| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * TLB Management (flush/create/diagnostics) for ARC700 | 
 |  * | 
 |  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) | 
 |  * | 
 |  * vineetg: Aug 2011 | 
 |  *  -Reintroduce duplicate PD fixup - some customer chips still have the issue | 
 |  * | 
 |  * vineetg: May 2011 | 
 |  *  -No need to flush_cache_page( ) for each call to update_mmu_cache() | 
 |  *   some of the LMBench tests improved amazingly | 
 |  *      = page-fault thrice as fast (75 usec to 28 usec) | 
 |  *      = mmap twice as fast (9.6 msec to 4.6 msec), | 
 |  *      = fork (5.3 msec to 3.7 msec) | 
 |  * | 
 |  * vineetg: April 2011 : | 
 |  *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, | 
 |  *      helps avoid a shift when preparing PD0 from PTE | 
 |  * | 
 |  * vineetg: April 2011 : Preparing for MMU V3 | 
 |  *  -MMU v2/v3 BCRs decoded differently | 
 |  *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 | 
 |  *  -tlb_entry_erase( ) can be void | 
 |  *  -local_flush_tlb_range( ): | 
 |  *      = need not "ceil" @end | 
 |  *      = walks MMU only if range spans < 32 entries, as opposed to 256 | 
 |  * | 
 |  * Vineetg: Sept 10th 2008 | 
 |  *  -Changes related to MMU v2 (Rel 4.8) | 
 |  * | 
 |  * Vineetg: Aug 29th 2008 | 
 |  *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to | 
 |  *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, | 
 |  *    it fails. Thus need to load it with ANY valid value before invoking | 
 |  *    TLBIVUTLB cmd | 
 |  * | 
 |  * Vineetg: Aug 21th 2008: | 
 |  *  -Reduced the duration of IRQ lockouts in TLB Flush routines | 
 |  *  -Multiple copies of TLB erase code seperated into a "single" function | 
 |  *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID | 
 |  *       in interrupt-safe region. | 
 |  * | 
 |  * Vineetg: April 23rd Bug #93131 | 
 |  *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to | 
 |  *              flush is more than the size of TLB itself. | 
 |  * | 
 |  * Rahul Trivedi : Codito Technologies 2004 | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/mm_types.h> | 
 |  | 
 | #include <asm/arcregs.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/mmu.h> | 
 |  | 
 | /*			Need for ARC MMU v2 | 
 |  * | 
 |  * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. | 
 |  * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages | 
 |  * map into same set, there would be contention for the 2 ways causing severe | 
 |  * Thrashing. | 
 |  * | 
 |  * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has | 
 |  * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. | 
 |  * Given this, the thrasing problem should never happen because once the 3 | 
 |  * J-TLB entries are created (even though 3rd will knock out one of the prev | 
 |  * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy | 
 |  * | 
 |  * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. | 
 |  * This is a simple design for keeping them in sync. So what do we do? | 
 |  * The solution which James came up was pretty neat. It utilised the assoc | 
 |  * of uTLBs by not invalidating always but only when absolutely necessary. | 
 |  * | 
 |  * - Existing TLB commands work as before | 
 |  * - New command (TLBWriteNI) for TLB write without clearing uTLBs | 
 |  * - New command (TLBIVUTLB) to invalidate uTLBs. | 
 |  * | 
 |  * The uTLBs need only be invalidated when pages are being removed from the | 
 |  * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB | 
 |  * as a result of a miss, the removed entry is still allowed to exist in the | 
 |  * uTLBs as it is still valid and present in the OS page table. This allows the | 
 |  * full associativity of the uTLBs to hide the limited associativity of the main | 
 |  * TLB. | 
 |  * | 
 |  * During a miss handler, the new "TLBWriteNI" command is used to load | 
 |  * entries without clearing the uTLBs. | 
 |  * | 
 |  * When the OS page table is updated, TLB entries that may be associated with a | 
 |  * removed page are removed (flushed) from the TLB using TLBWrite. In this | 
 |  * circumstance, the uTLBs must also be cleared. This is done by using the | 
 |  * existing TLBWrite command. An explicit IVUTLB is also required for those | 
 |  * corner cases when TLBWrite was not executed at all because the corresp | 
 |  * J-TLB entry got evicted/replaced. | 
 |  */ | 
 |  | 
 |  | 
 | /* A copy of the ASID from the PID reg is kept in asid_cache */ | 
 | DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; | 
 |  | 
 | static int __read_mostly pae_exists; | 
 |  | 
 | /* | 
 |  * Utility Routine to erase a J-TLB entry | 
 |  * Caller needs to setup Index Reg (manually or via getIndex) | 
 |  */ | 
 | static inline void __tlb_entry_erase(void) | 
 | { | 
 | 	write_aux_reg(ARC_REG_TLBPD1, 0); | 
 |  | 
 | 	if (is_pae40_enabled()) | 
 | 		write_aux_reg(ARC_REG_TLBPD1HI, 0); | 
 |  | 
 | 	write_aux_reg(ARC_REG_TLBPD0, 0); | 
 | 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
 | } | 
 |  | 
 | #if (CONFIG_ARC_MMU_VER < 4) | 
 |  | 
 | static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) | 
 | { | 
 | 	unsigned int idx; | 
 |  | 
 | 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); | 
 |  | 
 | 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); | 
 | 	idx = read_aux_reg(ARC_REG_TLBINDEX); | 
 |  | 
 | 	return idx; | 
 | } | 
 |  | 
 | static void tlb_entry_erase(unsigned int vaddr_n_asid) | 
 | { | 
 | 	unsigned int idx; | 
 |  | 
 | 	/* Locate the TLB entry for this vaddr + ASID */ | 
 | 	idx = tlb_entry_lkup(vaddr_n_asid); | 
 |  | 
 | 	/* No error means entry found, zero it out */ | 
 | 	if (likely(!(idx & TLB_LKUP_ERR))) { | 
 | 		__tlb_entry_erase(); | 
 | 	} else { | 
 | 		/* Duplicate entry error */ | 
 | 		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", | 
 | 					   vaddr_n_asid); | 
 | 	} | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 |  * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) | 
 |  * | 
 |  * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB | 
 |  * | 
 |  * utlb_invalidate ( ) | 
 |  *  -For v2 MMU calls Flush uTLB Cmd | 
 |  *  -For v1 MMU does nothing (except for Metal Fix v1 MMU) | 
 |  *      This is because in v1 TLBWrite itself invalidate uTLBs | 
 |  ***************************************************************************/ | 
 |  | 
 | static void utlb_invalidate(void) | 
 | { | 
 | #if (CONFIG_ARC_MMU_VER >= 2) | 
 |  | 
 | #if (CONFIG_ARC_MMU_VER == 2) | 
 | 	/* MMU v2 introduced the uTLB Flush command. | 
 | 	 * There was however an obscure hardware bug, where uTLB flush would | 
 | 	 * fail when a prior probe for J-TLB (both totally unrelated) would | 
 | 	 * return lkup err - because the entry didn't exist in MMU. | 
 | 	 * The Workround was to set Index reg with some valid value, prior to | 
 | 	 * flush. This was fixed in MMU v3 hence not needed any more | 
 | 	 */ | 
 | 	unsigned int idx; | 
 |  | 
 | 	/* make sure INDEX Reg is valid */ | 
 | 	idx = read_aux_reg(ARC_REG_TLBINDEX); | 
 |  | 
 | 	/* If not write some dummy val */ | 
 | 	if (unlikely(idx & TLB_LKUP_ERR)) | 
 | 		write_aux_reg(ARC_REG_TLBINDEX, 0xa); | 
 | #endif | 
 |  | 
 | 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); | 
 | #endif | 
 |  | 
 | } | 
 |  | 
 | static void tlb_entry_insert(unsigned int pd0, pte_t pd1) | 
 | { | 
 | 	unsigned int idx; | 
 |  | 
 | 	/* | 
 | 	 * First verify if entry for this vaddr+ASID already exists | 
 | 	 * This also sets up PD0 (vaddr, ASID..) for final commit | 
 | 	 */ | 
 | 	idx = tlb_entry_lkup(pd0); | 
 |  | 
 | 	/* | 
 | 	 * If Not already present get a free slot from MMU. | 
 | 	 * Otherwise, Probe would have located the entry and set INDEX Reg | 
 | 	 * with existing location. This will cause Write CMD to over-write | 
 | 	 * existing entry with new PD0 and PD1 | 
 | 	 */ | 
 | 	if (likely(idx & TLB_LKUP_ERR)) | 
 | 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); | 
 |  | 
 | 	/* setup the other half of TLB entry (pfn, rwx..) */ | 
 | 	write_aux_reg(ARC_REG_TLBPD1, pd1); | 
 |  | 
 | 	/* | 
 | 	 * Commit the Entry to MMU | 
 | 	 * It doesn't sound safe to use the TLBWriteNI cmd here | 
 | 	 * which doesn't flush uTLBs. I'd rather be safe than sorry. | 
 | 	 */ | 
 | 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
 | } | 
 |  | 
 | #else	/* CONFIG_ARC_MMU_VER >= 4) */ | 
 |  | 
 | static void utlb_invalidate(void) | 
 | { | 
 | 	/* No need since uTLB is always in sync with JTLB */ | 
 | } | 
 |  | 
 | static void tlb_entry_erase(unsigned int vaddr_n_asid) | 
 | { | 
 | 	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); | 
 | 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); | 
 | } | 
 |  | 
 | static void tlb_entry_insert(unsigned int pd0, pte_t pd1) | 
 | { | 
 | 	write_aux_reg(ARC_REG_TLBPD0, pd0); | 
 | 	write_aux_reg(ARC_REG_TLBPD1, pd1); | 
 |  | 
 | 	if (is_pae40_enabled()) | 
 | 		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); | 
 |  | 
 | 	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Un-conditionally (without lookup) erase the entire MMU contents | 
 |  */ | 
 |  | 
 | noinline void local_flush_tlb_all(void) | 
 | { | 
 | 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
 | 	unsigned long flags; | 
 | 	unsigned int entry; | 
 | 	int num_tlb = mmu->sets * mmu->ways; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	/* Load PD0 and PD1 with template for a Blank Entry */ | 
 | 	write_aux_reg(ARC_REG_TLBPD1, 0); | 
 |  | 
 | 	if (is_pae40_enabled()) | 
 | 		write_aux_reg(ARC_REG_TLBPD1HI, 0); | 
 |  | 
 | 	write_aux_reg(ARC_REG_TLBPD0, 0); | 
 |  | 
 | 	for (entry = 0; entry < num_tlb; entry++) { | 
 | 		/* write this entry to the TLB */ | 
 | 		write_aux_reg(ARC_REG_TLBINDEX, entry); | 
 | 		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
 | 		const int stlb_idx = 0x800; | 
 |  | 
 | 		/* Blank sTLB entry */ | 
 | 		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); | 
 |  | 
 | 		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { | 
 | 			write_aux_reg(ARC_REG_TLBINDEX, entry); | 
 | 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	utlb_invalidate(); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the entrie MM for userland. The fastest way is to move to Next ASID | 
 |  */ | 
 | noinline void local_flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	/* | 
 | 	 * Small optimisation courtesy IA64 | 
 | 	 * flush_mm called during fork,exit,munmap etc, multiple times as well. | 
 | 	 * Only for fork( ) do we need to move parent to a new MMU ctxt, | 
 | 	 * all other cases are NOPs, hence this check. | 
 | 	 */ | 
 | 	if (atomic_read(&mm->mm_users) == 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * - Move to a new ASID, but only if the mm is still wired in | 
 | 	 *   (Android Binder ended up calling this for vma->mm != tsk->mm, | 
 | 	 *    causing h/w - s/w ASID to get out of sync) | 
 | 	 * - Also get_new_mmu_context() new implementation allocates a new | 
 | 	 *   ASID only if it is not allocated already - so unallocate first | 
 | 	 */ | 
 | 	destroy_context(mm); | 
 | 	if (current->mm == mm) | 
 | 		get_new_mmu_context(mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush a Range of TLB entries for userland. | 
 |  * @start is inclusive, while @end is exclusive | 
 |  * Difference between this and Kernel Range Flush is | 
 |  *  -Here the fastest way (if range is too large) is to move to next ASID | 
 |  *      without doing any explicit Shootdown | 
 |  *  -In case of kernel Flush, entry has to be shot down explictly | 
 |  */ | 
 | void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			   unsigned long end) | 
 | { | 
 | 	const unsigned int cpu = smp_processor_id(); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* If range @start to @end is more than 32 TLB entries deep, | 
 | 	 * its better to move to a new ASID rather than searching for | 
 | 	 * individual entries and then shooting them down | 
 | 	 * | 
 | 	 * The calc above is rough, doesn't account for unaligned parts, | 
 | 	 * since this is heuristics based anyways | 
 | 	 */ | 
 | 	if (unlikely((end - start) >= PAGE_SIZE * 32)) { | 
 | 		local_flush_tlb_mm(vma->vm_mm); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * @start moved to page start: this alone suffices for checking | 
 | 	 * loop end condition below, w/o need for aligning @end to end | 
 | 	 * e.g. 2000 to 4001 will anyhow loop twice | 
 | 	 */ | 
 | 	start &= PAGE_MASK; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { | 
 | 		while (start < end) { | 
 | 			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); | 
 | 			start += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	utlb_invalidate(); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) | 
 |  *  @start, @end interpreted as kvaddr | 
 |  * Interestingly, shared TLB entries can also be flushed using just | 
 |  * @start,@end alone (interpreted as user vaddr), although technically SASID | 
 |  * is also needed. However our smart TLbProbe lookup takes care of that. | 
 |  */ | 
 | void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* exactly same as above, except for TLB entry not taking ASID */ | 
 |  | 
 | 	if (unlikely((end - start) >= PAGE_SIZE * 32)) { | 
 | 		local_flush_tlb_all(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	start &= PAGE_MASK; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	while (start < end) { | 
 | 		tlb_entry_erase(start); | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	utlb_invalidate(); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Delete TLB entry in MMU for a given page (??? address) | 
 |  * NOTE One TLB entry contains translation for single PAGE | 
 |  */ | 
 |  | 
 | void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	const unsigned int cpu = smp_processor_id(); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Note that it is critical that interrupts are DISABLED between | 
 | 	 * checking the ASID and using it flush the TLB entry | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { | 
 | 		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); | 
 | 		utlb_invalidate(); | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | struct tlb_args { | 
 | 	struct vm_area_struct *ta_vma; | 
 | 	unsigned long ta_start; | 
 | 	unsigned long ta_end; | 
 | }; | 
 |  | 
 | static inline void ipi_flush_tlb_page(void *arg) | 
 | { | 
 | 	struct tlb_args *ta = arg; | 
 |  | 
 | 	local_flush_tlb_page(ta->ta_vma, ta->ta_start); | 
 | } | 
 |  | 
 | static inline void ipi_flush_tlb_range(void *arg) | 
 | { | 
 | 	struct tlb_args *ta = arg; | 
 |  | 
 | 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | static inline void ipi_flush_pmd_tlb_range(void *arg) | 
 | { | 
 | 	struct tlb_args *ta = arg; | 
 |  | 
 | 	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); | 
 | } | 
 | #endif | 
 |  | 
 | static inline void ipi_flush_tlb_kernel_range(void *arg) | 
 | { | 
 | 	struct tlb_args *ta = (struct tlb_args *)arg; | 
 |  | 
 | 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); | 
 | } | 
 |  | 
 | void flush_tlb_all(void) | 
 | { | 
 | 	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); | 
 | } | 
 |  | 
 | void flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, | 
 | 			 mm, 1); | 
 | } | 
 |  | 
 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) | 
 | { | 
 | 	struct tlb_args ta = { | 
 | 		.ta_vma = vma, | 
 | 		.ta_start = uaddr | 
 | 	}; | 
 |  | 
 | 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); | 
 | } | 
 |  | 
 | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
 | 		     unsigned long end) | 
 | { | 
 | 	struct tlb_args ta = { | 
 | 		.ta_vma = vma, | 
 | 		.ta_start = start, | 
 | 		.ta_end = end | 
 | 	}; | 
 |  | 
 | 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			 unsigned long end) | 
 | { | 
 | 	struct tlb_args ta = { | 
 | 		.ta_vma = vma, | 
 | 		.ta_start = start, | 
 | 		.ta_end = end | 
 | 	}; | 
 |  | 
 | 	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); | 
 | } | 
 | #endif | 
 |  | 
 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	struct tlb_args ta = { | 
 | 		.ta_start = start, | 
 | 		.ta_end = end | 
 | 	}; | 
 |  | 
 | 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Routine to create a TLB entry | 
 |  */ | 
 | void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int asid_or_sasid, rwx; | 
 | 	unsigned long pd0; | 
 | 	pte_t pd1; | 
 |  | 
 | 	/* | 
 | 	 * create_tlb() assumes that current->mm == vma->mm, since | 
 | 	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) | 
 | 	 * -completes the lazy write to SASID reg (again valid for curr tsk) | 
 | 	 * | 
 | 	 * Removing the assumption involves | 
 | 	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. | 
 | 	 * -Fix the TLB paranoid debug code to not trigger false negatives. | 
 | 	 * -More importantly it makes this handler inconsistent with fast-path | 
 | 	 *  TLB Refill handler which always deals with "current" | 
 | 	 * | 
 | 	 * Lets see the use cases when current->mm != vma->mm and we land here | 
 | 	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault | 
 | 	 *     Here VM wants to pre-install a TLB entry for user stack while | 
 | 	 *     current->mm still points to pre-execve mm (hence the condition). | 
 | 	 *     However the stack vaddr is soon relocated (randomization) and | 
 | 	 *     move_page_tables() tries to undo that TLB entry. | 
 | 	 *     Thus not creating TLB entry is not any worse. | 
 | 	 * | 
 | 	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a | 
 | 	 *     breakpoint in debugged task. Not creating a TLB now is not | 
 | 	 *     performance critical. | 
 | 	 * | 
 | 	 * Both the cases above are not good enough for code churn. | 
 | 	 */ | 
 | 	if (current->active_mm != vma->vm_mm) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr); | 
 |  | 
 | 	vaddr &= PAGE_MASK; | 
 |  | 
 | 	/* update this PTE credentials */ | 
 | 	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); | 
 |  | 
 | 	/* Create HW TLB(PD0,PD1) from PTE  */ | 
 |  | 
 | 	/* ASID for this task */ | 
 | 	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; | 
 |  | 
 | 	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); | 
 |  | 
 | 	/* | 
 | 	 * ARC MMU provides fully orthogonal access bits for K/U mode, | 
 | 	 * however Linux only saves 1 set to save PTE real-estate | 
 | 	 * Here we convert 3 PTE bits into 6 MMU bits: | 
 | 	 * -Kernel only entries have Kr Kw Kx 0 0 0 | 
 | 	 * -User entries have mirrored K and U bits | 
 | 	 */ | 
 | 	rwx = pte_val(*ptep) & PTE_BITS_RWX; | 
 |  | 
 | 	if (pte_val(*ptep) & _PAGE_GLOBAL) | 
 | 		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */ | 
 | 	else | 
 | 		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */ | 
 |  | 
 | 	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); | 
 |  | 
 | 	tlb_entry_insert(pd0, pd1); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Called at the end of pagefault, for a userspace mapped page | 
 |  *  -pre-install the corresponding TLB entry into MMU | 
 |  *  -Finalize the delayed D-cache flush of kernel mapping of page due to | 
 |  *  	flush_dcache_page(), copy_user_page() | 
 |  * | 
 |  * Note that flush (when done) involves both WBACK - so physical page is | 
 |  * in sync as well as INV - so any non-congruent aliases don't remain | 
 |  */ | 
 | void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, | 
 | 		      pte_t *ptep) | 
 | { | 
 | 	unsigned long vaddr = vaddr_unaligned & PAGE_MASK; | 
 | 	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS; | 
 | 	struct page *page = pfn_to_page(pte_pfn(*ptep)); | 
 |  | 
 | 	create_tlb(vma, vaddr, ptep); | 
 |  | 
 | 	if (page == ZERO_PAGE(0)) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Exec page : Independent of aliasing/page-color considerations, | 
 | 	 *	       since icache doesn't snoop dcache on ARC, any dirty | 
 | 	 *	       K-mapping of a code page needs to be wback+inv so that | 
 | 	 *	       icache fetch by userspace sees code correctly. | 
 | 	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it | 
 | 	 *	       so userspace sees the right data. | 
 | 	 *  (Avoids the flush for Non-exec + congruent mapping case) | 
 | 	 */ | 
 | 	if ((vma->vm_flags & VM_EXEC) || | 
 | 	     addr_not_cache_congruent(paddr, vaddr)) { | 
 |  | 
 | 		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); | 
 | 		if (dirty) { | 
 | 			/* wback + inv dcache lines (K-mapping) */ | 
 | 			__flush_dcache_page(paddr, paddr); | 
 |  | 
 | 			/* invalidate any existing icache lines (U-mapping) */ | 
 | 			if (vma->vm_flags & VM_EXEC) | 
 | 				__inv_icache_page(paddr, vaddr); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 |  | 
 | /* | 
 |  * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP | 
 |  * support. | 
 |  * | 
 |  * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a | 
 |  * new bit "SZ" in TLB page descriptor to distinguish between them. | 
 |  * Super Page size is configurable in hardware (4K to 16M), but fixed once | 
 |  * RTL builds. | 
 |  * | 
 |  * The exact THP size a Linx configuration will support is a function of: | 
 |  *  - MMU page size (typical 8K, RTL fixed) | 
 |  *  - software page walker address split between PGD:PTE:PFN (typical | 
 |  *    11:8:13, but can be changed with 1 line) | 
 |  * So for above default, THP size supported is 8K * (2^8) = 2M | 
 |  * | 
 |  * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime | 
 |  * reduces to 1 level (as PTE is folded into PGD and canonically referred | 
 |  * to as PMD). | 
 |  * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) | 
 |  */ | 
 |  | 
 | void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, | 
 | 				 pmd_t *pmd) | 
 | { | 
 | 	pte_t pte = __pte(pmd_val(*pmd)); | 
 | 	update_mmu_cache(vma, addr, &pte); | 
 | } | 
 |  | 
 | void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, | 
 | 				pgtable_t pgtable) | 
 | { | 
 | 	struct list_head *lh = (struct list_head *) pgtable; | 
 |  | 
 | 	assert_spin_locked(&mm->page_table_lock); | 
 |  | 
 | 	/* FIFO */ | 
 | 	if (!pmd_huge_pte(mm, pmdp)) | 
 | 		INIT_LIST_HEAD(lh); | 
 | 	else | 
 | 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); | 
 | 	pmd_huge_pte(mm, pmdp) = pgtable; | 
 | } | 
 |  | 
 | pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) | 
 | { | 
 | 	struct list_head *lh; | 
 | 	pgtable_t pgtable; | 
 |  | 
 | 	assert_spin_locked(&mm->page_table_lock); | 
 |  | 
 | 	pgtable = pmd_huge_pte(mm, pmdp); | 
 | 	lh = (struct list_head *) pgtable; | 
 | 	if (list_empty(lh)) | 
 | 		pmd_huge_pte(mm, pmdp) = NULL; | 
 | 	else { | 
 | 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; | 
 | 		list_del(lh); | 
 | 	} | 
 |  | 
 | 	pte_val(pgtable[0]) = 0; | 
 | 	pte_val(pgtable[1]) = 0; | 
 |  | 
 | 	return pgtable; | 
 | } | 
 |  | 
 | void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			       unsigned long end) | 
 | { | 
 | 	unsigned int cpu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 |  | 
 | 	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { | 
 | 		unsigned int asid = hw_pid(vma->vm_mm, cpu); | 
 |  | 
 | 		/* No need to loop here: this will always be for 1 Huge Page */ | 
 | 		tlb_entry_erase(start | _PAGE_HW_SZ | asid); | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* Read the Cache Build Confuration Registers, Decode them and save into | 
 |  * the cpuinfo structure for later use. | 
 |  * No Validation is done here, simply read/convert the BCRs | 
 |  */ | 
 | void read_decode_mmu_bcr(void) | 
 | { | 
 | 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
 | 	unsigned int tmp; | 
 | 	struct bcr_mmu_1_2 { | 
 | #ifdef CONFIG_CPU_BIG_ENDIAN | 
 | 		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; | 
 | #else | 
 | 		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; | 
 | #endif | 
 | 	} *mmu2; | 
 |  | 
 | 	struct bcr_mmu_3 { | 
 | #ifdef CONFIG_CPU_BIG_ENDIAN | 
 | 	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, | 
 | 		     u_itlb:4, u_dtlb:4; | 
 | #else | 
 | 	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, | 
 | 		     ways:4, ver:8; | 
 | #endif | 
 | 	} *mmu3; | 
 |  | 
 | 	struct bcr_mmu_4 { | 
 | #ifdef CONFIG_CPU_BIG_ENDIAN | 
 | 	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, | 
 | 		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; | 
 | #else | 
 | 	/*           DTLB      ITLB      JES        JE         JA      */ | 
 | 	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, | 
 | 		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; | 
 | #endif | 
 | 	} *mmu4; | 
 |  | 
 | 	tmp = read_aux_reg(ARC_REG_MMU_BCR); | 
 | 	mmu->ver = (tmp >> 24); | 
 |  | 
 | 	if (is_isa_arcompact()) { | 
 | 		if (mmu->ver <= 2) { | 
 | 			mmu2 = (struct bcr_mmu_1_2 *)&tmp; | 
 | 			mmu->pg_sz_k = TO_KB(0x2000); | 
 | 			mmu->sets = 1 << mmu2->sets; | 
 | 			mmu->ways = 1 << mmu2->ways; | 
 | 			mmu->u_dtlb = mmu2->u_dtlb; | 
 | 			mmu->u_itlb = mmu2->u_itlb; | 
 | 		} else { | 
 | 			mmu3 = (struct bcr_mmu_3 *)&tmp; | 
 | 			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); | 
 | 			mmu->sets = 1 << mmu3->sets; | 
 | 			mmu->ways = 1 << mmu3->ways; | 
 | 			mmu->u_dtlb = mmu3->u_dtlb; | 
 | 			mmu->u_itlb = mmu3->u_itlb; | 
 | 			mmu->sasid = mmu3->sasid; | 
 | 		} | 
 | 	} else { | 
 | 		mmu4 = (struct bcr_mmu_4 *)&tmp; | 
 | 		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); | 
 | 		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); | 
 | 		mmu->sets = 64 << mmu4->n_entry; | 
 | 		mmu->ways = mmu4->n_ways * 2; | 
 | 		mmu->u_dtlb = mmu4->u_dtlb * 4; | 
 | 		mmu->u_itlb = mmu4->u_itlb * 4; | 
 | 		mmu->sasid = mmu4->sasid; | 
 | 		pae_exists = mmu->pae = mmu4->pae; | 
 | 	} | 
 | } | 
 |  | 
 | char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) | 
 | { | 
 | 	int n = 0; | 
 | 	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; | 
 | 	char super_pg[64] = ""; | 
 |  | 
 | 	if (p_mmu->s_pg_sz_m) | 
 | 		scnprintf(super_pg, 64, "%dM Super Page %s", | 
 | 			  p_mmu->s_pg_sz_m, | 
 | 			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); | 
 |  | 
 | 	n += scnprintf(buf + n, len - n, | 
 | 		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", | 
 | 		       p_mmu->ver, p_mmu->pg_sz_k, super_pg, | 
 | 		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, | 
 | 		       p_mmu->u_dtlb, p_mmu->u_itlb, | 
 | 		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | int pae40_exist_but_not_enab(void) | 
 | { | 
 | 	return pae_exists && !is_pae40_enabled(); | 
 | } | 
 |  | 
 | void arc_mmu_init(void) | 
 | { | 
 | 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
 | 	char str[256]; | 
 | 	int compat = 0; | 
 |  | 
 | 	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str))); | 
 |  | 
 | 	/* | 
 | 	 * Can't be done in processor.h due to header include depenedencies | 
 | 	 */ | 
 | 	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); | 
 |  | 
 | 	/* | 
 | 	 * stack top size sanity check, | 
 | 	 * Can't be done in processor.h due to header include depenedencies | 
 | 	 */ | 
 | 	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that MMU features assumed by kernel exist in hardware. | 
 | 	 * For older ARC700 cpus, it has to be exact match, since the MMU | 
 | 	 * revisions were not backwards compatible (MMUv3 TLB layout changed | 
 | 	 * so even if kernel for v2 didn't use any new cmds of v3, it would | 
 | 	 * still not work. | 
 | 	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible | 
 | 	 * (will run older software). | 
 | 	 */ | 
 | 	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER) | 
 | 		compat = 1; | 
 | 	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER) | 
 | 		compat = 1; | 
 |  | 
 | 	if (!compat) { | 
 | 		panic("MMU ver %d doesn't match kernel built for %d...\n", | 
 | 		      mmu->ver, CONFIG_ARC_MMU_VER); | 
 | 	} | 
 |  | 
 | 	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) | 
 | 		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
 | 	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) | 
 | 		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", | 
 | 		      (unsigned long)TO_MB(HPAGE_PMD_SIZE)); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) | 
 | 		panic("Hardware doesn't support PAE40\n"); | 
 |  | 
 | 	/* Enable the MMU */ | 
 | 	write_aux_reg(ARC_REG_PID, MMU_ENABLE); | 
 |  | 
 | 	/* In smp we use this reg for interrupt 1 scratch */ | 
 | #ifndef CONFIG_SMP | 
 | 	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ | 
 | 	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); | 
 | #endif | 
 |  | 
 | 	if (pae40_exist_but_not_enab()) | 
 | 		write_aux_reg(ARC_REG_TLBPD1HI, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} | 
 |  * The mapping is Column-first. | 
 |  *		---------------------	----------- | 
 |  *		|way0|way1|way2|way3|	|way0|way1| | 
 |  *		---------------------	----------- | 
 |  * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 | | 
 |  * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 | | 
 |  *		~		    ~	~	  ~ | 
 |  * [set127]	| 508| 509| 510| 511|	| 254| 255| | 
 |  *		---------------------	----------- | 
 |  * For normal operations we don't(must not) care how above works since | 
 |  * MMU cmd getIndex(vaddr) abstracts that out. | 
 |  * However for walking WAYS of a SET, we need to know this | 
 |  */ | 
 | #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way)) | 
 |  | 
 | /* Handling of Duplicate PD (TLB entry) in MMU. | 
 |  * -Could be due to buggy customer tapeouts or obscure kernel bugs | 
 |  * -MMU complaints not at the time of duplicate PD installation, but at the | 
 |  *      time of lookup matching multiple ways. | 
 |  * -Ideally these should never happen - but if they do - workaround by deleting | 
 |  *      the duplicate one. | 
 |  * -Knob to be verbose abt it.(TODO: hook them up to debugfs) | 
 |  */ | 
 | volatile int dup_pd_silent; /* Be slient abt it or complain (default) */ | 
 |  | 
 | void do_tlb_overlap_fault(unsigned long cause, unsigned long address, | 
 | 			  struct pt_regs *regs) | 
 | { | 
 | 	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
 | 	unsigned long flags; | 
 | 	int set, n_ways = mmu->ways; | 
 |  | 
 | 	n_ways = min(n_ways, 4); | 
 | 	BUG_ON(mmu->ways > 4); | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	/* loop thru all sets of TLB */ | 
 | 	for (set = 0; set < mmu->sets; set++) { | 
 |  | 
 | 		int is_valid, way; | 
 | 		unsigned int pd0[4]; | 
 |  | 
 | 		/* read out all the ways of current set */ | 
 | 		for (way = 0, is_valid = 0; way < n_ways; way++) { | 
 | 			write_aux_reg(ARC_REG_TLBINDEX, | 
 | 					  SET_WAY_TO_IDX(mmu, set, way)); | 
 | 			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); | 
 | 			pd0[way] = read_aux_reg(ARC_REG_TLBPD0); | 
 | 			is_valid |= pd0[way] & _PAGE_PRESENT; | 
 | 			pd0[way] &= PAGE_MASK; | 
 | 		} | 
 |  | 
 | 		/* If all the WAYS in SET are empty, skip to next SET */ | 
 | 		if (!is_valid) | 
 | 			continue; | 
 |  | 
 | 		/* Scan the set for duplicate ways: needs a nested loop */ | 
 | 		for (way = 0; way < n_ways - 1; way++) { | 
 |  | 
 | 			int n; | 
 |  | 
 | 			if (!pd0[way]) | 
 | 				continue; | 
 |  | 
 | 			for (n = way + 1; n < n_ways; n++) { | 
 | 				if (pd0[way] != pd0[n]) | 
 | 					continue; | 
 |  | 
 | 				if (!dup_pd_silent) | 
 | 					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", | 
 | 						pd0[way], set, way, n); | 
 |  | 
 | 				/* | 
 | 				 * clear entry @way and not @n. | 
 | 				 * This is critical to our optimised loop | 
 | 				 */ | 
 | 				pd0[way] = 0; | 
 | 				write_aux_reg(ARC_REG_TLBINDEX, | 
 | 						SET_WAY_TO_IDX(mmu, set, way)); | 
 | 				__tlb_entry_erase(); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /*********************************************************************** | 
 |  * Diagnostic Routines | 
 |  *  -Called from Low Level TLB Hanlders if things don;t look good | 
 |  **********************************************************************/ | 
 |  | 
 | #ifdef CONFIG_ARC_DBG_TLB_PARANOIA | 
 |  | 
 | /* | 
 |  * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS | 
 |  * don't match | 
 |  */ | 
 | void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) | 
 | { | 
 | 	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", | 
 | 	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); | 
 |  | 
 | 	__asm__ __volatile__("flag 1"); | 
 | } | 
 |  | 
 | void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) | 
 | { | 
 | 	unsigned int mmu_asid; | 
 |  | 
 | 	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; | 
 |  | 
 | 	/* | 
 | 	 * At the time of a TLB miss/installation | 
 | 	 *   - HW version needs to match SW version | 
 | 	 *   - SW needs to have a valid ASID | 
 | 	 */ | 
 | 	if (addr < 0x70000000 && | 
 | 	    ((mm_asid == MM_CTXT_NO_ASID) || | 
 | 	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) | 
 | 		print_asid_mismatch(mm_asid, mmu_asid, 0); | 
 | } | 
 | #endif |