| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * | 
 |  * Copyright (C) 2000, 2001 Kanoj Sarcar | 
 |  * Copyright (C) 2000, 2001 Ralf Baechle | 
 |  * Copyright (C) 2000, 2001 Silicon Graphics, Inc. | 
 |  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation | 
 |  */ | 
 | #include <linux/cache.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/export.h> | 
 | #include <linux/time.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/err.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_irq.h> | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/ginvt.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/r4k-timer.h> | 
 | #include <asm/mips-cps.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/time.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/maar.h> | 
 |  | 
 | int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */ | 
 | EXPORT_SYMBOL(__cpu_number_map); | 
 |  | 
 | int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */ | 
 | EXPORT_SYMBOL(__cpu_logical_map); | 
 |  | 
 | /* Number of TCs (or siblings in Intel speak) per CPU core */ | 
 | int smp_num_siblings = 1; | 
 | EXPORT_SYMBOL(smp_num_siblings); | 
 |  | 
 | /* representing the TCs (or siblings in Intel speak) of each logical CPU */ | 
 | cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; | 
 | EXPORT_SYMBOL(cpu_sibling_map); | 
 |  | 
 | /* representing the core map of multi-core chips of each logical CPU */ | 
 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly; | 
 | EXPORT_SYMBOL(cpu_core_map); | 
 |  | 
 | static DECLARE_COMPLETION(cpu_starting); | 
 | static DECLARE_COMPLETION(cpu_running); | 
 |  | 
 | /* | 
 |  * A logcal cpu mask containing only one VPE per core to | 
 |  * reduce the number of IPIs on large MT systems. | 
 |  */ | 
 | cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; | 
 | EXPORT_SYMBOL(cpu_foreign_map); | 
 |  | 
 | /* representing cpus for which sibling maps can be computed */ | 
 | static cpumask_t cpu_sibling_setup_map; | 
 |  | 
 | /* representing cpus for which core maps can be computed */ | 
 | static cpumask_t cpu_core_setup_map; | 
 |  | 
 | cpumask_t cpu_coherent_mask; | 
 |  | 
 | #ifdef CONFIG_GENERIC_IRQ_IPI | 
 | static struct irq_desc *call_desc; | 
 | static struct irq_desc *sched_desc; | 
 | #endif | 
 |  | 
 | static inline void set_cpu_sibling_map(int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map); | 
 |  | 
 | 	if (smp_num_siblings > 1) { | 
 | 		for_each_cpu(i, &cpu_sibling_setup_map) { | 
 | 			if (cpus_are_siblings(cpu, i)) { | 
 | 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]); | 
 | 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]); | 
 | 			} | 
 | 		} | 
 | 	} else | 
 | 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); | 
 | } | 
 |  | 
 | static inline void set_cpu_core_map(int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	cpumask_set_cpu(cpu, &cpu_core_setup_map); | 
 |  | 
 | 	for_each_cpu(i, &cpu_core_setup_map) { | 
 | 		if (cpu_data[cpu].package == cpu_data[i].package) { | 
 | 			cpumask_set_cpu(i, &cpu_core_map[cpu]); | 
 | 			cpumask_set_cpu(cpu, &cpu_core_map[i]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate a new cpu_foreign_map mask whenever a | 
 |  * new cpu appears or disappears. | 
 |  */ | 
 | void calculate_cpu_foreign_map(void) | 
 | { | 
 | 	int i, k, core_present; | 
 | 	cpumask_t temp_foreign_map; | 
 |  | 
 | 	/* Re-calculate the mask */ | 
 | 	cpumask_clear(&temp_foreign_map); | 
 | 	for_each_online_cpu(i) { | 
 | 		core_present = 0; | 
 | 		for_each_cpu(k, &temp_foreign_map) | 
 | 			if (cpus_are_siblings(i, k)) | 
 | 				core_present = 1; | 
 | 		if (!core_present) | 
 | 			cpumask_set_cpu(i, &temp_foreign_map); | 
 | 	} | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 		cpumask_andnot(&cpu_foreign_map[i], | 
 | 			       &temp_foreign_map, &cpu_sibling_map[i]); | 
 | } | 
 |  | 
 | const struct plat_smp_ops *mp_ops; | 
 | EXPORT_SYMBOL(mp_ops); | 
 |  | 
 | void register_smp_ops(const struct plat_smp_ops *ops) | 
 | { | 
 | 	if (mp_ops) | 
 | 		printk(KERN_WARNING "Overriding previously set SMP ops\n"); | 
 |  | 
 | 	mp_ops = ops; | 
 | } | 
 |  | 
 | #ifdef CONFIG_GENERIC_IRQ_IPI | 
 | void mips_smp_send_ipi_single(int cpu, unsigned int action) | 
 | { | 
 | 	mips_smp_send_ipi_mask(cpumask_of(cpu), action); | 
 | } | 
 |  | 
 | void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int core; | 
 | 	int cpu; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	switch (action) { | 
 | 	case SMP_CALL_FUNCTION: | 
 | 		__ipi_send_mask(call_desc, mask); | 
 | 		break; | 
 |  | 
 | 	case SMP_RESCHEDULE_YOURSELF: | 
 | 		__ipi_send_mask(sched_desc, mask); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (mips_cpc_present()) { | 
 | 		for_each_cpu(cpu, mask) { | 
 | 			if (cpus_are_siblings(cpu, smp_processor_id())) | 
 | 				continue; | 
 |  | 
 | 			core = cpu_core(&cpu_data[cpu]); | 
 |  | 
 | 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { | 
 | 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); | 
 | 				mips_cpc_lock_other(core); | 
 | 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); | 
 | 				mips_cpc_unlock_other(); | 
 | 				mips_cm_unlock_other(); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 |  | 
 | static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	scheduler_ipi(); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	generic_smp_call_function_interrupt(); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static struct irqaction irq_resched = { | 
 | 	.handler	= ipi_resched_interrupt, | 
 | 	.flags		= IRQF_PERCPU, | 
 | 	.name		= "IPI resched" | 
 | }; | 
 |  | 
 | static struct irqaction irq_call = { | 
 | 	.handler	= ipi_call_interrupt, | 
 | 	.flags		= IRQF_PERCPU, | 
 | 	.name		= "IPI call" | 
 | }; | 
 |  | 
 | static void smp_ipi_init_one(unsigned int virq, | 
 | 				    struct irqaction *action) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	irq_set_handler(virq, handle_percpu_irq); | 
 | 	ret = setup_irq(virq, action); | 
 | 	BUG_ON(ret); | 
 | } | 
 |  | 
 | static unsigned int call_virq, sched_virq; | 
 |  | 
 | int mips_smp_ipi_allocate(const struct cpumask *mask) | 
 | { | 
 | 	int virq; | 
 | 	struct irq_domain *ipidomain; | 
 | 	struct device_node *node; | 
 |  | 
 | 	node = of_irq_find_parent(of_root); | 
 | 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); | 
 |  | 
 | 	/* | 
 | 	 * Some platforms have half DT setup. So if we found irq node but | 
 | 	 * didn't find an ipidomain, try to search for one that is not in the | 
 | 	 * DT. | 
 | 	 */ | 
 | 	if (node && !ipidomain) | 
 | 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); | 
 |  | 
 | 	/* | 
 | 	 * There are systems which use IPI IRQ domains, but only have one | 
 | 	 * registered when some runtime condition is met. For example a Malta | 
 | 	 * kernel may include support for GIC & CPU interrupt controller IPI | 
 | 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then | 
 | 	 * neither will be supported or registered. | 
 | 	 * | 
 | 	 * We only have a problem if we're actually using multiple CPUs so fail | 
 | 	 * loudly if that is the case. Otherwise simply return, skipping IPI | 
 | 	 * setup, if we're running with only a single CPU. | 
 | 	 */ | 
 | 	if (!ipidomain) { | 
 | 		BUG_ON(num_present_cpus() > 1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	virq = irq_reserve_ipi(ipidomain, mask); | 
 | 	BUG_ON(!virq); | 
 | 	if (!call_virq) | 
 | 		call_virq = virq; | 
 |  | 
 | 	virq = irq_reserve_ipi(ipidomain, mask); | 
 | 	BUG_ON(!virq); | 
 | 	if (!sched_virq) | 
 | 		sched_virq = virq; | 
 |  | 
 | 	if (irq_domain_is_ipi_per_cpu(ipidomain)) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_cpu(cpu, mask) { | 
 | 			smp_ipi_init_one(call_virq + cpu, &irq_call); | 
 | 			smp_ipi_init_one(sched_virq + cpu, &irq_resched); | 
 | 		} | 
 | 	} else { | 
 | 		smp_ipi_init_one(call_virq, &irq_call); | 
 | 		smp_ipi_init_one(sched_virq, &irq_resched); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mips_smp_ipi_free(const struct cpumask *mask) | 
 | { | 
 | 	struct irq_domain *ipidomain; | 
 | 	struct device_node *node; | 
 |  | 
 | 	node = of_irq_find_parent(of_root); | 
 | 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); | 
 |  | 
 | 	/* | 
 | 	 * Some platforms have half DT setup. So if we found irq node but | 
 | 	 * didn't find an ipidomain, try to search for one that is not in the | 
 | 	 * DT. | 
 | 	 */ | 
 | 	if (node && !ipidomain) | 
 | 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); | 
 |  | 
 | 	BUG_ON(!ipidomain); | 
 |  | 
 | 	if (irq_domain_is_ipi_per_cpu(ipidomain)) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_cpu(cpu, mask) { | 
 | 			remove_irq(call_virq + cpu, &irq_call); | 
 | 			remove_irq(sched_virq + cpu, &irq_resched); | 
 | 		} | 
 | 	} | 
 | 	irq_destroy_ipi(call_virq, mask); | 
 | 	irq_destroy_ipi(sched_virq, mask); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int __init mips_smp_ipi_init(void) | 
 | { | 
 | 	if (num_possible_cpus() == 1) | 
 | 		return 0; | 
 |  | 
 | 	mips_smp_ipi_allocate(cpu_possible_mask); | 
 |  | 
 | 	call_desc = irq_to_desc(call_virq); | 
 | 	sched_desc = irq_to_desc(sched_virq); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_initcall(mips_smp_ipi_init); | 
 | #endif | 
 |  | 
 | /* | 
 |  * First C code run on the secondary CPUs after being started up by | 
 |  * the master. | 
 |  */ | 
 | asmlinkage void start_secondary(void) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	cpu_probe(); | 
 | 	per_cpu_trap_init(false); | 
 | 	mips_clockevent_init(); | 
 | 	mp_ops->init_secondary(); | 
 | 	cpu_report(); | 
 | 	maar_init(); | 
 |  | 
 | 	/* | 
 | 	 * XXX parity protection should be folded in here when it's converted | 
 | 	 * to an option instead of something based on .cputype | 
 | 	 */ | 
 |  | 
 | 	calibrate_delay(); | 
 | 	preempt_disable(); | 
 | 	cpu = smp_processor_id(); | 
 | 	cpu_data[cpu].udelay_val = loops_per_jiffy; | 
 |  | 
 | 	set_cpu_sibling_map(cpu); | 
 | 	set_cpu_core_map(cpu); | 
 |  | 
 | 	cpumask_set_cpu(cpu, &cpu_coherent_mask); | 
 | 	notify_cpu_starting(cpu); | 
 |  | 
 | 	/* Notify boot CPU that we're starting & ready to sync counters */ | 
 | 	complete(&cpu_starting); | 
 |  | 
 | 	synchronise_count_slave(cpu); | 
 |  | 
 | 	/* The CPU is running and counters synchronised, now mark it online */ | 
 | 	set_cpu_online(cpu, true); | 
 |  | 
 | 	calculate_cpu_foreign_map(); | 
 |  | 
 | 	/* | 
 | 	 * Notify boot CPU that we're up & online and it can safely return | 
 | 	 * from __cpu_up | 
 | 	 */ | 
 | 	complete(&cpu_running); | 
 |  | 
 | 	/* | 
 | 	 * irq will be enabled in ->smp_finish(), enabling it too early | 
 | 	 * is dangerous. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(!irqs_disabled()); | 
 | 	mp_ops->smp_finish(); | 
 |  | 
 | 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
 | } | 
 |  | 
 | static void stop_this_cpu(void *dummy) | 
 | { | 
 | 	/* | 
 | 	 * Remove this CPU: | 
 | 	 */ | 
 |  | 
 | 	set_cpu_online(smp_processor_id(), false); | 
 | 	calculate_cpu_foreign_map(); | 
 | 	local_irq_disable(); | 
 | 	while (1); | 
 | } | 
 |  | 
 | void smp_send_stop(void) | 
 | { | 
 | 	smp_call_function(stop_this_cpu, NULL, 0); | 
 | } | 
 |  | 
 | void __init smp_cpus_done(unsigned int max_cpus) | 
 | { | 
 | } | 
 |  | 
 | /* called from main before smp_init() */ | 
 | void __init smp_prepare_cpus(unsigned int max_cpus) | 
 | { | 
 | 	init_new_context(current, &init_mm); | 
 | 	current_thread_info()->cpu = 0; | 
 | 	mp_ops->prepare_cpus(max_cpus); | 
 | 	set_cpu_sibling_map(0); | 
 | 	set_cpu_core_map(0); | 
 | 	calculate_cpu_foreign_map(); | 
 | #ifndef CONFIG_HOTPLUG_CPU | 
 | 	init_cpu_present(cpu_possible_mask); | 
 | #endif | 
 | 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); | 
 | } | 
 |  | 
 | /* preload SMP state for boot cpu */ | 
 | void smp_prepare_boot_cpu(void) | 
 | { | 
 | 	if (mp_ops->prepare_boot_cpu) | 
 | 		mp_ops->prepare_boot_cpu(); | 
 | 	set_cpu_possible(0, true); | 
 | 	set_cpu_online(0, true); | 
 | } | 
 |  | 
 | int __cpu_up(unsigned int cpu, struct task_struct *tidle) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = mp_ops->boot_secondary(cpu, tidle); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Wait for CPU to start and be ready to sync counters */ | 
 | 	if (!wait_for_completion_timeout(&cpu_starting, | 
 | 					 msecs_to_jiffies(1000))) { | 
 | 		pr_crit("CPU%u: failed to start\n", cpu); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	synchronise_count_master(cpu); | 
 |  | 
 | 	/* Wait for CPU to finish startup & mark itself online before return */ | 
 | 	wait_for_completion(&cpu_running); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Not really SMP stuff ... */ | 
 | int setup_profiling_timer(unsigned int multiplier) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void flush_tlb_all_ipi(void *info) | 
 | { | 
 | 	local_flush_tlb_all(); | 
 | } | 
 |  | 
 | void flush_tlb_all(void) | 
 | { | 
 | 	if (cpu_has_mmid) { | 
 | 		htw_stop(); | 
 | 		ginvt_full(); | 
 | 		sync_ginv(); | 
 | 		instruction_hazard(); | 
 | 		htw_start(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	on_each_cpu(flush_tlb_all_ipi, NULL, 1); | 
 | } | 
 |  | 
 | static void flush_tlb_mm_ipi(void *mm) | 
 | { | 
 | 	drop_mmu_context((struct mm_struct *)mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Special Variant of smp_call_function for use by TLB functions: | 
 |  * | 
 |  *  o No return value | 
 |  *  o collapses to normal function call on UP kernels | 
 |  *  o collapses to normal function call on systems with a single shared | 
 |  *    primary cache. | 
 |  */ | 
 | static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) | 
 | { | 
 | 	smp_call_function(func, info, 1); | 
 | } | 
 |  | 
 | static inline void smp_on_each_tlb(void (*func) (void *info), void *info) | 
 | { | 
 | 	preempt_disable(); | 
 |  | 
 | 	smp_on_other_tlbs(func, info); | 
 | 	func(info); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * The following tlb flush calls are invoked when old translations are | 
 |  * being torn down, or pte attributes are changing. For single threaded | 
 |  * address spaces, a new context is obtained on the current cpu, and tlb | 
 |  * context on other cpus are invalidated to force a new context allocation | 
 |  * at switch_mm time, should the mm ever be used on other cpus. For | 
 |  * multithreaded address spaces, intercpu interrupts have to be sent. | 
 |  * Another case where intercpu interrupts are required is when the target | 
 |  * mm might be active on another cpu (eg debuggers doing the flushes on | 
 |  * behalf of debugees, kswapd stealing pages from another process etc). | 
 |  * Kanoj 07/00. | 
 |  */ | 
 |  | 
 | void flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	preempt_disable(); | 
 |  | 
 | 	if (cpu_has_mmid) { | 
 | 		/* | 
 | 		 * No need to worry about other CPUs - the ginvt in | 
 | 		 * drop_mmu_context() will be globalized. | 
 | 		 */ | 
 | 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { | 
 | 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm); | 
 | 	} else { | 
 | 		unsigned int cpu; | 
 |  | 
 | 		for_each_online_cpu(cpu) { | 
 | 			if (cpu != smp_processor_id() && cpu_context(cpu, mm)) | 
 | 				set_cpu_context(cpu, mm, 0); | 
 | 		} | 
 | 	} | 
 | 	drop_mmu_context(mm); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | struct flush_tlb_data { | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long addr1; | 
 | 	unsigned long addr2; | 
 | }; | 
 |  | 
 | static void flush_tlb_range_ipi(void *info) | 
 | { | 
 | 	struct flush_tlb_data *fd = info; | 
 |  | 
 | 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); | 
 | } | 
 |  | 
 | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long addr; | 
 | 	u32 old_mmid; | 
 |  | 
 | 	preempt_disable(); | 
 | 	if (cpu_has_mmid) { | 
 | 		htw_stop(); | 
 | 		old_mmid = read_c0_memorymapid(); | 
 | 		write_c0_memorymapid(cpu_asid(0, mm)); | 
 | 		mtc0_tlbw_hazard(); | 
 | 		addr = round_down(start, PAGE_SIZE * 2); | 
 | 		end = round_up(end, PAGE_SIZE * 2); | 
 | 		do { | 
 | 			ginvt_va_mmid(addr); | 
 | 			sync_ginv(); | 
 | 			addr += PAGE_SIZE * 2; | 
 | 		} while (addr < end); | 
 | 		write_c0_memorymapid(old_mmid); | 
 | 		instruction_hazard(); | 
 | 		htw_start(); | 
 | 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { | 
 | 		struct flush_tlb_data fd = { | 
 | 			.vma = vma, | 
 | 			.addr1 = start, | 
 | 			.addr2 = end, | 
 | 		}; | 
 |  | 
 | 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd); | 
 | 		local_flush_tlb_range(vma, start, end); | 
 | 	} else { | 
 | 		unsigned int cpu; | 
 | 		int exec = vma->vm_flags & VM_EXEC; | 
 |  | 
 | 		for_each_online_cpu(cpu) { | 
 | 			/* | 
 | 			 * flush_cache_range() will only fully flush icache if | 
 | 			 * the VMA is executable, otherwise we must invalidate | 
 | 			 * ASID without it appearing to has_valid_asid() as if | 
 | 			 * mm has been completely unused by that CPU. | 
 | 			 */ | 
 | 			if (cpu != smp_processor_id() && cpu_context(cpu, mm)) | 
 | 				set_cpu_context(cpu, mm, !exec); | 
 | 		} | 
 | 		local_flush_tlb_range(vma, start, end); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void flush_tlb_kernel_range_ipi(void *info) | 
 | { | 
 | 	struct flush_tlb_data *fd = info; | 
 |  | 
 | 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2); | 
 | } | 
 |  | 
 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	struct flush_tlb_data fd = { | 
 | 		.addr1 = start, | 
 | 		.addr2 = end, | 
 | 	}; | 
 |  | 
 | 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); | 
 | } | 
 |  | 
 | static void flush_tlb_page_ipi(void *info) | 
 | { | 
 | 	struct flush_tlb_data *fd = info; | 
 |  | 
 | 	local_flush_tlb_page(fd->vma, fd->addr1); | 
 | } | 
 |  | 
 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
 | { | 
 | 	u32 old_mmid; | 
 |  | 
 | 	preempt_disable(); | 
 | 	if (cpu_has_mmid) { | 
 | 		htw_stop(); | 
 | 		old_mmid = read_c0_memorymapid(); | 
 | 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); | 
 | 		mtc0_tlbw_hazard(); | 
 | 		ginvt_va_mmid(page); | 
 | 		sync_ginv(); | 
 | 		write_c0_memorymapid(old_mmid); | 
 | 		instruction_hazard(); | 
 | 		htw_start(); | 
 | 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || | 
 | 		   (current->mm != vma->vm_mm)) { | 
 | 		struct flush_tlb_data fd = { | 
 | 			.vma = vma, | 
 | 			.addr1 = page, | 
 | 		}; | 
 |  | 
 | 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd); | 
 | 		local_flush_tlb_page(vma, page); | 
 | 	} else { | 
 | 		unsigned int cpu; | 
 |  | 
 | 		for_each_online_cpu(cpu) { | 
 | 			/* | 
 | 			 * flush_cache_page() only does partial flushes, so | 
 | 			 * invalidate ASID without it appearing to | 
 | 			 * has_valid_asid() as if mm has been completely unused | 
 | 			 * by that CPU. | 
 | 			 */ | 
 | 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) | 
 | 				set_cpu_context(cpu, vma->vm_mm, 1); | 
 | 		} | 
 | 		local_flush_tlb_page(vma, page); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void flush_tlb_one_ipi(void *info) | 
 | { | 
 | 	unsigned long vaddr = (unsigned long) info; | 
 |  | 
 | 	local_flush_tlb_one(vaddr); | 
 | } | 
 |  | 
 | void flush_tlb_one(unsigned long vaddr) | 
 | { | 
 | 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(flush_tlb_page); | 
 | EXPORT_SYMBOL(flush_tlb_one); | 
 |  | 
 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
 |  | 
 | static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); | 
 | static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd); | 
 |  | 
 | void tick_broadcast(const struct cpumask *mask) | 
 | { | 
 | 	atomic_t *count; | 
 | 	call_single_data_t *csd; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_cpu(cpu, mask) { | 
 | 		count = &per_cpu(tick_broadcast_count, cpu); | 
 | 		csd = &per_cpu(tick_broadcast_csd, cpu); | 
 |  | 
 | 		if (atomic_inc_return(count) == 1) | 
 | 			smp_call_function_single_async(cpu, csd); | 
 | 	} | 
 | } | 
 |  | 
 | static void tick_broadcast_callee(void *info) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	tick_receive_broadcast(); | 
 | 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); | 
 | } | 
 |  | 
 | static int __init tick_broadcast_init(void) | 
 | { | 
 | 	call_single_data_t *csd; | 
 | 	int cpu; | 
 |  | 
 | 	for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | 		csd = &per_cpu(tick_broadcast_csd, cpu); | 
 | 		csd->func = tick_broadcast_callee; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_initcall(tick_broadcast_init); | 
 |  | 
 | #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ |