| Code Examples | 
 | ============= | 
 |  | 
 | Code Example For Symmetric Key Cipher Operation | 
 | ----------------------------------------------- | 
 |  | 
 | This code encrypts some data with AES-256-XTS.  For sake of example, | 
 | all inputs are random bytes, the encryption is done in-place, and it's | 
 | assumed the code is running in a context where it can sleep. | 
 |  | 
 | :: | 
 |  | 
 |     static int test_skcipher(void) | 
 |     { | 
 |             struct crypto_skcipher *tfm = NULL; | 
 |             struct skcipher_request *req = NULL; | 
 |             u8 *data = NULL; | 
 |             const size_t datasize = 512; /* data size in bytes */ | 
 |             struct scatterlist sg; | 
 |             DECLARE_CRYPTO_WAIT(wait); | 
 |             u8 iv[16];  /* AES-256-XTS takes a 16-byte IV */ | 
 |             u8 key[64]; /* AES-256-XTS takes a 64-byte key */ | 
 |             int err; | 
 |  | 
 |             /* | 
 |              * Allocate a tfm (a transformation object) and set the key. | 
 |              * | 
 |              * In real-world use, a tfm and key are typically used for many | 
 |              * encryption/decryption operations.  But in this example, we'll just do a | 
 |              * single encryption operation with it (which is not very efficient). | 
 |              */ | 
 |  | 
 |             tfm = crypto_alloc_skcipher("xts(aes)", 0, 0); | 
 |             if (IS_ERR(tfm)) { | 
 |                     pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm)); | 
 |                     return PTR_ERR(tfm); | 
 |             } | 
 |  | 
 |             get_random_bytes(key, sizeof(key)); | 
 |             err = crypto_skcipher_setkey(tfm, key, sizeof(key)); | 
 |             if (err) { | 
 |                     pr_err("Error setting key: %d\n", err); | 
 |                     goto out; | 
 |             } | 
 |  | 
 |             /* Allocate a request object */ | 
 |             req = skcipher_request_alloc(tfm, GFP_KERNEL); | 
 |             if (!req) { | 
 |                     err = -ENOMEM; | 
 |                     goto out; | 
 |             } | 
 |  | 
 |             /* Prepare the input data */ | 
 |             data = kmalloc(datasize, GFP_KERNEL); | 
 |             if (!data) { | 
 |                     err = -ENOMEM; | 
 |                     goto out; | 
 |             } | 
 |             get_random_bytes(data, datasize); | 
 |  | 
 |             /* Initialize the IV */ | 
 |             get_random_bytes(iv, sizeof(iv)); | 
 |  | 
 |             /* | 
 |              * Encrypt the data in-place. | 
 |              * | 
 |              * For simplicity, in this example we wait for the request to complete | 
 |              * before proceeding, even if the underlying implementation is asynchronous. | 
 |              * | 
 |              * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to | 
 |              * crypto_skcipher_decrypt(). | 
 |              */ | 
 |             sg_init_one(&sg, data, datasize); | 
 |             skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 |                                                CRYPTO_TFM_REQ_MAY_SLEEP, | 
 |                                           crypto_req_done, &wait); | 
 |             skcipher_request_set_crypt(req, &sg, &sg, datasize, iv); | 
 |             err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
 |             if (err) { | 
 |                     pr_err("Error encrypting data: %d\n", err); | 
 |                     goto out; | 
 |             } | 
 |  | 
 |             pr_debug("Encryption was successful\n"); | 
 |     out: | 
 |             crypto_free_skcipher(tfm); | 
 |             skcipher_request_free(req); | 
 |             kfree(data); | 
 |             return err; | 
 |     } | 
 |  | 
 |  | 
 | Code Example For Use of Operational State Memory With SHASH | 
 | ----------------------------------------------------------- | 
 |  | 
 | :: | 
 |  | 
 |  | 
 |     struct sdesc { | 
 |         struct shash_desc shash; | 
 |         char ctx[]; | 
 |     }; | 
 |  | 
 |     static struct sdesc *init_sdesc(struct crypto_shash *alg) | 
 |     { | 
 |         struct sdesc *sdesc; | 
 |         int size; | 
 |  | 
 |         size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | 
 |         sdesc = kmalloc(size, GFP_KERNEL); | 
 |         if (!sdesc) | 
 |             return ERR_PTR(-ENOMEM); | 
 |         sdesc->shash.tfm = alg; | 
 |         return sdesc; | 
 |     } | 
 |  | 
 |     static int calc_hash(struct crypto_shash *alg, | 
 |                  const unsigned char *data, unsigned int datalen, | 
 |                  unsigned char *digest) | 
 |     { | 
 |         struct sdesc *sdesc; | 
 |         int ret; | 
 |  | 
 |         sdesc = init_sdesc(alg); | 
 |         if (IS_ERR(sdesc)) { | 
 |             pr_info("can't alloc sdesc\n"); | 
 |             return PTR_ERR(sdesc); | 
 |         } | 
 |  | 
 |         ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); | 
 |         kfree(sdesc); | 
 |         return ret; | 
 |     } | 
 |  | 
 |     static int test_hash(const unsigned char *data, unsigned int datalen, | 
 |                  unsigned char *digest) | 
 |     { | 
 |         struct crypto_shash *alg; | 
 |         char *hash_alg_name = "sha1-padlock-nano"; | 
 |         int ret; | 
 |  | 
 |         alg = crypto_alloc_shash(hash_alg_name, 0, 0); | 
 |         if (IS_ERR(alg)) { | 
 |                 pr_info("can't alloc alg %s\n", hash_alg_name); | 
 |                 return PTR_ERR(alg); | 
 |         } | 
 |         ret = calc_hash(alg, data, datalen, digest); | 
 |         crypto_free_shash(alg); | 
 |         return ret; | 
 |     } | 
 |  | 
 |  | 
 | Code Example For Random Number Generator Usage | 
 | ---------------------------------------------- | 
 |  | 
 | :: | 
 |  | 
 |  | 
 |     static int get_random_numbers(u8 *buf, unsigned int len) | 
 |     { | 
 |         struct crypto_rng *rng = NULL; | 
 |         char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */ | 
 |         int ret; | 
 |  | 
 |         if (!buf || !len) { | 
 |             pr_debug("No output buffer provided\n"); | 
 |             return -EINVAL; | 
 |         } | 
 |  | 
 |         rng = crypto_alloc_rng(drbg, 0, 0); | 
 |         if (IS_ERR(rng)) { | 
 |             pr_debug("could not allocate RNG handle for %s\n", drbg); | 
 |             return PTR_ERR(rng); | 
 |         } | 
 |  | 
 |         ret = crypto_rng_get_bytes(rng, buf, len); | 
 |         if (ret < 0) | 
 |             pr_debug("generation of random numbers failed\n"); | 
 |         else if (ret == 0) | 
 |             pr_debug("RNG returned no data"); | 
 |         else | 
 |             pr_debug("RNG returned %d bytes of data\n", ret); | 
 |  | 
 |     out: | 
 |         crypto_free_rng(rng); | 
 |         return ret; | 
 |     } |