | 
 | 		pr_err("%s: valist %lx\n", __func__, (unsigned long)valist); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First make sure the mappings are removed from all page-tables | 
 | 	 * before they are freed. | 
 | 	 */ | 
 | 	vmalloc_sync_unmappings(); | 
 |  | 
 | 	/* | 
 | 	 * TODO: to calculate a flush range without looping. | 
 | 	 * The list can be up to lazy_max_pages() elements. | 
 | 	 */ | 
 | 	llist_for_each_entry(va, valist, purge_list) { | 
 | 		if (va->va_start < start) | 
 | 			start = va->va_start; | 
 | 		if (va->va_end > end) | 
 | 			end = va->va_end; | 
 | 	} | 
 |  | 
 | 	flush_tlb_kernel_range(start, end); | 
 | 	resched_threshold = lazy_max_pages() << 1; | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	llist_for_each_entry_safe(va, n_va, valist, purge_list) { | 
 | 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; | 
 |  | 
 | 		/* | 
 | 		 * Finally insert or merge lazily-freed area. It is | 
 | 		 * detached and there is no need to "unlink" it from | 
 | 		 * anything. | 
 | 		 */ | 
 | 		merge_or_add_vmap_area(va, | 
 | 			&free_vmap_area_root, &free_vmap_area_list); | 
 |  | 
 | 		atomic_long_sub(nr, &vmap_lazy_nr); | 
 |  | 
 | 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) | 
 | 			cond_resched_lock(&vmap_area_lock); | 
 | 	} | 
 | 	spin_unlock(&vmap_area_lock); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | 
 |  * is already purging. | 
 |  */ | 
 | static void try_purge_vmap_area_lazy(void) | 
 | { | 
 | 	if (mutex_trylock(&vmap_purge_lock)) { | 
 | 		__purge_vmap_area_lazy(ULONG_MAX, 0); | 
 | 		mutex_unlock(&vmap_purge_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Kick off a purge of the outstanding lazy areas. | 
 |  */ | 
 | static void purge_vmap_area_lazy(void) | 
 | { | 
 | 	mutex_lock(&vmap_purge_lock); | 
 | 	purge_fragmented_blocks_allcpus(); | 
 | 	__purge_vmap_area_lazy(ULONG_MAX, 0); | 
 | 	mutex_unlock(&vmap_purge_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a vmap area, caller ensuring that the area has been unmapped | 
 |  * and flush_cache_vunmap had been called for the correct range | 
 |  * previously. | 
 |  */ | 
 | static void free_vmap_area_noflush(struct vmap_area *va) | 
 | { | 
 | 	unsigned long nr_lazy; | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	unlink_va(va, &vmap_area_root); | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> | 
 | 				PAGE_SHIFT, &vmap_lazy_nr); | 
 |  | 
 | 	/* After this point, we may free va at any time */ | 
 | 	llist_add(&va->purge_list, &vmap_purge_list); | 
 |  | 
 | 	if (unlikely(nr_lazy > lazy_max_pages())) | 
 | 		try_purge_vmap_area_lazy(); | 
 | } | 
 |  | 
 | /* | 
 |  * Free and unmap a vmap area | 
 |  */ | 
 | static void free_unmap_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	flush_cache_vunmap(va->va_start, va->va_end); | 
 | 	unmap_vmap_area(va); | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		flush_tlb_kernel_range(va->va_start, va->va_end); | 
 |  | 
 | 	free_vmap_area_noflush(va); | 
 | } | 
 |  | 
 | static struct vmap_area *find_vmap_area(unsigned long addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	va = __find_vmap_area(addr); | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /*** Per cpu kva allocator ***/ | 
 |  | 
 | /* | 
 |  * vmap space is limited especially on 32 bit architectures. Ensure there is | 
 |  * room for at least 16 percpu vmap blocks per CPU. | 
 |  */ | 
 | /* | 
 |  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | 
 |  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess | 
 |  * instead (we just need a rough idea) | 
 |  */ | 
 | #if BITS_PER_LONG == 32 | 
 | #define VMALLOC_SPACE		(128UL*1024*1024) | 
 | #else | 
 | #define VMALLOC_SPACE		(128UL*1024*1024*1024) | 
 | #endif | 
 |  | 
 | #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE) | 
 | #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */ | 
 | #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */ | 
 | #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2) | 
 | #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */ | 
 | #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */ | 
 | #define VMAP_BBMAP_BITS		\ | 
 | 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\ | 
 | 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\ | 
 | 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | 
 |  | 
 | #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE) | 
 |  | 
 | struct vmap_block_queue { | 
 | 	spinlock_t lock; | 
 | 	struct list_head free; | 
 | }; | 
 |  | 
 | struct vmap_block { | 
 | 	spinlock_t lock; | 
 | 	struct vmap_area *va; | 
 | 	unsigned long free, dirty; | 
 | 	unsigned long dirty_min, dirty_max; /*< dirty range */ | 
 | 	struct list_head free_list; | 
 | 	struct rcu_head rcu_head; | 
 | 	struct list_head purge; | 
 | }; | 
 |  | 
 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | 
 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | 
 |  | 
 | /* | 
 |  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | 
 |  * in the free path. Could get rid of this if we change the API to return a | 
 |  * "cookie" from alloc, to be passed to free. But no big deal yet. | 
 |  */ | 
 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | 
 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | 
 |  | 
 | /* | 
 |  * We should probably have a fallback mechanism to allocate virtual memory | 
 |  * out of partially filled vmap blocks. However vmap block sizing should be | 
 |  * fairly reasonable according to the vmalloc size, so it shouldn't be a | 
 |  * big problem. | 
 |  */ | 
 |  | 
 | static unsigned long addr_to_vb_idx(unsigned long addr) | 
 | { | 
 | 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | 
 | 	addr /= VMAP_BLOCK_SIZE; | 
 | 	return addr; | 
 | } | 
 |  | 
 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) | 
 | { | 
 | 	unsigned long addr; | 
 |  | 
 | 	addr = va_start + (pages_off << PAGE_SHIFT); | 
 | 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | 
 | 	return (void *)addr; | 
 | } | 
 |  | 
 | /** | 
 |  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | 
 |  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS | 
 |  * @order:    how many 2^order pages should be occupied in newly allocated block | 
 |  * @gfp_mask: flags for the page level allocator | 
 |  * | 
 |  * Return: virtual address in a newly allocated block or ERR_PTR(-errno) | 
 |  */ | 
 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_block_queue *vbq; | 
 | 	struct vmap_block *vb; | 
 | 	struct vmap_area *va; | 
 | 	unsigned long vb_idx; | 
 | 	int node, err; | 
 | 	void *vaddr; | 
 |  | 
 | 	node = numa_node_id(); | 
 |  | 
 | 	vb = kmalloc_node(sizeof(struct vmap_block), | 
 | 			gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!vb)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | 
 | 					VMALLOC_START, VMALLOC_END, | 
 | 					node, gfp_mask); | 
 | 	if (IS_ERR(va)) { | 
 | 		kfree(vb); | 
 | 		return ERR_CAST(va); | 
 | 	} | 
 |  | 
 | 	err = radix_tree_preload(gfp_mask); | 
 | 	if (unlikely(err)) { | 
 | 		kfree(vb); | 
 | 		free_vmap_area(va); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	vaddr = vmap_block_vaddr(va->va_start, 0); | 
 | 	spin_lock_init(&vb->lock); | 
 | 	vb->va = va; | 
 | 	/* At least something should be left free */ | 
 | 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | 
 | 	vb->free = VMAP_BBMAP_BITS - (1UL << order); | 
 | 	vb->dirty = 0; | 
 | 	vb->dirty_min = VMAP_BBMAP_BITS; | 
 | 	vb->dirty_max = 0; | 
 | 	INIT_LIST_HEAD(&vb->free_list); | 
 |  | 
 | 	vb_idx = addr_to_vb_idx(va->va_start); | 
 | 	spin_lock(&vmap_block_tree_lock); | 
 | 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | 
 | 	spin_unlock(&vmap_block_tree_lock); | 
 | 	BUG_ON(err); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	vbq = &get_cpu_var(vmap_block_queue); | 
 | 	spin_lock(&vbq->lock); | 
 | 	list_add_tail_rcu(&vb->free_list, &vbq->free); | 
 | 	spin_unlock(&vbq->lock); | 
 | 	put_cpu_var(vmap_block_queue); | 
 |  | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static void free_vmap_block(struct vmap_block *vb) | 
 | { | 
 | 	struct vmap_block *tmp; | 
 | 	unsigned long vb_idx; | 
 |  | 
 | 	vb_idx = addr_to_vb_idx(vb->va->va_start); | 
 | 	spin_lock(&vmap_block_tree_lock); | 
 | 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | 
 | 	spin_unlock(&vmap_block_tree_lock); | 
 | 	BUG_ON(tmp != vb); | 
 |  | 
 | 	free_vmap_area_noflush(vb->va); | 
 | 	kfree_rcu(vb, rcu_head); | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks(int cpu) | 
 | { | 
 | 	LIST_HEAD(purge); | 
 | 	struct vmap_block *vb; | 
 | 	struct vmap_block *n_vb; | 
 | 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 |  | 
 | 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&vb->lock); | 
 | 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | 
 | 			vb->free = 0; /* prevent further allocs after releasing lock */ | 
 | 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | 
 | 			vb->dirty_min = 0; | 
 | 			vb->dirty_max = VMAP_BBMAP_BITS; | 
 | 			spin_lock(&vbq->lock); | 
 | 			list_del_rcu(&vb->free_list); | 
 | 			spin_unlock(&vbq->lock); | 
 | 			spin_unlock(&vb->lock); | 
 | 			list_add_tail(&vb->purge, &purge); | 
 | 		} else | 
 | 			spin_unlock(&vb->lock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	list_for_each_entry_safe(vb, n_vb, &purge, purge) { | 
 | 		list_del(&vb->purge); | 
 | 		free_vmap_block(vb); | 
 | 	} | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks_allcpus(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		purge_fragmented_blocks(cpu); | 
 | } | 
 |  | 
 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_block_queue *vbq; | 
 | 	struct vmap_block *vb; | 
 | 	void *vaddr = NULL; | 
 | 	unsigned int order; | 
 |  | 
 | 	BUG_ON(offset_in_page(size)); | 
 | 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
 | 	if (WARN_ON(size == 0)) { | 
 | 		/* | 
 | 		 * Allocating 0 bytes isn't what caller wants since | 
 | 		 * get_order(0) returns funny result. Just warn and terminate | 
 | 		 * early. | 
 | 		 */ | 
 | 		return NULL; | 
 | 	} | 
 | 	order = get_order(size); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	vbq = &get_cpu_var(vmap_block_queue); | 
 | 	list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 | 		unsigned long pages_off; | 
 |  | 
 | 		spin_lock(&vb->lock); | 
 | 		if (vb->free < (1UL << order)) { | 
 | 			spin_unlock(&vb->lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pages_off = VMAP_BBMAP_BITS - vb->free; | 
 | 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | 
 | 		vb->free -= 1UL << order; | 
 | 		if (vb->free == 0) { | 
 | 			spin_lock(&vbq->lock); | 
 | 			list_del_rcu(&vb->free_list); | 
 | 			spin_unlock(&vbq->lock); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&vb->lock); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	put_cpu_var(vmap_block_queue); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* Allocate new block if nothing was found */ | 
 | 	if (!vaddr) | 
 | 		vaddr = new_vmap_block(order, gfp_mask); | 
 |  | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static void vb_free(const void *addr, unsigned long size) | 
 | { | 
 | 	unsigned long offset; | 
 | 	unsigned long vb_idx; | 
 | 	unsigned int order; | 
 | 	struct vmap_block *vb; | 
 |  | 
 | 	BUG_ON(offset_in_page(size)); | 
 | 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
 |  | 
 | 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | 
 |  | 
 | 	order = get_order(size); | 
 |  | 
 | 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | 
 | 	offset >>= PAGE_SHIFT; | 
 |  | 
 | 	vb_idx = addr_to_vb_idx((unsigned long)addr); | 
 | 	rcu_read_lock(); | 
 | 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | 
 | 	rcu_read_unlock(); | 
 | 	BUG_ON(!vb); | 
 |  | 
 | 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); | 
 |  | 
 | 	if (debug_pagealloc_enabled_static()) | 
 | 		flush_tlb_kernel_range((unsigned long)addr, | 
 | 					(unsigned long)addr + size); | 
 |  | 
 | 	spin_lock(&vb->lock); | 
 |  | 
 | 	/* Expand dirty range */ | 
 | 	vb->dirty_min = min(vb->dirty_min, offset); | 
 | 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | 
 |  | 
 | 	vb->dirty += 1UL << order; | 
 | 	if (vb->dirty == VMAP_BBMAP_BITS) { | 
 | 		BUG_ON(vb->free); | 
 | 		spin_unlock(&vb->lock); | 
 | 		free_vmap_block(vb); | 
 | 	} else | 
 | 		spin_unlock(&vb->lock); | 
 | } | 
 |  | 
 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (unlikely(!vmap_initialized)) | 
 | 		return; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
 | 		struct vmap_block *vb; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 | 			spin_lock(&vb->lock); | 
 | 			if (vb->dirty) { | 
 | 				unsigned long va_start = vb->va->va_start; | 
 | 				unsigned long s, e; | 
 |  | 
 | 				s = va_start + (vb->dirty_min << PAGE_SHIFT); | 
 | 				e = va_start + (vb->dirty_max << PAGE_SHIFT); | 
 |  | 
 | 				start = min(s, start); | 
 | 				end   = max(e, end); | 
 |  | 
 | 				flush = 1; | 
 | 			} | 
 | 			spin_unlock(&vb->lock); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&vmap_purge_lock); | 
 | 	purge_fragmented_blocks_allcpus(); | 
 | 	if (!__purge_vmap_area_lazy(start, end) && flush) | 
 | 		flush_tlb_kernel_range(start, end); | 
 | 	mutex_unlock(&vmap_purge_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | 
 |  * | 
 |  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | 
 |  * to amortize TLB flushing overheads. What this means is that any page you | 
 |  * have now, may, in a former life, have been mapped into kernel virtual | 
 |  * address by the vmap layer and so there might be some CPUs with TLB entries | 
 |  * still referencing that page (additional to the regular 1:1 kernel mapping). | 
 |  * | 
 |  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | 
 |  * be sure that none of the pages we have control over will have any aliases | 
 |  * from the vmap layer. | 
 |  */ | 
 | void vm_unmap_aliases(void) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 | 	int flush = 0; | 
 |  | 
 | 	_vm_unmap_aliases(start, end, flush); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | 
 |  | 
 | /** | 
 |  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | 
 |  * @mem: the pointer returned by vm_map_ram | 
 |  * @count: the count passed to that vm_map_ram call (cannot unmap partial) | 
 |  */ | 
 | void vm_unmap_ram(const void *mem, unsigned int count) | 
 | { | 
 | 	unsigned long size = (unsigned long)count << PAGE_SHIFT; | 
 | 	unsigned long addr = (unsigned long)mem; | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	might_sleep(); | 
 | 	BUG_ON(!addr); | 
 | 	BUG_ON(addr < VMALLOC_START); | 
 | 	BUG_ON(addr > VMALLOC_END); | 
 | 	BUG_ON(!PAGE_ALIGNED(addr)); | 
 |  | 
 | 	if (likely(count <= VMAP_MAX_ALLOC)) { | 
 | 		debug_check_no_locks_freed(mem, size); | 
 | 		vb_free(mem, size); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	va = find_vmap_area(addr); | 
 | 	BUG_ON(!va); | 
 | 	debug_check_no_locks_freed((void *)va->va_start, | 
 | 				    (va->va_end - va->va_start)); | 
 | 	free_unmap_vmap_area(va); | 
 | } | 
 | EXPORT_SYMBOL(vm_unmap_ram); | 
 |  | 
 | /** | 
 |  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | 
 |  * @pages: an array of pointers to the pages to be mapped | 
 |  * @count: number of pages | 
 |  * @node: prefer to allocate data structures on this node | 
 |  * @prot: memory protection to use. PAGE_KERNEL for regular RAM | 
 |  * | 
 |  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be | 
 |  * faster than vmap so it's good.  But if you mix long-life and short-life | 
 |  * objects with vm_map_ram(), it could consume lots of address space through | 
 |  * fragmentation (especially on a 32bit machine).  You could see failures in | 
 |  * the end.  Please use this function for short-lived objects. | 
 |  * | 
 |  * Returns: a pointer to the address that has been mapped, or %NULL on failure | 
 |  */ | 
 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | 
 | { | 
 | 	unsigned long size = (unsigned long)count << PAGE_SHIFT; | 
 | 	unsigned long addr; | 
 | 	void *mem; | 
 |  | 
 | 	if (likely(count <= VMAP_MAX_ALLOC)) { | 
 | 		mem = vb_alloc(size, GFP_KERNEL); | 
 | 		if (IS_ERR(mem)) | 
 | 			return NULL; | 
 | 		addr = (unsigned long)mem; | 
 | 	} else { | 
 | 		struct vmap_area *va; | 
 | 		va = alloc_vmap_area(size, PAGE_SIZE, | 
 | 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | 
 | 		if (IS_ERR(va)) | 
 | 			return NULL; | 
 |  | 
 | 		addr = va->va_start; | 
 | 		mem = (void *)addr; | 
 | 	} | 
 | 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | 
 | 		vm_unmap_ram(mem, count); | 
 | 		return NULL; | 
 | 	} | 
 | 	return mem; | 
 | } | 
 | EXPORT_SYMBOL(vm_map_ram); | 
 |  | 
 | static struct vm_struct *vmlist __initdata; | 
 |  | 
 | /** | 
 |  * vm_area_add_early - add vmap area early during boot | 
 |  * @vm: vm_struct to add | 
 |  * | 
 |  * This function is used to add fixed kernel vm area to vmlist before | 
 |  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags | 
 |  * should contain proper values and the other fields should be zero. | 
 |  * | 
 |  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
 |  */ | 
 | void __init vm_area_add_early(struct vm_struct *vm) | 
 | { | 
 | 	struct vm_struct *tmp, **p; | 
 |  | 
 | 	BUG_ON(vmap_initialized); | 
 | 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | 
 | 		if (tmp->addr >= vm->addr) { | 
 | 			BUG_ON(tmp->addr < vm->addr + vm->size); | 
 | 			break; | 
 | 		} else | 
 | 			BUG_ON(tmp->addr + tmp->size > vm->addr); | 
 | 	} | 
 | 	vm->next = *p; | 
 | 	*p = vm; | 
 | } | 
 |  | 
 | /** | 
 |  * vm_area_register_early - register vmap area early during boot | 
 |  * @vm: vm_struct to register | 
 |  * @align: requested alignment | 
 |  * | 
 |  * This function is used to register kernel vm area before | 
 |  * vmalloc_init() is called.  @vm->size and @vm->flags should contain | 
 |  * proper values on entry and other fields should be zero.  On return, | 
 |  * vm->addr contains the allocated address. | 
 |  * | 
 |  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
 |  */ | 
 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | 
 | { | 
 | 	static size_t vm_init_off __initdata; | 
 | 	unsigned long addr; | 
 |  | 
 | 	addr = ALIGN(VMALLOC_START + vm_init_off, align); | 
 | 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | 
 |  | 
 | 	vm->addr = (void *)addr; | 
 |  | 
 | 	vm_area_add_early(vm); | 
 | } | 
 |  | 
 | static void vmap_init_free_space(void) | 
 | { | 
 | 	unsigned long vmap_start = 1; | 
 | 	const unsigned long vmap_end = ULONG_MAX; | 
 | 	struct vmap_area *busy, *free; | 
 |  | 
 | 	/* | 
 | 	 *     B     F     B     B     B     F | 
 | 	 * -|-----|.....|-----|-----|-----|.....|- | 
 | 	 *  |           The KVA space           | | 
 | 	 *  |<--------------------------------->| | 
 | 	 */ | 
 | 	list_for_each_entry(busy, &vmap_area_list, list) { | 
 | 		if (busy->va_start - vmap_start > 0) { | 
 | 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 			if (!WARN_ON_ONCE(!free)) { | 
 | 				free->va_start = vmap_start; | 
 | 				free->va_end = busy->va_start; | 
 |  | 
 | 				insert_vmap_area_augment(free, NULL, | 
 | 					&free_vmap_area_root, | 
 | 						&free_vmap_area_list); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		vmap_start = busy->va_end; | 
 | 	} | 
 |  | 
 | 	if (vmap_end - vmap_start > 0) { | 
 | 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 		if (!WARN_ON_ONCE(!free)) { | 
 | 			free->va_start = vmap_start; | 
 | 			free->va_end = vmap_end; | 
 |  | 
 | 			insert_vmap_area_augment(free, NULL, | 
 | 				&free_vmap_area_root, | 
 | 					&free_vmap_area_list); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init vmalloc_init(void) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *tmp; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Create the cache for vmap_area objects. | 
 | 	 */ | 
 | 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct vmap_block_queue *vbq; | 
 | 		struct vfree_deferred *p; | 
 |  | 
 | 		vbq = &per_cpu(vmap_block_queue, i); | 
 | 		spin_lock_init(&vbq->lock); | 
 | 		INIT_LIST_HEAD(&vbq->free); | 
 | 		p = &per_cpu(vfree_deferred, i); | 
 | 		init_llist_head(&p->list); | 
 | 		INIT_WORK(&p->wq, free_work); | 
 | 	} | 
 |  | 
 | 	/* Import existing vmlist entries. */ | 
 | 	for (tmp = vmlist; tmp; tmp = tmp->next) { | 
 | 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | 
 | 		if (WARN_ON_ONCE(!va)) | 
 | 			continue; | 
 |  | 
 | 		va->va_start = (unsigned long)tmp->addr; | 
 | 		va->va_end = va->va_start + tmp->size; | 
 | 		va->vm = tmp; | 
 | 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we can initialize a free vmap space. | 
 | 	 */ | 
 | 	vmap_init_free_space(); | 
 | 	vmap_initialized = true; | 
 | } | 
 |  | 
 | /** | 
 |  * map_kernel_range_noflush - map kernel VM area with the specified pages | 
 |  * @addr: start of the VM area to map | 
 |  * @size: size of the VM area to map | 
 |  * @prot: page protection flags to use | 
 |  * @pages: pages to map | 
 |  * | 
 |  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size | 
 |  * specify should have been allocated using get_vm_area() and its | 
 |  * friends. | 
 |  * | 
 |  * NOTE: | 
 |  * This function does NOT do any cache flushing.  The caller is | 
 |  * responsible for calling flush_cache_vmap() on to-be-mapped areas | 
 |  * before calling this function. | 
 |  * | 
 |  * RETURNS: | 
 |  * The number of pages mapped on success, -errno on failure. | 
 |  */ | 
 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | 
 | 			     pgprot_t prot, struct page **pages) | 
 | { | 
 | 	return vmap_page_range_noflush(addr, addr + size, prot, pages); | 
 | } | 
 |  | 
 | /** | 
 |  * unmap_kernel_range_noflush - unmap kernel VM area | 
 |  * @addr: start of the VM area to unmap | 
 |  * @size: size of the VM area to unmap | 
 |  * | 
 |  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size | 
 |  * specify should have been allocated using get_vm_area() and its | 
 |  * friends. | 
 |  * | 
 |  * NOTE: | 
 |  * This function does NOT do any cache flushing.  The caller is | 
 |  * responsible for calling flush_cache_vunmap() on to-be-mapped areas | 
 |  * before calling this function and flush_tlb_kernel_range() after. | 
 |  */ | 
 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | 
 | { | 
 | 	vunmap_page_range(addr, addr + size); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); | 
 |  | 
 | /** | 
 |  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | 
 |  * @addr: start of the VM area to unmap | 
 |  * @size: size of the VM area to unmap | 
 |  * | 
 |  * Similar to unmap_kernel_range_noflush() but flushes vcache before | 
 |  * the unmapping and tlb after. | 
 |  */ | 
 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 
 | { | 
 | 	unsigned long end = addr + size; | 
 |  | 
 | 	flush_cache_vunmap(addr, end); | 
 | 	vunmap_page_range(addr, end); | 
 | 	flush_tlb_kernel_range(addr, end); | 
 | } | 
 | EXPORT_SYMBOL_GPL(unmap_kernel_range); | 
 |  | 
 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) | 
 | { | 
 | 	unsigned long addr = (unsigned long)area->addr; | 
 | 	unsigned long end = addr + get_vm_area_size(area); | 
 | 	int err; | 
 |  | 
 | 	err = vmap_page_range(addr, end, prot, pages); | 
 |  | 
 | 	return err > 0 ? 0 : err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(map_vm_area); | 
 |  | 
 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | 
 | 			      unsigned long flags, const void *caller) | 
 | { | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	vm->flags = flags; | 
 | 	vm->addr = (void *)va->va_start; | 
 | 	vm->size = va->va_end - va->va_start; | 
 | 	vm->caller = caller; | 
 | 	va->vm = vm; | 
 | 	spin_unlock(&vmap_area_lock); | 
 | } | 
 |  | 
 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) | 
 | { | 
 | 	/* | 
 | 	 * Before removing VM_UNINITIALIZED, | 
 | 	 * we should make sure that vm has proper values. | 
 | 	 * Pair with smp_rmb() in show_numa_info(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	vm->flags &= ~VM_UNINITIALIZED; | 
 | } | 
 |  | 
 | static struct vm_struct *__get_vm_area_node(unsigned long size, | 
 | 		unsigned long align, unsigned long flags, unsigned long start, | 
 | 		unsigned long end, int node, gfp_t gfp_mask, const void *caller) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	BUG_ON(in_interrupt()); | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (unlikely(!size)) | 
 | 		return NULL; | 
 |  | 
 | 	if (flags & VM_IOREMAP) | 
 | 		align = 1ul << clamp_t(int, get_count_order_long(size), | 
 | 				       PAGE_SHIFT, IOREMAP_MAX_ORDER); | 
 |  | 
 | 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!area)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!(flags & VM_NO_GUARD)) | 
 | 		size += PAGE_SIZE; | 
 |  | 
 | 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask); | 
 | 	if (IS_ERR(va)) { | 
 | 		kfree(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	setup_vmalloc_vm(area, va, flags, caller); | 
 |  | 
 | 	return area; | 
 | } | 
 |  | 
 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, | 
 | 				unsigned long start, unsigned long end) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, | 
 | 				  GFP_KERNEL, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__get_vm_area); | 
 |  | 
 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, | 
 | 				       unsigned long start, unsigned long end, | 
 | 				       const void *caller) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, | 
 | 				  GFP_KERNEL, caller); | 
 | } | 
 |  | 
 | /** | 
 |  * get_vm_area - reserve a contiguous kernel virtual area | 
 |  * @size:	 size of the area | 
 |  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC | 
 |  * | 
 |  * Search an area of @size in the kernel virtual mapping area, | 
 |  * and reserved it for out purposes.  Returns the area descriptor | 
 |  * on success or %NULL on failure. | 
 |  * | 
 |  * Return: the area descriptor on success or %NULL on failure. | 
 |  */ | 
 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
 | 				  NUMA_NO_NODE, GFP_KERNEL, | 
 | 				  __builtin_return_address(0)); | 
 | } | 
 |  | 
 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | 
 | 				const void *caller) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
 | 				  NUMA_NO_NODE, GFP_KERNEL, caller); | 
 | } | 
 |  | 
 | /** | 
 |  * find_vm_area - find a continuous kernel virtual area | 
 |  * @addr:	  base address | 
 |  * | 
 |  * Search for the kernel VM area starting at @addr, and return it. | 
 |  * It is up to the caller to do all required locking to keep the returned | 
 |  * pointer valid. | 
 |  * | 
 |  * Return: pointer to the found area or %NULL on faulure | 
 |  */ | 
 | struct vm_struct *find_vm_area(const void *addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = find_vmap_area((unsigned long)addr); | 
 | 	if (!va) | 
 | 		return NULL; | 
 |  | 
 | 	return va->vm; | 
 | } | 
 |  | 
 | /** | 
 |  * remove_vm_area - find and remove a continuous kernel virtual area | 
 |  * @addr:	    base address | 
 |  * | 
 |  * Search for the kernel VM area starting at @addr, and remove it. | 
 |  * This function returns the found VM area, but using it is NOT safe | 
 |  * on SMP machines, except for its size or flags. | 
 |  * | 
 |  * Return: pointer to the found area or %NULL on faulure | 
 |  */ | 
 | struct vm_struct *remove_vm_area(const void *addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	va = __find_vmap_area((unsigned long)addr); | 
 | 	if (va && va->vm) { | 
 | 		struct vm_struct *vm = va->vm; | 
 |  | 
 | 		va->vm = NULL; | 
 | 		spin_unlock(&vmap_area_lock); | 
 |  | 
 | 		kasan_free_shadow(vm); | 
 | 		free_unmap_vmap_area(va); | 
 |  | 
 | 		return vm; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&vmap_area_lock); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void set_area_direct_map(const struct vm_struct *area, | 
 | 				       int (*set_direct_map)(struct page *page)) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < area->nr_pages; i++) | 
 | 		if (page_address(area->pages[i])) | 
 | 			set_direct_map(area->pages[i]); | 
 | } | 
 |  | 
 | /* Handle removing and resetting vm mappings related to the vm_struct. */ | 
 | static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 | 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; | 
 | 	int flush_dmap = 0; | 
 | 	int i; | 
 |  | 
 | 	remove_vm_area(area->addr); | 
 |  | 
 | 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ | 
 | 	if (!flush_reset) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If not deallocating pages, just do the flush of the VM area and | 
 | 	 * return. | 
 | 	 */ | 
 | 	if (!deallocate_pages) { | 
 | 		vm_unmap_aliases(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If execution gets here, flush the vm mapping and reset the direct | 
 | 	 * map. Find the start and end range of the direct mappings to make sure | 
 | 	 * the vm_unmap_aliases() flush includes the direct map. | 
 | 	 */ | 
 | 	for (i = 0; i < area->nr_pages; i++) { | 
 | 		unsigned long addr = (unsigned long)page_address(area->pages[i]); | 
 | 		if (addr) { | 
 | 			start = min(addr, start); | 
 | 			end = max(addr + PAGE_SIZE, end); | 
 | 			flush_dmap = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set direct map to something invalid so that it won't be cached if | 
 | 	 * there are any accesses after the TLB flush, then flush the TLB and | 
 | 	 * reset the direct map permissions to the default. | 
 | 	 */ | 
 | 	set_area_direct_map(area, set_direct_map_invalid_noflush); | 
 | 	_vm_unmap_aliases(start, end, flush_dmap); | 
 | 	set_area_direct_map(area, set_direct_map_default_noflush); | 
 | } | 
 |  | 
 | static void __vunmap(const void *addr, int deallocate_pages) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 |  | 
 | 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", | 
 | 			addr)) | 
 | 		return; | 
 |  | 
 | 	area = find_vm_area(addr); | 
 | 	if (unlikely(!area)) { | 
 | 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 
 | 				addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); | 
 | 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); | 
 |  | 
 | 	vm_remove_mappings(area, deallocate_pages); | 
 |  | 
 | 	if (deallocate_pages) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < area->nr_pages; i++) { | 
 | 			struct page *page = area->pages[i]; | 
 |  | 
 | 			BUG_ON(!page); | 
 | 			__free_pages(page, 0); | 
 | 		} | 
 | 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); | 
 |  | 
 | 		kvfree(area->pages); | 
 | 	} | 
 |  | 
 | 	kfree(area); | 
 | 	return; | 
 | } | 
 |  | 
 | static inline void __vfree_deferred(const void *addr) | 
 | { | 
 | 	/* | 
 | 	 * Use raw_cpu_ptr() because this can be called from preemptible | 
 | 	 * context. Preemption is absolutely fine here, because the llist_add() | 
 | 	 * implementation is lockless, so it works even if we are adding to | 
 | 	 * nother cpu's list.  schedule_work() should be fine with this too. | 
 | 	 */ | 
 | 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | 
 |  | 
 | 	if (llist_add((struct llist_node *)addr, &p->list)) | 
 | 		schedule_work(&p->wq); | 
 | } | 
 |  | 
 | /** | 
 |  * vfree_atomic - release memory allocated by vmalloc() | 
 |  * @addr:	  memory base address | 
 |  * | 
 |  * This one is just like vfree() but can be called in any atomic context | 
 |  * except NMIs. | 
 |  */ | 
 | void vfree_atomic(const void *addr) | 
 | { | 
 | 	BUG_ON(in_nmi()); | 
 |  | 
 | 	kmemleak_free(addr); | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 | 	__vfree_deferred(addr); | 
 | } | 
 |  | 
 | static void __vfree(const void *addr) | 
 | { | 
 | 	if (unlikely(in_interrupt())) | 
 | 		__vfree_deferred(addr); | 
 | 	else | 
 | 		__vunmap(addr, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * vfree - release memory allocated by vmalloc() | 
 |  * @addr:  memory base address | 
 |  * | 
 |  * Free the virtually continuous memory area starting at @addr, as | 
 |  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is | 
 |  * NULL, no operation is performed. | 
 |  * | 
 |  * Must not be called in NMI context (strictly speaking, only if we don't | 
 |  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | 
 |  * conventions for vfree() arch-depenedent would be a really bad idea) | 
 |  * | 
 |  * May sleep if called *not* from interrupt context. | 
 |  * | 
 |  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) | 
 |  */ | 
 | void vfree(const void *addr) | 
 | { | 
 | 	BUG_ON(in_nmi()); | 
 |  | 
 | 	kmemleak_free(addr); | 
 |  | 
 | 	might_sleep_if(!in_interrupt()); | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 |  | 
 | 	__vfree(addr); | 
 | } | 
 | EXPORT_SYMBOL(vfree); | 
 |  | 
 | /** | 
 |  * vunmap - release virtual mapping obtained by vmap() | 
 |  * @addr:   memory base address | 
 |  * | 
 |  * Free the virtually contiguous memory area starting at @addr, | 
 |  * which was created from the page array passed to vmap(). | 
 |  * | 
 |  * Must not be called in interrupt context. | 
 |  */ | 
 | void vunmap(const void *addr) | 
 | { | 
 | 	BUG_ON(in_interrupt()); | 
 | 	might_sleep(); | 
 | 	if (addr) | 
 | 		__vunmap(addr, 0); | 
 | } | 
 | EXPORT_SYMBOL(vunmap); | 
 |  | 
 | /** | 
 |  * vmap - map an array of pages into virtually contiguous space | 
 |  * @pages: array of page pointers | 
 |  * @count: number of pages to map | 
 |  * @flags: vm_area->flags | 
 |  * @prot: page protection for the mapping | 
 |  * | 
 |  * Maps @count pages from @pages into contiguous kernel virtual | 
 |  * space. | 
 |  * | 
 |  * Return: the address of the area or %NULL on failure | 
 |  */ | 
 | void *vmap(struct page **pages, unsigned int count, | 
 | 	   unsigned long flags, pgprot_t prot) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	unsigned long size;		/* In bytes */ | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	if (count > totalram_pages()) | 
 | 		return NULL; | 
 |  | 
 | 	size = (unsigned long)count << PAGE_SHIFT; | 
 | 	area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | 
 | 	if (!area) | 
 | 		return NULL; | 
 |  | 
 | 	if (map_vm_area(area, prot, pages)) { | 
 | 		vunmap(area->addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return area->addr; | 
 | } | 
 | EXPORT_SYMBOL(vmap); | 
 |  | 
 | static void *__vmalloc_node(unsigned long size, unsigned long align, | 
 | 			    gfp_t gfp_mask, pgprot_t prot, | 
 | 			    int node, const void *caller); | 
 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | 
 | 				 pgprot_t prot, int node) | 
 | { | 
 | 	struct page **pages; | 
 | 	unsigned int nr_pages, array_size, i; | 
 | 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; | 
 | 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; | 
 | 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? | 
 | 					0 : | 
 | 					__GFP_HIGHMEM; | 
 |  | 
 | 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; | 
 | 	array_size = (nr_pages * sizeof(struct page *)); | 
 |  | 
 | 	/* Please note that the recursion is strictly bounded. */ | 
 | 	if (array_size > PAGE_SIZE) { | 
 | 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, | 
 | 				PAGE_KERNEL, node, area->caller); | 
 | 	} else { | 
 | 		pages = kmalloc_node(array_size, nested_gfp, node); | 
 | 	} | 
 |  | 
 | 	if (!pages) { | 
 | 		remove_vm_area(area->addr); | 
 | 		kfree(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	area->pages = pages; | 
 | 	area->nr_pages = nr_pages; | 
 |  | 
 | 	for (i = 0; i < area->nr_pages; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (node == NUMA_NO_NODE) | 
 | 			page = alloc_page(alloc_mask|highmem_mask); | 
 | 		else | 
 | 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); | 
 |  | 
 | 		if (unlikely(!page)) { | 
 | 			/* Successfully allocated i pages, free them in __vunmap() */ | 
 | 			area->nr_pages = i; | 
 | 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages); | 
 | 			goto fail; | 
 | 		} | 
 | 		area->pages[i] = page; | 
 | 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) | 
 | 			cond_resched(); | 
 | 	} | 
 | 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages); | 
 |  | 
 | 	if (map_vm_area(area, prot, pages)) | 
 | 		goto fail; | 
 | 	return area->addr; | 
 |  | 
 | fail: | 
 | 	warn_alloc(gfp_mask, NULL, | 
 | 			  "vmalloc: allocation failure, allocated %ld of %ld bytes", | 
 | 			  (area->nr_pages*PAGE_SIZE), area->size); | 
 | 	__vfree(area->addr); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * __vmalloc_node_range - allocate virtually contiguous memory | 
 |  * @size:		  allocation size | 
 |  * @align:		  desired alignment | 
 |  * @start:		  vm area range start | 
 |  * @end:		  vm area range end | 
 |  * @gfp_mask:		  flags for the page level allocator | 
 |  * @prot:		  protection mask for the allocated pages | 
 |  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD) | 
 |  * @node:		  node to use for allocation or NUMA_NO_NODE | 
 |  * @caller:		  caller's return address | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator with @gfp_mask flags.  Map them into contiguous | 
 |  * kernel virtual space, using a pagetable protection of @prot. | 
 |  * | 
 |  * Return: the address of the area or %NULL on failure | 
 |  */ | 
 | void *__vmalloc_node_range(unsigned long size, unsigned long align, | 
 | 			unsigned long start, unsigned long end, gfp_t gfp_mask, | 
 | 			pgprot_t prot, unsigned long vm_flags, int node, | 
 | 			const void *caller) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *addr; | 
 | 	unsigned long real_size = size; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (!size || (size >> PAGE_SHIFT) > totalram_pages()) | 
 | 		goto fail; | 
 |  | 
 | 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | | 
 | 				vm_flags, start, end, node, gfp_mask, caller); | 
 | 	if (!area) | 
 | 		goto fail; | 
 |  | 
 | 	addr = __vmalloc_area_node(area, gfp_mask, prot, node); | 
 | 	if (!addr) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED | 
 | 	 * flag. It means that vm_struct is not fully initialized. | 
 | 	 * Now, it is fully initialized, so remove this flag here. | 
 | 	 */ | 
 | 	clear_vm_uninitialized_flag(area); | 
 |  | 
 | 	kmemleak_vmalloc(area, size, gfp_mask); | 
 |  | 
 | 	return addr; | 
 |  | 
 | fail: | 
 | 	warn_alloc(gfp_mask, NULL, | 
 | 			  "vmalloc: allocation failure: %lu bytes", real_size); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This is only for performance analysis of vmalloc and stress purpose. | 
 |  * It is required by vmalloc test module, therefore do not use it other | 
 |  * than that. | 
 |  */ | 
 | #ifdef CONFIG_TEST_VMALLOC_MODULE | 
 | EXPORT_SYMBOL_GPL(__vmalloc_node_range); | 
 | #endif | 
 |  | 
 | /** | 
 |  * __vmalloc_node - allocate virtually contiguous memory | 
 |  * @size:	    allocation size | 
 |  * @align:	    desired alignment | 
 |  * @gfp_mask:	    flags for the page level allocator | 
 |  * @prot:	    protection mask for the allocated pages | 
 |  * @node:	    node to use for allocation or NUMA_NO_NODE | 
 |  * @caller:	    caller's return address | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator with @gfp_mask flags.  Map them into contiguous | 
 |  * kernel virtual space, using a pagetable protection of @prot. | 
 |  * | 
 |  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL | 
 |  * and __GFP_NOFAIL are not supported | 
 |  * | 
 |  * Any use of gfp flags outside of GFP_KERNEL should be consulted | 
 |  * with mm people. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | static void *__vmalloc_node(unsigned long size, unsigned long align, | 
 | 			    gfp_t gfp_mask, pgprot_t prot, | 
 | 			    int node, const void *caller) | 
 | { | 
 | 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | 
 | 				gfp_mask, prot, 0, node, caller); | 
 | } | 
 |  | 
 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) | 
 | { | 
 | 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(__vmalloc); | 
 |  | 
 | static inline void *__vmalloc_node_flags(unsigned long size, | 
 | 					int node, gfp_t flags) | 
 | { | 
 | 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | 
 | 					node, __builtin_return_address(0)); | 
 | } | 
 |  | 
 |  | 
 | void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, | 
 | 				  void *caller) | 
 | { | 
 | 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); | 
 | } | 
 |  | 
 | /** | 
 |  * vmalloc - allocate virtually contiguous memory | 
 |  * @size:    allocation size | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_flags(size, NUMA_NO_NODE, | 
 | 				    GFP_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc); | 
 |  | 
 | /** | 
 |  * vzalloc - allocate virtually contiguous memory with zero fill | 
 |  * @size:    allocation size | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * The memory allocated is set to zero. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vzalloc(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_flags(size, NUMA_NO_NODE, | 
 | 				GFP_KERNEL | __GFP_ZERO); | 
 | } | 
 | EXPORT_SYMBOL(vzalloc); | 
 |  | 
 | /** | 
 |  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | 
 |  * @size: allocation size | 
 |  * | 
 |  * The resulting memory area is zeroed so it can be mapped to userspace | 
 |  * without leaking data. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_user(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END, | 
 | 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, | 
 | 				    VM_USERMAP, NUMA_NO_NODE, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_user); | 
 |  | 
 | /** | 
 |  * vmalloc_node - allocate memory on a specific node | 
 |  * @size:	  allocation size | 
 |  * @node:	  numa node | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_node(unsigned long size, int node) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, | 
 | 					node, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_node); | 
 |  | 
 | /** | 
 |  * vzalloc_node - allocate memory on a specific node with zero fill | 
 |  * @size:	allocation size | 
 |  * @node:	numa node | 
 |  * | 
 |  * Allocate enough pages to cover @size from the page level | 
 |  * allocator and map them into contiguous kernel virtual space. | 
 |  * The memory allocated is set to zero. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc_node() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vzalloc_node(unsigned long size, int node) | 
 | { | 
 | 	return __vmalloc_node_flags(size, node, | 
 | 			 GFP_KERNEL | __GFP_ZERO); | 
 | } | 
 | EXPORT_SYMBOL(vzalloc_node); | 
 |  | 
 | /** | 
 |  * vmalloc_exec - allocate virtually contiguous, executable memory | 
 |  * @size:	  allocation size | 
 |  * | 
 |  * Kernel-internal function to allocate enough pages to cover @size | 
 |  * the page level allocator and map them into contiguous and | 
 |  * executable kernel virtual space. | 
 |  * | 
 |  * For tight control over page level allocator and protection flags | 
 |  * use __vmalloc() instead. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_exec(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | 
 | 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, | 
 | 			NUMA_NO_NODE, __builtin_return_address(0)); | 
 | } | 
 |  | 
 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) | 
 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) | 
 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) | 
 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) | 
 | #else | 
 | /* | 
 |  * 64b systems should always have either DMA or DMA32 zones. For others | 
 |  * GFP_DMA32 should do the right thing and use the normal zone. | 
 |  */ | 
 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL | 
 | #endif | 
 |  | 
 | /** | 
 |  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | 
 |  * @size:	allocation size | 
 |  * | 
 |  * Allocate enough 32bit PA addressable pages to cover @size from the | 
 |  * page level allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_32(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, | 
 | 			      NUMA_NO_NODE, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32); | 
 |  | 
 | /** | 
 |  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory | 
 |  * @size:	     allocation size | 
 |  * | 
 |  * The resulting memory area is 32bit addressable and zeroed so it can be | 
 |  * mapped to userspace without leaking data. | 
 |  * | 
 |  * Return: pointer to the allocated memory or %NULL on error | 
 |  */ | 
 | void *vmalloc_32_user(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END, | 
 | 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | 
 | 				    VM_USERMAP, NUMA_NO_NODE, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32_user); | 
 |  | 
 | /* | 
 |  * small helper routine , copy contents to buf from addr. | 
 |  * If the page is not present, fill zero. | 
 |  */ | 
 |  | 
 | static int aligned_vread(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct page *p; | 
 | 	int copied = 0; | 
 |  | 
 | 	while (count) { | 
 | 		unsigned long offset, length; | 
 |  | 
 | 		offset = offset_in_page(addr); | 
 | 		length = PAGE_SIZE - offset; | 
 | 		if (length > count) | 
 | 			length = count; | 
 | 		p = vmalloc_to_page(addr); | 
 | 		/* | 
 | 		 * To do safe access to this _mapped_ area, we need | 
 | 		 * lock. But adding lock here means that we need to add | 
 | 		 * overhead of vmalloc()/vfree() calles for this _debug_ | 
 | 		 * interface, rarely used. Instead of that, we'll use | 
 | 		 * kmap() and get small overhead in this access function. | 
 | 		 */ | 
 | 		if (p) { | 
 | 			/* | 
 | 			 * we can expect USER0 is not used (see vread/vwrite's | 
 | 			 * function description) | 
 | 			 */ | 
 | 			void *map = kmap_atomic(p); | 
 | 			memcpy(buf, map + offset, length); | 
 | 			kunmap_atomic(map); | 
 | 		} else | 
 | 			memset(buf, 0, length); | 
 |  | 
 | 		addr += length; | 
 | 		buf += length; | 
 | 		copied += length; | 
 | 		count -= length; | 
 | 	} | 
 | 	return copied; | 
 | } | 
 |  | 
 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct page *p; | 
 | 	int copied = 0; | 
 |  | 
 | 	while (count) { | 
 | 		unsigned long offset, length; | 
 |  | 
 | 		offset = offset_in_page(addr); | 
 | 		length = PAGE_SIZE - offset; | 
 | 		if (length > count) | 
 | 			length = count; | 
 | 		p = vmalloc_to_page(addr); | 
 | 		/* | 
 | 		 * To do safe access to this _mapped_ area, we need | 
 | 		 * lock. But adding lock here means that we need to add | 
 | 		 * overhead of vmalloc()/vfree() calles for this _debug_ | 
 | 		 * interface, rarely used. Instead of that, we'll use | 
 | 		 * kmap() and get small overhead in this access function. | 
 | 		 */ | 
 | 		if (p) { | 
 | 			/* | 
 | 			 * we can expect USER0 is not used (see vread/vwrite's | 
 | 			 * function description) | 
 | 			 */ | 
 | 			void *map = kmap_atomic(p); | 
 | 			memcpy(map + offset, buf, length); | 
 | 			kunmap_atomic(map); | 
 | 		} | 
 | 		addr += length; | 
 | 		buf += length; | 
 | 		copied += length; | 
 | 		count -= length; | 
 | 	} | 
 | 	return copied; | 
 | } | 
 |  | 
 | /** | 
 |  * vread() - read vmalloc area in a safe way. | 
 |  * @buf:     buffer for reading data | 
 |  * @addr:    vm address. | 
 |  * @count:   number of bytes to be read. | 
 |  * | 
 |  * This function checks that addr is a valid vmalloc'ed area, and | 
 |  * copy data from that area to a given buffer. If the given memory range | 
 |  * of [addr...addr+count) includes some valid address, data is copied to | 
 |  * proper area of @buf. If there are memory holes, they'll be zero-filled. | 
 |  * IOREMAP area is treated as memory hole and no copy is done. | 
 |  * | 
 |  * If [addr...addr+count) doesn't includes any intersects with alive | 
 |  * vm_struct area, returns 0. @buf should be kernel's buffer. | 
 |  * | 
 |  * Note: In usual ops, vread() is never necessary because the caller | 
 |  * should know vmalloc() area is valid and can use memcpy(). | 
 |  * This is for routines which have to access vmalloc area without | 
 |  * any information, as /dev/kmem. | 
 |  * | 
 |  * Return: number of bytes for which addr and buf should be increased | 
 |  * (same number as @count) or %0 if [addr...addr+count) doesn't | 
 |  * include any intersection with valid vmalloc area | 
 |  */ | 
 | long vread(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *vm; | 
 | 	char *vaddr, *buf_start = buf; | 
 | 	unsigned long buflen = count; | 
 | 	unsigned long n; | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	list_for_each_entry(va, &vmap_area_list, list) { | 
 | 		if (!count) | 
 | 			break; | 
 |  | 
 | 		if (!va->vm) | 
 | 			continue; | 
 |  | 
 | 		vm = va->vm; | 
 | 		vaddr = (char *) vm->addr; | 
 | 		if (addr >= vaddr + get_vm_area_size(vm)) | 
 | 			continue; | 
 | 		while (addr < vaddr) { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			*buf = '\0'; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} | 
 | 		n = vaddr + get_vm_area_size(vm) - addr; | 
 | 		if (n > count) | 
 | 			n = count; | 
 | 		if (!(vm->flags & VM_IOREMAP)) | 
 | 			aligned_vread(buf, addr, n); | 
 | 		else /* IOREMAP area is treated as memory hole */ | 
 | 			memset(buf, 0, n); | 
 | 		buf += n; | 
 | 		addr += n; | 
 | 		count -= n; | 
 | 	} | 
 | finished: | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	if (buf == buf_start) | 
 | 		return 0; | 
 | 	/* zero-fill memory holes */ | 
 | 	if (buf != buf_start + buflen) | 
 | 		memset(buf, 0, buflen - (buf - buf_start)); | 
 |  | 
 | 	return buflen; | 
 | } | 
 |  | 
 | /** | 
 |  * vwrite() - write vmalloc area in a safe way. | 
 |  * @buf:      buffer for source data | 
 |  * @addr:     vm address. | 
 |  * @count:    number of bytes to be read. | 
 |  * | 
 |  * This function checks that addr is a valid vmalloc'ed area, and | 
 |  * copy data from a buffer to the given addr. If specified range of | 
 |  * [addr...addr+count) includes some valid address, data is copied from | 
 |  * proper area of @buf. If there are memory holes, no copy to hole. | 
 |  * IOREMAP area is treated as memory hole and no copy is done. | 
 |  * | 
 |  * If [addr...addr+count) doesn't includes any intersects with alive | 
 |  * vm_struct area, returns 0. @buf should be kernel's buffer. | 
 |  * | 
 |  * Note: In usual ops, vwrite() is never necessary because the caller | 
 |  * should know vmalloc() area is valid and can use memcpy(). | 
 |  * This is for routines which have to access vmalloc area without | 
 |  * any information, as /dev/kmem. | 
 |  * | 
 |  * Return: number of bytes for which addr and buf should be | 
 |  * increased (same number as @count) or %0 if [addr...addr+count) | 
 |  * doesn't include any intersection with valid vmalloc area | 
 |  */ | 
 | long vwrite(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *vm; | 
 | 	char *vaddr; | 
 | 	unsigned long n, buflen; | 
 | 	int copied = 0; | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 | 	buflen = count; | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	list_for_each_entry(va, &vmap_area_list, list) { | 
 | 		if (!count) | 
 | 			break; | 
 |  | 
 | 		if (!va->vm) | 
 | 			continue; | 
 |  | 
 | 		vm = va->vm; | 
 | 		vaddr = (char *) vm->addr; | 
 | 		if (addr >= vaddr + get_vm_area_size(vm)) | 
 | 			continue; | 
 | 		while (addr < vaddr) { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} | 
 | 		n = vaddr + get_vm_area_size(vm) - addr; | 
 | 		if (n > count) | 
 | 			n = count; | 
 | 		if (!(vm->flags & VM_IOREMAP)) { | 
 | 			aligned_vwrite(buf, addr, n); | 
 | 			copied++; | 
 | 		} | 
 | 		buf += n; | 
 | 		addr += n; | 
 | 		count -= n; | 
 | 	} | 
 | finished: | 
 | 	spin_unlock(&vmap_area_lock); | 
 | 	if (!copied) | 
 | 		return 0; | 
 | 	return buflen; | 
 | } | 
 |  | 
 | /** | 
 |  * remap_vmalloc_range_partial - map vmalloc pages to userspace | 
 |  * @vma:		vma to cover | 
 |  * @uaddr:		target user address to start at | 
 |  * @kaddr:		virtual address of vmalloc kernel memory | 
 |  * @pgoff:		offset from @kaddr to start at | 
 |  * @size:		size of map area | 
 |  * | 
 |  * Returns:	0 for success, -Exxx on failure | 
 |  * | 
 |  * This function checks that @kaddr is a valid vmalloc'ed area, | 
 |  * and that it is big enough to cover the range starting at | 
 |  * @uaddr in @vma. Will return failure if that criteria isn't | 
 |  * met. | 
 |  * | 
 |  * Similar to remap_pfn_range() (see mm/memory.c) | 
 |  */ | 
 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, | 
 | 				void *kaddr, unsigned long pgoff, | 
 | 				unsigned long size) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	unsigned long off; | 
 | 	unsigned long end_index; | 
 |  | 
 | 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	area = find_vm_area(kaddr); | 
 | 	if (!area) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (check_add_overflow(size, off, &end_index) || | 
 | 	    end_index > get_vm_area_size(area)) | 
 | 		return -EINVAL; | 
 | 	kaddr += off; | 
 |  | 
 | 	do { | 
 | 		struct page *page = vmalloc_to_page(kaddr); | 
 | 		int ret; | 
 |  | 
 | 		ret = vm_insert_page(vma, uaddr, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		uaddr += PAGE_SIZE; | 
 | 		kaddr += PAGE_SIZE; | 
 | 		size -= PAGE_SIZE; | 
 | 	} while (size > 0); | 
 |  | 
 | 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(remap_vmalloc_range_partial); | 
 |  | 
 | /** | 
 |  * remap_vmalloc_range - map vmalloc pages to userspace | 
 |  * @vma:		vma to cover (map full range of vma) | 
 |  * @addr:		vmalloc memory | 
 |  * @pgoff:		number of pages into addr before first page to map | 
 |  * | 
 |  * Returns:	0 for success, -Exxx on failure | 
 |  * | 
 |  * This function checks that addr is a valid vmalloc'ed area, and | 
 |  * that it is big enough to cover the vma. Will return failure if | 
 |  * that criteria isn't met. | 
 |  * | 
 |  * Similar to remap_pfn_range() (see mm/memory.c) | 
 |  */ | 
 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | 
 | 						unsigned long pgoff) | 
 | { | 
 | 	return remap_vmalloc_range_partial(vma, vma->vm_start, | 
 | 					   addr, pgoff, | 
 | 					   vma->vm_end - vma->vm_start); | 
 | } | 
 | EXPORT_SYMBOL(remap_vmalloc_range); | 
 |  | 
 | /* | 
 |  * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose | 
 |  * not to have one. | 
 |  * | 
 |  * The purpose of this function is to make sure the vmalloc area | 
 |  * mappings are identical in all page-tables in the system. | 
 |  */ | 
 | void __weak vmalloc_sync_mappings(void) | 
 | { | 
 | } | 
 |  | 
 | void __weak vmalloc_sync_unmappings(void) | 
 | { | 
 | } | 
 |  | 
 | static int f(pte_t *pte, unsigned long addr, void *data) | 
 | { | 
 | 	pte_t ***p = data; | 
 |  | 
 | 	if (p) { | 
 | 		*(*p) = pte; | 
 | 		(*p)++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_vm_area - allocate a range of kernel address space | 
 |  * @size:	   size of the area | 
 |  * @ptes:	   returns the PTEs for the address space | 
 |  * | 
 |  * Returns:	NULL on failure, vm_struct on success | 
 |  * | 
 |  * This function reserves a range of kernel address space, and | 
 |  * allocates pagetables to map that range.  No actual mappings | 
 |  * are created. | 
 |  * | 
 |  * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | 
 |  * allocated for the VM area are returned. | 
 |  */ | 
 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	area = get_vm_area_caller(size, VM_IOREMAP, | 
 | 				__builtin_return_address(0)); | 
 | 	if (area == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * This ensures that page tables are constructed for this region | 
 | 	 * of kernel virtual address space and mapped into init_mm. | 
 | 	 */ | 
 | 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | 
 | 				size, f, ptes ? &ptes : NULL)) { | 
 | 		free_vm_area(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return area; | 
 | } | 
 | EXPORT_SYMBOL_GPL(alloc_vm_area); | 
 |  | 
 | void free_vm_area(struct vm_struct *area) | 
 | { | 
 | 	struct vm_struct *ret; | 
 | 	ret = remove_vm_area(area->addr); | 
 | 	BUG_ON(ret != area); | 
 | 	kfree(area); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_vm_area); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static struct vmap_area *node_to_va(struct rb_node *n) | 
 | { | 
 | 	return rb_entry_safe(n, struct vmap_area, rb_node); | 
 | } | 
 |  | 
 | /** | 
 |  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to | 
 |  * @addr: target address | 
 |  * | 
 |  * Returns: vmap_area if it is found. If there is no such area | 
 |  *   the first highest(reverse order) vmap_area is returned | 
 |  *   i.e. va->va_start < addr && va->va_end < addr or NULL | 
 |  *   if there are no any areas before @addr. | 
 |  */ | 
 | static struct vmap_area * | 
 | pvm_find_va_enclose_addr(unsigned long addr) | 
 | { | 
 | 	struct vmap_area *va, *tmp; | 
 | 	struct rb_node *n; | 
 |  | 
 | 	n = free_vmap_area_root.rb_node; | 
 | 	va = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		tmp = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (tmp->va_start <= addr) { | 
 | 			va = tmp; | 
 | 			if (tmp->va_end >= addr) | 
 | 				break; | 
 |  | 
 | 			n = n->rb_right; | 
 | 		} else { | 
 | 			n = n->rb_left; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /** | 
 |  * pvm_determine_end_from_reverse - find the highest aligned address | 
 |  * of free block below VMALLOC_END | 
 |  * @va: | 
 |  *   in - the VA we start the search(reverse order); | 
 |  *   out - the VA with the highest aligned end address. | 
 |  * | 
 |  * Returns: determined end address within vmap_area | 
 |  */ | 
 | static unsigned long | 
 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | 
 | { | 
 | 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (likely(*va)) { | 
 | 		list_for_each_entry_from_reverse((*va), | 
 | 				&free_vmap_area_list, list) { | 
 | 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | 
 | 			if ((*va)->va_start < addr) | 
 | 				return addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | 
 |  * @offsets: array containing offset of each area | 
 |  * @sizes: array containing size of each area | 
 |  * @nr_vms: the number of areas to allocate | 
 |  * @align: alignment, all entries in @offsets and @sizes must be aligned to this | 
 |  * | 
 |  * Returns: kmalloc'd vm_struct pointer array pointing to allocated | 
 |  *	    vm_structs on success, %NULL on failure | 
 |  * | 
 |  * Percpu allocator wants to use congruent vm areas so that it can | 
 |  * maintain the offsets among percpu areas.  This function allocates | 
 |  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to | 
 |  * be scattered pretty far, distance between two areas easily going up | 
 |  * to gigabytes.  To avoid interacting with regular vmallocs, these | 
 |  * areas are allocated from top. | 
 |  * | 
 |  * Despite its complicated look, this allocator is rather simple. It | 
 |  * does everything top-down and scans free blocks from the end looking | 
 |  * for matching base. While scanning, if any of the areas do not fit the | 
 |  * base address is pulled down to fit the area. Scanning is repeated till | 
 |  * all the areas fit and then all necessary data structures are inserted | 
 |  * and the result is returned. | 
 |  */ | 
 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | 
 | 				     const size_t *sizes, int nr_vms, | 
 | 				     size_t align) | 
 | { | 
 | 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | 
 | 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
 | 	struct vmap_area **vas, *va; | 
 | 	struct vm_struct **vms; | 
 | 	int area, area2, last_area, term_area; | 
 | 	unsigned long base, start, size, end, last_end; | 
 | 	bool purged = false; | 
 | 	enum fit_type type; | 
 |  | 
 | 	/* verify parameters and allocate data structures */ | 
 | 	BUG_ON(offset_in_page(align) || !is_power_of_2(align)); | 
 | 	for (last_area = 0, area = 0; area < nr_vms; area++) { | 
 | 		start = offsets[area]; | 
 | 		end = start + sizes[area]; | 
 |  | 
 | 		/* is everything aligned properly? */ | 
 | 		BUG_ON(!IS_ALIGNED(offsets[area], align)); | 
 | 		BUG_ON(!IS_ALIGNED(sizes[area], align)); | 
 |  | 
 | 		/* detect the area with the highest address */ | 
 | 		if (start > offsets[last_area]) | 
 | 			last_area = area; | 
 |  | 
 | 		for (area2 = area + 1; area2 < nr_vms; area2++) { | 
 | 			unsigned long start2 = offsets[area2]; | 
 | 			unsigned long end2 = start2 + sizes[area2]; | 
 |  | 
 | 			BUG_ON(start2 < end && start < end2); | 
 | 		} | 
 | 	} | 
 | 	last_end = offsets[last_area] + sizes[last_area]; | 
 |  | 
 | 	if (vmalloc_end - vmalloc_start < last_end) { | 
 | 		WARN_ON(true); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); | 
 | 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | 
 | 	if (!vas || !vms) | 
 | 		goto err_free2; | 
 |  | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); | 
 | 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | 
 | 		if (!vas[area] || !vms[area]) | 
 | 			goto err_free; | 
 | 	} | 
 | retry: | 
 | 	spin_lock(&vmap_area_lock); | 
 |  | 
 | 	/* start scanning - we scan from the top, begin with the last area */ | 
 | 	area = term_area = last_area; | 
 | 	start = offsets[area]; | 
 | 	end = start + sizes[area]; | 
 |  | 
 | 	va = pvm_find_va_enclose_addr(vmalloc_end); | 
 | 	base = pvm_determine_end_from_reverse(&va, align) - end; | 
 |  | 
 | 	while (true) { | 
 | 		/* | 
 | 		 * base might have underflowed, add last_end before | 
 | 		 * comparing. | 
 | 		 */ | 
 | 		if (base + last_end < vmalloc_start + last_end) | 
 | 			goto overflow; | 
 |  | 
 | 		/* | 
 | 		 * Fitting base has not been found. | 
 | 		 */ | 
 | 		if (va == NULL) | 
 | 			goto overflow; | 
 |  | 
 | 		/* | 
 | 		 * If required width exeeds current VA block, move | 
 | 		 * base downwards and then recheck. | 
 | 		 */ | 
 | 		if (base + end > va->va_end) { | 
 | 			base = pvm_determine_end_from_reverse(&va, align) - end; | 
 | 			term_area = area; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If this VA does not fit, move base downwards and recheck. | 
 | 		 */ | 
 | 		if (base + start < va->va_start) { | 
 | 			va = node_to_va(rb_prev(&va->rb_node)); | 
 | 			base = pvm_determine_end_from_reverse(&va, align) - end; | 
 | 			term_area = area; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This area fits, move on to the previous one.  If | 
 | 		 * the previous one is the terminal one, we're done. | 
 | 		 */ | 
 | 		area = (area + nr_vms - 1) % nr_vms; | 
 | 		if (area == term_area) | 
 | 			break; | 
 |  | 
 | 		start = offsets[area]; | 
 | 		end = start + sizes[area]; | 
 | 		va = pvm_find_va_enclose_addr(base + end); | 
 | 	} | 
 |  | 
 | 	/* we've found a fitting base, insert all va's */ | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		int ret; | 
 |  | 
 | 		start = base + offsets[area]; | 
 | 		size = sizes[area]; | 
 |  | 
 | 		va = pvm_find_va_enclose_addr(start); | 
 | 		if (WARN_ON_ONCE(va == NULL)) | 
 | 			/* It is a BUG(), but trigger recovery instead. */ | 
 | 			goto recovery; | 
 |  | 
 | 		type = classify_va_fit_type(va, start, size); | 
 | 		if (WARN_ON_ONCE(type == NOTHING_FIT)) | 
 | 			/* It is a BUG(), but trigger recovery instead. */ | 
 | 			goto recovery; | 
 |  | 
 | 		ret = adjust_va_to_fit_type(va, start, size, type); | 
 | 		if (unlikely(ret)) | 
 | 			goto recovery; | 
 |  | 
 | 		/* Allocated area. */ | 
 | 		va = vas[area]; | 
 | 		va->va_start = start; | 
 | 		va->va_end = start + size; | 
 |  | 
 | 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	/* insert all vm's */ | 
 | 	for (area = 0; area < nr_vms; area++) | 
 | 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | 
 | 				 pcpu_get_vm_areas); | 
 |  | 
 | 	kfree(vas); | 
 | 	return vms; | 
 |  | 
 | recovery: | 
 | 	/* Remove previously inserted areas. */ | 
 | 	while (area--) { | 
 | 		__free_vmap_area(vas[area]); | 
 | 		vas[area] = NULL; | 
 | 	} | 
 |  | 
 | overflow: | 
 | 	spin_unlock(&vmap_area_lock); | 
 | 	if (!purged) { | 
 | 		purge_vmap_area_lazy(); | 
 | 		purged = true; | 
 |  | 
 | 		/* Before "retry", check if we recover. */ | 
 | 		for (area = 0; area < nr_vms; area++) { | 
 | 			if (vas[area]) | 
 | 				continue; | 
 |  | 
 | 			vas[area] = kmem_cache_zalloc( | 
 | 				vmap_area_cachep, GFP_KERNEL); | 
 | 			if (!vas[area]) | 
 | 				goto err_free; | 
 | 		} | 
 |  | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | err_free: | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		if (vas[area]) | 
 | 			kmem_cache_free(vmap_area_cachep, vas[area]); | 
 |  | 
 | 		kfree(vms[area]); | 
 | 	} | 
 | err_free2: | 
 | 	kfree(vas); | 
 | 	kfree(vms); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | 
 |  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | 
 |  * @nr_vms: the number of allocated areas | 
 |  * | 
 |  * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | 
 |  */ | 
 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_vms; i++) | 
 | 		free_vm_area(vms[i]); | 
 | 	kfree(vms); | 
 | } | 
 | #endif	/* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void *s_start(struct seq_file *m, loff_t *pos) | 
 | 	__acquires(&vmap_area_lock) | 
 | { | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	return seq_list_start(&vmap_area_list, *pos); | 
 | } | 
 |  | 
 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	return seq_list_next(p, &vmap_area_list, pos); | 
 | } | 
 |  | 
 | static void s_stop(struct seq_file *m, void *p) | 
 | 	__releases(&vmap_area_lock) | 
 | { | 
 | 	spin_unlock(&vmap_area_lock); | 
 | } | 
 |  | 
 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) { | 
 | 		unsigned int nr, *counters = m->private; | 
 |  | 
 | 		if (!counters) | 
 | 			return; | 
 |  | 
 | 		if (v->flags & VM_UNINITIALIZED) | 
 | 			return; | 
 | 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | 
 |  | 
 | 		for (nr = 0; nr < v->nr_pages; nr++) | 
 | 			counters[page_to_nid(v->pages[nr])]++; | 
 |  | 
 | 		for_each_node_state(nr, N_HIGH_MEMORY) | 
 | 			if (counters[nr]) | 
 | 				seq_printf(m, " N%u=%u", nr, counters[nr]); | 
 | 	} | 
 | } | 
 |  | 
 | static void show_purge_info(struct seq_file *m) | 
 | { | 
 | 	struct llist_node *head; | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	head = READ_ONCE(vmap_purge_list.first); | 
 | 	if (head == NULL) | 
 | 		return; | 
 |  | 
 | 	llist_for_each_entry(va, head, purge_list) { | 
 | 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", | 
 | 			(void *)va->va_start, (void *)va->va_end, | 
 | 			va->va_end - va->va_start); | 
 | 	} | 
 | } | 
 |  | 
 | static int s_show(struct seq_file *m, void *p) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *v; | 
 |  | 
 | 	va = list_entry(p, struct vmap_area, list); | 
 |  | 
 | 	/* | 
 | 	 * s_show can encounter race with remove_vm_area, !vm on behalf | 
 | 	 * of vmap area is being tear down or vm_map_ram allocation. | 
 | 	 */ | 
 | 	if (!va->vm) { | 
 | 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", | 
 | 			(void *)va->va_start, (void *)va->va_end, | 
 | 			va->va_end - va->va_start); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	v = va->vm; | 
 |  | 
 | 	seq_printf(m, "0x%pK-0x%pK %7ld", | 
 | 		v->addr, v->addr + v->size, v->size); | 
 |  | 
 | 	if (v->caller) | 
 | 		seq_printf(m, " %pS", v->caller); | 
 |  | 
 | 	if (v->nr_pages) | 
 | 		seq_printf(m, " pages=%d", v->nr_pages); | 
 |  | 
 | 	if (v->phys_addr) | 
 | 		seq_printf(m, " phys=%pa", &v->phys_addr); | 
 |  | 
 | 	if (v->flags & VM_IOREMAP) | 
 | 		seq_puts(m, " ioremap"); | 
 |  | 
 | 	if (v->flags & VM_ALLOC) | 
 | 		seq_puts(m, " vmalloc"); | 
 |  | 
 | 	if (v->flags & VM_MAP) | 
 | 		seq_puts(m, " vmap"); | 
 |  | 
 | 	if (v->flags & VM_USERMAP) | 
 | 		seq_puts(m, " user"); | 
 |  | 
 | 	if (v->flags & VM_DMA_COHERENT) | 
 | 		seq_puts(m, " dma-coherent"); | 
 |  | 
 | 	if (is_vmalloc_addr(v->pages)) | 
 | 		seq_puts(m, " vpages"); | 
 |  | 
 | 	show_numa_info(m, v); | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | 	/* | 
 | 	 * As a final step, dump "unpurged" areas. Note, | 
 | 	 * that entire "/proc/vmallocinfo" output will not | 
 | 	 * be address sorted, because the purge list is not | 
 | 	 * sorted. | 
 | 	 */ | 
 | 	if (list_is_last(&va->list, &vmap_area_list)) | 
 | 		show_purge_info(m); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations vmalloc_op = { | 
 | 	.start = s_start, | 
 | 	.next = s_next, | 
 | 	.stop = s_stop, | 
 | 	.show = s_show, | 
 | }; | 
 |  | 
 | static int __init proc_vmalloc_init(void) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_PROC_STRIPPED)) | 
 | 		return 0; | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		proc_create_seq_private("vmallocinfo", 0400, NULL, | 
 | 				&vmalloc_op, | 
 | 				nr_node_ids * sizeof(unsigned int), NULL); | 
 | 	else | 
 | 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); | 
 | 	return 0; | 
 | } | 
 | module_init(proc_vmalloc_init); | 
 |  | 
 | #endif |