| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org> | 
 |  * | 
 |  * This is an implementation of a DWARF unwinder. Its main purpose is | 
 |  * for generating stacktrace information. Based on the DWARF 3 | 
 |  * specification from http://www.dwarfstd.org. | 
 |  * | 
 |  * TODO: | 
 |  *	- DWARF64 doesn't work. | 
 |  *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly. | 
 |  */ | 
 |  | 
 | /* #define DEBUG */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/io.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/dwarf.h> | 
 | #include <asm/unwinder.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/unaligned.h> | 
 | #include <asm/stacktrace.h> | 
 |  | 
 | /* Reserve enough memory for two stack frames */ | 
 | #define DWARF_FRAME_MIN_REQ	2 | 
 | /* ... with 4 registers per frame. */ | 
 | #define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4) | 
 |  | 
 | static struct kmem_cache *dwarf_frame_cachep; | 
 | static mempool_t *dwarf_frame_pool; | 
 |  | 
 | static struct kmem_cache *dwarf_reg_cachep; | 
 | static mempool_t *dwarf_reg_pool; | 
 |  | 
 | static struct rb_root cie_root; | 
 | static DEFINE_SPINLOCK(dwarf_cie_lock); | 
 |  | 
 | static struct rb_root fde_root; | 
 | static DEFINE_SPINLOCK(dwarf_fde_lock); | 
 |  | 
 | static struct dwarf_cie *cached_cie; | 
 |  | 
 | static unsigned int dwarf_unwinder_ready; | 
 |  | 
 | /** | 
 |  *	dwarf_frame_alloc_reg - allocate memory for a DWARF register | 
 |  *	@frame: the DWARF frame whose list of registers we insert on | 
 |  *	@reg_num: the register number | 
 |  * | 
 |  *	Allocate space for, and initialise, a dwarf reg from | 
 |  *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of | 
 |  *	dwarf registers for @frame. | 
 |  * | 
 |  *	Return the initialised DWARF reg. | 
 |  */ | 
 | static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame, | 
 | 					       unsigned int reg_num) | 
 | { | 
 | 	struct dwarf_reg *reg; | 
 |  | 
 | 	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC); | 
 | 	if (!reg) { | 
 | 		printk(KERN_WARNING "Unable to allocate a DWARF register\n"); | 
 | 		/* | 
 | 		 * Let's just bomb hard here, we have no way to | 
 | 		 * gracefully recover. | 
 | 		 */ | 
 | 		UNWINDER_BUG(); | 
 | 	} | 
 |  | 
 | 	reg->number = reg_num; | 
 | 	reg->addr = 0; | 
 | 	reg->flags = 0; | 
 |  | 
 | 	list_add(®->link, &frame->reg_list); | 
 |  | 
 | 	return reg; | 
 | } | 
 |  | 
 | static void dwarf_frame_free_regs(struct dwarf_frame *frame) | 
 | { | 
 | 	struct dwarf_reg *reg, *n; | 
 |  | 
 | 	list_for_each_entry_safe(reg, n, &frame->reg_list, link) { | 
 | 		list_del(®->link); | 
 | 		mempool_free(reg, dwarf_reg_pool); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_frame_reg - return a DWARF register | 
 |  *	@frame: the DWARF frame to search in for @reg_num | 
 |  *	@reg_num: the register number to search for | 
 |  * | 
 |  *	Lookup and return the dwarf reg @reg_num for this frame. Return | 
 |  *	NULL if @reg_num is an register invalid number. | 
 |  */ | 
 | static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame, | 
 | 					 unsigned int reg_num) | 
 | { | 
 | 	struct dwarf_reg *reg; | 
 |  | 
 | 	list_for_each_entry(reg, &frame->reg_list, link) { | 
 | 		if (reg->number == reg_num) | 
 | 			return reg; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_read_addr - read dwarf data | 
 |  *	@src: source address of data | 
 |  *	@dst: destination address to store the data to | 
 |  * | 
 |  *	Read 'n' bytes from @src, where 'n' is the size of an address on | 
 |  *	the native machine. We return the number of bytes read, which | 
 |  *	should always be 'n'. We also have to be careful when reading | 
 |  *	from @src and writing to @dst, because they can be arbitrarily | 
 |  *	aligned. Return 'n' - the number of bytes read. | 
 |  */ | 
 | static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst) | 
 | { | 
 | 	u32 val = get_unaligned(src); | 
 | 	put_unaligned(val, dst); | 
 | 	return sizeof(unsigned long *); | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_read_uleb128 - read unsigned LEB128 data | 
 |  *	@addr: the address where the ULEB128 data is stored | 
 |  *	@ret: address to store the result | 
 |  * | 
 |  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken | 
 |  *	from Appendix C of the DWARF 3 spec. For information on the | 
 |  *	encodings refer to section "7.6 - Variable Length Data". Return | 
 |  *	the number of bytes read. | 
 |  */ | 
 | static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret) | 
 | { | 
 | 	unsigned int result; | 
 | 	unsigned char byte; | 
 | 	int shift, count; | 
 |  | 
 | 	result = 0; | 
 | 	shift = 0; | 
 | 	count = 0; | 
 |  | 
 | 	while (1) { | 
 | 		byte = __raw_readb(addr); | 
 | 		addr++; | 
 | 		count++; | 
 |  | 
 | 		result |= (byte & 0x7f) << shift; | 
 | 		shift += 7; | 
 |  | 
 | 		if (!(byte & 0x80)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	*ret = result; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_read_leb128 - read signed LEB128 data | 
 |  *	@addr: the address of the LEB128 encoded data | 
 |  *	@ret: address to store the result | 
 |  * | 
 |  *	Decode signed LEB128 data. The algorithm is taken from Appendix | 
 |  *	C of the DWARF 3 spec. Return the number of bytes read. | 
 |  */ | 
 | static inline unsigned long dwarf_read_leb128(char *addr, int *ret) | 
 | { | 
 | 	unsigned char byte; | 
 | 	int result, shift; | 
 | 	int num_bits; | 
 | 	int count; | 
 |  | 
 | 	result = 0; | 
 | 	shift = 0; | 
 | 	count = 0; | 
 |  | 
 | 	while (1) { | 
 | 		byte = __raw_readb(addr); | 
 | 		addr++; | 
 | 		result |= (byte & 0x7f) << shift; | 
 | 		shift += 7; | 
 | 		count++; | 
 |  | 
 | 		if (!(byte & 0x80)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* The number of bits in a signed integer. */ | 
 | 	num_bits = 8 * sizeof(result); | 
 |  | 
 | 	if ((shift < num_bits) && (byte & 0x40)) | 
 | 		result |= (-1 << shift); | 
 |  | 
 | 	*ret = result; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_read_encoded_value - return the decoded value at @addr | 
 |  *	@addr: the address of the encoded value | 
 |  *	@val: where to write the decoded value | 
 |  *	@encoding: the encoding with which we can decode @addr | 
 |  * | 
 |  *	GCC emits encoded address in the .eh_frame FDE entries. Decode | 
 |  *	the value at @addr using @encoding. The decoded value is written | 
 |  *	to @val and the number of bytes read is returned. | 
 |  */ | 
 | static int dwarf_read_encoded_value(char *addr, unsigned long *val, | 
 | 				    char encoding) | 
 | { | 
 | 	unsigned long decoded_addr = 0; | 
 | 	int count = 0; | 
 |  | 
 | 	switch (encoding & 0x70) { | 
 | 	case DW_EH_PE_absptr: | 
 | 		break; | 
 | 	case DW_EH_PE_pcrel: | 
 | 		decoded_addr = (unsigned long)addr; | 
 | 		break; | 
 | 	default: | 
 | 		pr_debug("encoding=0x%x\n", (encoding & 0x70)); | 
 | 		UNWINDER_BUG(); | 
 | 	} | 
 |  | 
 | 	if ((encoding & 0x07) == 0x00) | 
 | 		encoding |= DW_EH_PE_udata4; | 
 |  | 
 | 	switch (encoding & 0x0f) { | 
 | 	case DW_EH_PE_sdata4: | 
 | 	case DW_EH_PE_udata4: | 
 | 		count += 4; | 
 | 		decoded_addr += get_unaligned((u32 *)addr); | 
 | 		__raw_writel(decoded_addr, val); | 
 | 		break; | 
 | 	default: | 
 | 		pr_debug("encoding=0x%x\n", encoding); | 
 | 		UNWINDER_BUG(); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_entry_len - return the length of an FDE or CIE | 
 |  *	@addr: the address of the entry | 
 |  *	@len: the length of the entry | 
 |  * | 
 |  *	Read the initial_length field of the entry and store the size of | 
 |  *	the entry in @len. We return the number of bytes read. Return a | 
 |  *	count of 0 on error. | 
 |  */ | 
 | static inline int dwarf_entry_len(char *addr, unsigned long *len) | 
 | { | 
 | 	u32 initial_len; | 
 | 	int count; | 
 |  | 
 | 	initial_len = get_unaligned((u32 *)addr); | 
 | 	count = 4; | 
 |  | 
 | 	/* | 
 | 	 * An initial length field value in the range DW_LEN_EXT_LO - | 
 | 	 * DW_LEN_EXT_HI indicates an extension, and should not be | 
 | 	 * interpreted as a length. The only extension that we currently | 
 | 	 * understand is the use of DWARF64 addresses. | 
 | 	 */ | 
 | 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) { | 
 | 		/* | 
 | 		 * The 64-bit length field immediately follows the | 
 | 		 * compulsory 32-bit length field. | 
 | 		 */ | 
 | 		if (initial_len == DW_EXT_DWARF64) { | 
 | 			*len = get_unaligned((u64 *)addr + 4); | 
 | 			count = 12; | 
 | 		} else { | 
 | 			printk(KERN_WARNING "Unknown DWARF extension\n"); | 
 | 			count = 0; | 
 | 		} | 
 | 	} else | 
 | 		*len = initial_len; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_lookup_cie - locate the cie | 
 |  *	@cie_ptr: pointer to help with lookup | 
 |  */ | 
 | static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr) | 
 | { | 
 | 	struct rb_node **rb_node = &cie_root.rb_node; | 
 | 	struct dwarf_cie *cie = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&dwarf_cie_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * We've cached the last CIE we looked up because chances are | 
 | 	 * that the FDE wants this CIE. | 
 | 	 */ | 
 | 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) { | 
 | 		cie = cached_cie; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (*rb_node) { | 
 | 		struct dwarf_cie *cie_tmp; | 
 |  | 
 | 		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node); | 
 | 		BUG_ON(!cie_tmp); | 
 |  | 
 | 		if (cie_ptr == cie_tmp->cie_pointer) { | 
 | 			cie = cie_tmp; | 
 | 			cached_cie = cie_tmp; | 
 | 			goto out; | 
 | 		} else { | 
 | 			if (cie_ptr < cie_tmp->cie_pointer) | 
 | 				rb_node = &(*rb_node)->rb_left; | 
 | 			else | 
 | 				rb_node = &(*rb_node)->rb_right; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&dwarf_cie_lock, flags); | 
 | 	return cie; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_lookup_fde - locate the FDE that covers pc | 
 |  *	@pc: the program counter | 
 |  */ | 
 | struct dwarf_fde *dwarf_lookup_fde(unsigned long pc) | 
 | { | 
 | 	struct rb_node **rb_node = &fde_root.rb_node; | 
 | 	struct dwarf_fde *fde = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&dwarf_fde_lock, flags); | 
 |  | 
 | 	while (*rb_node) { | 
 | 		struct dwarf_fde *fde_tmp; | 
 | 		unsigned long tmp_start, tmp_end; | 
 |  | 
 | 		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node); | 
 | 		BUG_ON(!fde_tmp); | 
 |  | 
 | 		tmp_start = fde_tmp->initial_location; | 
 | 		tmp_end = fde_tmp->initial_location + fde_tmp->address_range; | 
 |  | 
 | 		if (pc < tmp_start) { | 
 | 			rb_node = &(*rb_node)->rb_left; | 
 | 		} else { | 
 | 			if (pc < tmp_end) { | 
 | 				fde = fde_tmp; | 
 | 				goto out; | 
 | 			} else | 
 | 				rb_node = &(*rb_node)->rb_right; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&dwarf_fde_lock, flags); | 
 |  | 
 | 	return fde; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA | 
 |  *	@insn_start: address of the first instruction | 
 |  *	@insn_end: address of the last instruction | 
 |  *	@cie: the CIE for this function | 
 |  *	@fde: the FDE for this function | 
 |  *	@frame: the instructions calculate the CFA for this frame | 
 |  *	@pc: the program counter of the address we're interested in | 
 |  * | 
 |  *	Execute the Call Frame instruction sequence starting at | 
 |  *	@insn_start and ending at @insn_end. The instructions describe | 
 |  *	how to calculate the Canonical Frame Address of a stackframe. | 
 |  *	Store the results in @frame. | 
 |  */ | 
 | static int dwarf_cfa_execute_insns(unsigned char *insn_start, | 
 | 				   unsigned char *insn_end, | 
 | 				   struct dwarf_cie *cie, | 
 | 				   struct dwarf_fde *fde, | 
 | 				   struct dwarf_frame *frame, | 
 | 				   unsigned long pc) | 
 | { | 
 | 	unsigned char insn; | 
 | 	unsigned char *current_insn; | 
 | 	unsigned int count, delta, reg, expr_len, offset; | 
 | 	struct dwarf_reg *regp; | 
 |  | 
 | 	current_insn = insn_start; | 
 |  | 
 | 	while (current_insn < insn_end && frame->pc <= pc) { | 
 | 		insn = __raw_readb(current_insn++); | 
 |  | 
 | 		/* | 
 | 		 * Firstly, handle the opcodes that embed their operands | 
 | 		 * in the instructions. | 
 | 		 */ | 
 | 		switch (DW_CFA_opcode(insn)) { | 
 | 		case DW_CFA_advance_loc: | 
 | 			delta = DW_CFA_operand(insn); | 
 | 			delta *= cie->code_alignment_factor; | 
 | 			frame->pc += delta; | 
 | 			continue; | 
 | 			/* NOTREACHED */ | 
 | 		case DW_CFA_offset: | 
 | 			reg = DW_CFA_operand(insn); | 
 | 			count = dwarf_read_uleb128(current_insn, &offset); | 
 | 			current_insn += count; | 
 | 			offset *= cie->data_alignment_factor; | 
 | 			regp = dwarf_frame_alloc_reg(frame, reg); | 
 | 			regp->addr = offset; | 
 | 			regp->flags |= DWARF_REG_OFFSET; | 
 | 			continue; | 
 | 			/* NOTREACHED */ | 
 | 		case DW_CFA_restore: | 
 | 			reg = DW_CFA_operand(insn); | 
 | 			continue; | 
 | 			/* NOTREACHED */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Secondly, handle the opcodes that don't embed their | 
 | 		 * operands in the instruction. | 
 | 		 */ | 
 | 		switch (insn) { | 
 | 		case DW_CFA_nop: | 
 | 			continue; | 
 | 		case DW_CFA_advance_loc1: | 
 | 			delta = *current_insn++; | 
 | 			frame->pc += delta * cie->code_alignment_factor; | 
 | 			break; | 
 | 		case DW_CFA_advance_loc2: | 
 | 			delta = get_unaligned((u16 *)current_insn); | 
 | 			current_insn += 2; | 
 | 			frame->pc += delta * cie->code_alignment_factor; | 
 | 			break; | 
 | 		case DW_CFA_advance_loc4: | 
 | 			delta = get_unaligned((u32 *)current_insn); | 
 | 			current_insn += 4; | 
 | 			frame->pc += delta * cie->code_alignment_factor; | 
 | 			break; | 
 | 		case DW_CFA_offset_extended: | 
 | 			count = dwarf_read_uleb128(current_insn, ®); | 
 | 			current_insn += count; | 
 | 			count = dwarf_read_uleb128(current_insn, &offset); | 
 | 			current_insn += count; | 
 | 			offset *= cie->data_alignment_factor; | 
 | 			break; | 
 | 		case DW_CFA_restore_extended: | 
 | 			count = dwarf_read_uleb128(current_insn, ®); | 
 | 			current_insn += count; | 
 | 			break; | 
 | 		case DW_CFA_undefined: | 
 | 			count = dwarf_read_uleb128(current_insn, ®); | 
 | 			current_insn += count; | 
 | 			regp = dwarf_frame_alloc_reg(frame, reg); | 
 | 			regp->flags |= DWARF_UNDEFINED; | 
 | 			break; | 
 | 		case DW_CFA_def_cfa: | 
 | 			count = dwarf_read_uleb128(current_insn, | 
 | 						   &frame->cfa_register); | 
 | 			current_insn += count; | 
 | 			count = dwarf_read_uleb128(current_insn, | 
 | 						   &frame->cfa_offset); | 
 | 			current_insn += count; | 
 |  | 
 | 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET; | 
 | 			break; | 
 | 		case DW_CFA_def_cfa_register: | 
 | 			count = dwarf_read_uleb128(current_insn, | 
 | 						   &frame->cfa_register); | 
 | 			current_insn += count; | 
 | 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET; | 
 | 			break; | 
 | 		case DW_CFA_def_cfa_offset: | 
 | 			count = dwarf_read_uleb128(current_insn, &offset); | 
 | 			current_insn += count; | 
 | 			frame->cfa_offset = offset; | 
 | 			break; | 
 | 		case DW_CFA_def_cfa_expression: | 
 | 			count = dwarf_read_uleb128(current_insn, &expr_len); | 
 | 			current_insn += count; | 
 |  | 
 | 			frame->cfa_expr = current_insn; | 
 | 			frame->cfa_expr_len = expr_len; | 
 | 			current_insn += expr_len; | 
 |  | 
 | 			frame->flags |= DWARF_FRAME_CFA_REG_EXP; | 
 | 			break; | 
 | 		case DW_CFA_offset_extended_sf: | 
 | 			count = dwarf_read_uleb128(current_insn, ®); | 
 | 			current_insn += count; | 
 | 			count = dwarf_read_leb128(current_insn, &offset); | 
 | 			current_insn += count; | 
 | 			offset *= cie->data_alignment_factor; | 
 | 			regp = dwarf_frame_alloc_reg(frame, reg); | 
 | 			regp->flags |= DWARF_REG_OFFSET; | 
 | 			regp->addr = offset; | 
 | 			break; | 
 | 		case DW_CFA_val_offset: | 
 | 			count = dwarf_read_uleb128(current_insn, ®); | 
 | 			current_insn += count; | 
 | 			count = dwarf_read_leb128(current_insn, &offset); | 
 | 			offset *= cie->data_alignment_factor; | 
 | 			regp = dwarf_frame_alloc_reg(frame, reg); | 
 | 			regp->flags |= DWARF_VAL_OFFSET; | 
 | 			regp->addr = offset; | 
 | 			break; | 
 | 		case DW_CFA_GNU_args_size: | 
 | 			count = dwarf_read_uleb128(current_insn, &offset); | 
 | 			current_insn += count; | 
 | 			break; | 
 | 		case DW_CFA_GNU_negative_offset_extended: | 
 | 			count = dwarf_read_uleb128(current_insn, ®); | 
 | 			current_insn += count; | 
 | 			count = dwarf_read_uleb128(current_insn, &offset); | 
 | 			offset *= cie->data_alignment_factor; | 
 |  | 
 | 			regp = dwarf_frame_alloc_reg(frame, reg); | 
 | 			regp->flags |= DWARF_REG_OFFSET; | 
 | 			regp->addr = -offset; | 
 | 			break; | 
 | 		default: | 
 | 			pr_debug("unhandled DWARF instruction 0x%x\n", insn); | 
 | 			UNWINDER_BUG(); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_free_frame - free the memory allocated for @frame | 
 |  *	@frame: the frame to free | 
 |  */ | 
 | void dwarf_free_frame(struct dwarf_frame *frame) | 
 | { | 
 | 	dwarf_frame_free_regs(frame); | 
 | 	mempool_free(frame, dwarf_frame_pool); | 
 | } | 
 |  | 
 | extern void ret_from_irq(void); | 
 |  | 
 | /** | 
 |  *	dwarf_unwind_stack - unwind the stack | 
 |  * | 
 |  *	@pc: address of the function to unwind | 
 |  *	@prev: struct dwarf_frame of the previous stackframe on the callstack | 
 |  * | 
 |  *	Return a struct dwarf_frame representing the most recent frame | 
 |  *	on the callstack. Each of the lower (older) stack frames are | 
 |  *	linked via the "prev" member. | 
 |  */ | 
 | struct dwarf_frame *dwarf_unwind_stack(unsigned long pc, | 
 | 				       struct dwarf_frame *prev) | 
 | { | 
 | 	struct dwarf_frame *frame; | 
 | 	struct dwarf_cie *cie; | 
 | 	struct dwarf_fde *fde; | 
 | 	struct dwarf_reg *reg; | 
 | 	unsigned long addr; | 
 |  | 
 | 	/* | 
 | 	 * If we've been called in to before initialization has | 
 | 	 * completed, bail out immediately. | 
 | 	 */ | 
 | 	if (!dwarf_unwinder_ready) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * If we're starting at the top of the stack we need get the | 
 | 	 * contents of a physical register to get the CFA in order to | 
 | 	 * begin the virtual unwinding of the stack. | 
 | 	 * | 
 | 	 * NOTE: the return address is guaranteed to be setup by the | 
 | 	 * time this function makes its first function call. | 
 | 	 */ | 
 | 	if (!pc || !prev) | 
 | 		pc = _THIS_IP_; | 
 |  | 
 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
 | 	/* | 
 | 	 * If our stack has been patched by the function graph tracer | 
 | 	 * then we might see the address of return_to_handler() where we | 
 | 	 * expected to find the real return address. | 
 | 	 */ | 
 | 	if (pc == (unsigned long)&return_to_handler) { | 
 | 		struct ftrace_ret_stack *ret_stack; | 
 |  | 
 | 		ret_stack = ftrace_graph_get_ret_stack(current, 0); | 
 | 		if (ret_stack) | 
 | 			pc = ret_stack->ret; | 
 | 		/* | 
 | 		 * We currently have no way of tracking how many | 
 | 		 * return_to_handler()'s we've seen. If there is more | 
 | 		 * than one patched return address on our stack, | 
 | 		 * complain loudly. | 
 | 		 */ | 
 | 		WARN_ON(ftrace_graph_get_ret_stack(current, 1)); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC); | 
 | 	if (!frame) { | 
 | 		printk(KERN_ERR "Unable to allocate a dwarf frame\n"); | 
 | 		UNWINDER_BUG(); | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&frame->reg_list); | 
 | 	frame->flags = 0; | 
 | 	frame->prev = prev; | 
 | 	frame->return_addr = 0; | 
 |  | 
 | 	fde = dwarf_lookup_fde(pc); | 
 | 	if (!fde) { | 
 | 		/* | 
 | 		 * This is our normal exit path. There are two reasons | 
 | 		 * why we might exit here, | 
 | 		 * | 
 | 		 *	a) pc has no asscociated DWARF frame info and so | 
 | 		 *	we don't know how to unwind this frame. This is | 
 | 		 *	usually the case when we're trying to unwind a | 
 | 		 *	frame that was called from some assembly code | 
 | 		 *	that has no DWARF info, e.g. syscalls. | 
 | 		 * | 
 | 		 *	b) the DEBUG info for pc is bogus. There's | 
 | 		 *	really no way to distinguish this case from the | 
 | 		 *	case above, which sucks because we could print a | 
 | 		 *	warning here. | 
 | 		 */ | 
 | 		goto bail; | 
 | 	} | 
 |  | 
 | 	cie = dwarf_lookup_cie(fde->cie_pointer); | 
 |  | 
 | 	frame->pc = fde->initial_location; | 
 |  | 
 | 	/* CIE initial instructions */ | 
 | 	dwarf_cfa_execute_insns(cie->initial_instructions, | 
 | 				cie->instructions_end, cie, fde, | 
 | 				frame, pc); | 
 |  | 
 | 	/* FDE instructions */ | 
 | 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie, | 
 | 				fde, frame, pc); | 
 |  | 
 | 	/* Calculate the CFA */ | 
 | 	switch (frame->flags) { | 
 | 	case DWARF_FRAME_CFA_REG_OFFSET: | 
 | 		if (prev) { | 
 | 			reg = dwarf_frame_reg(prev, frame->cfa_register); | 
 | 			UNWINDER_BUG_ON(!reg); | 
 | 			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET); | 
 |  | 
 | 			addr = prev->cfa + reg->addr; | 
 | 			frame->cfa = __raw_readl(addr); | 
 |  | 
 | 		} else { | 
 | 			/* | 
 | 			 * Again, we're starting from the top of the | 
 | 			 * stack. We need to physically read | 
 | 			 * the contents of a register in order to get | 
 | 			 * the Canonical Frame Address for this | 
 | 			 * function. | 
 | 			 */ | 
 | 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register); | 
 | 		} | 
 |  | 
 | 		frame->cfa += frame->cfa_offset; | 
 | 		break; | 
 | 	default: | 
 | 		UNWINDER_BUG(); | 
 | 	} | 
 |  | 
 | 	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG); | 
 |  | 
 | 	/* | 
 | 	 * If we haven't seen the return address register or the return | 
 | 	 * address column is undefined then we must assume that this is | 
 | 	 * the end of the callstack. | 
 | 	 */ | 
 | 	if (!reg || reg->flags == DWARF_UNDEFINED) | 
 | 		goto bail; | 
 |  | 
 | 	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET); | 
 |  | 
 | 	addr = frame->cfa + reg->addr; | 
 | 	frame->return_addr = __raw_readl(addr); | 
 |  | 
 | 	/* | 
 | 	 * Ah, the joys of unwinding through interrupts. | 
 | 	 * | 
 | 	 * Interrupts are tricky - the DWARF info needs to be _really_ | 
 | 	 * accurate and unfortunately I'm seeing a lot of bogus DWARF | 
 | 	 * info. For example, I've seen interrupts occur in epilogues | 
 | 	 * just after the frame pointer (r14) had been restored. The | 
 | 	 * problem was that the DWARF info claimed that the CFA could be | 
 | 	 * reached by using the value of the frame pointer before it was | 
 | 	 * restored. | 
 | 	 * | 
 | 	 * So until the compiler can be trusted to produce reliable | 
 | 	 * DWARF info when it really matters, let's stop unwinding once | 
 | 	 * we've calculated the function that was interrupted. | 
 | 	 */ | 
 | 	if (prev && prev->pc == (unsigned long)ret_from_irq) | 
 | 		frame->return_addr = 0; | 
 |  | 
 | 	return frame; | 
 |  | 
 | bail: | 
 | 	dwarf_free_frame(frame); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int dwarf_parse_cie(void *entry, void *p, unsigned long len, | 
 | 			   unsigned char *end, struct module *mod) | 
 | { | 
 | 	struct rb_node **rb_node = &cie_root.rb_node; | 
 | 	struct rb_node *parent = *rb_node; | 
 | 	struct dwarf_cie *cie; | 
 | 	unsigned long flags; | 
 | 	int count; | 
 |  | 
 | 	cie = kzalloc(sizeof(*cie), GFP_KERNEL); | 
 | 	if (!cie) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cie->length = len; | 
 |  | 
 | 	/* | 
 | 	 * Record the offset into the .eh_frame section | 
 | 	 * for this CIE. It allows this CIE to be | 
 | 	 * quickly and easily looked up from the | 
 | 	 * corresponding FDE. | 
 | 	 */ | 
 | 	cie->cie_pointer = (unsigned long)entry; | 
 |  | 
 | 	cie->version = *(char *)p++; | 
 | 	UNWINDER_BUG_ON(cie->version != 1); | 
 |  | 
 | 	cie->augmentation = p; | 
 | 	p += strlen(cie->augmentation) + 1; | 
 |  | 
 | 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor); | 
 | 	p += count; | 
 |  | 
 | 	count = dwarf_read_leb128(p, &cie->data_alignment_factor); | 
 | 	p += count; | 
 |  | 
 | 	/* | 
 | 	 * Which column in the rule table contains the | 
 | 	 * return address? | 
 | 	 */ | 
 | 	if (cie->version == 1) { | 
 | 		cie->return_address_reg = __raw_readb(p); | 
 | 		p++; | 
 | 	} else { | 
 | 		count = dwarf_read_uleb128(p, &cie->return_address_reg); | 
 | 		p += count; | 
 | 	} | 
 |  | 
 | 	if (cie->augmentation[0] == 'z') { | 
 | 		unsigned int length, count; | 
 | 		cie->flags |= DWARF_CIE_Z_AUGMENTATION; | 
 |  | 
 | 		count = dwarf_read_uleb128(p, &length); | 
 | 		p += count; | 
 |  | 
 | 		UNWINDER_BUG_ON((unsigned char *)p > end); | 
 |  | 
 | 		cie->initial_instructions = p + length; | 
 | 		cie->augmentation++; | 
 | 	} | 
 |  | 
 | 	while (*cie->augmentation) { | 
 | 		/* | 
 | 		 * "L" indicates a byte showing how the | 
 | 		 * LSDA pointer is encoded. Skip it. | 
 | 		 */ | 
 | 		if (*cie->augmentation == 'L') { | 
 | 			p++; | 
 | 			cie->augmentation++; | 
 | 		} else if (*cie->augmentation == 'R') { | 
 | 			/* | 
 | 			 * "R" indicates a byte showing | 
 | 			 * how FDE addresses are | 
 | 			 * encoded. | 
 | 			 */ | 
 | 			cie->encoding = *(char *)p++; | 
 | 			cie->augmentation++; | 
 | 		} else if (*cie->augmentation == 'P') { | 
 | 			/* | 
 | 			 * "R" indicates a personality | 
 | 			 * routine in the CIE | 
 | 			 * augmentation. | 
 | 			 */ | 
 | 			UNWINDER_BUG(); | 
 | 		} else if (*cie->augmentation == 'S') { | 
 | 			UNWINDER_BUG(); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Unknown augmentation. Assume | 
 | 			 * 'z' augmentation. | 
 | 			 */ | 
 | 			p = cie->initial_instructions; | 
 | 			UNWINDER_BUG_ON(!p); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cie->initial_instructions = p; | 
 | 	cie->instructions_end = end; | 
 |  | 
 | 	/* Add to list */ | 
 | 	spin_lock_irqsave(&dwarf_cie_lock, flags); | 
 |  | 
 | 	while (*rb_node) { | 
 | 		struct dwarf_cie *cie_tmp; | 
 |  | 
 | 		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node); | 
 |  | 
 | 		parent = *rb_node; | 
 |  | 
 | 		if (cie->cie_pointer < cie_tmp->cie_pointer) | 
 | 			rb_node = &parent->rb_left; | 
 | 		else if (cie->cie_pointer >= cie_tmp->cie_pointer) | 
 | 			rb_node = &parent->rb_right; | 
 | 		else | 
 | 			WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	rb_link_node(&cie->node, parent, rb_node); | 
 | 	rb_insert_color(&cie->node, &cie_root); | 
 |  | 
 | #ifdef CONFIG_MODULES | 
 | 	if (mod != NULL) | 
 | 		list_add_tail(&cie->link, &mod->arch.cie_list); | 
 | #endif | 
 |  | 
 | 	spin_unlock_irqrestore(&dwarf_cie_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dwarf_parse_fde(void *entry, u32 entry_type, | 
 | 			   void *start, unsigned long len, | 
 | 			   unsigned char *end, struct module *mod) | 
 | { | 
 | 	struct rb_node **rb_node = &fde_root.rb_node; | 
 | 	struct rb_node *parent = *rb_node; | 
 | 	struct dwarf_fde *fde; | 
 | 	struct dwarf_cie *cie; | 
 | 	unsigned long flags; | 
 | 	int count; | 
 | 	void *p = start; | 
 |  | 
 | 	fde = kzalloc(sizeof(*fde), GFP_KERNEL); | 
 | 	if (!fde) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fde->length = len; | 
 |  | 
 | 	/* | 
 | 	 * In a .eh_frame section the CIE pointer is the | 
 | 	 * delta between the address within the FDE | 
 | 	 */ | 
 | 	fde->cie_pointer = (unsigned long)(p - entry_type - 4); | 
 |  | 
 | 	cie = dwarf_lookup_cie(fde->cie_pointer); | 
 | 	fde->cie = cie; | 
 |  | 
 | 	if (cie->encoding) | 
 | 		count = dwarf_read_encoded_value(p, &fde->initial_location, | 
 | 						 cie->encoding); | 
 | 	else | 
 | 		count = dwarf_read_addr(p, &fde->initial_location); | 
 |  | 
 | 	p += count; | 
 |  | 
 | 	if (cie->encoding) | 
 | 		count = dwarf_read_encoded_value(p, &fde->address_range, | 
 | 						 cie->encoding & 0x0f); | 
 | 	else | 
 | 		count = dwarf_read_addr(p, &fde->address_range); | 
 |  | 
 | 	p += count; | 
 |  | 
 | 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) { | 
 | 		unsigned int length; | 
 | 		count = dwarf_read_uleb128(p, &length); | 
 | 		p += count + length; | 
 | 	} | 
 |  | 
 | 	/* Call frame instructions. */ | 
 | 	fde->instructions = p; | 
 | 	fde->end = end; | 
 |  | 
 | 	/* Add to list. */ | 
 | 	spin_lock_irqsave(&dwarf_fde_lock, flags); | 
 |  | 
 | 	while (*rb_node) { | 
 | 		struct dwarf_fde *fde_tmp; | 
 | 		unsigned long tmp_start, tmp_end; | 
 | 		unsigned long start, end; | 
 |  | 
 | 		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node); | 
 |  | 
 | 		start = fde->initial_location; | 
 | 		end = fde->initial_location + fde->address_range; | 
 |  | 
 | 		tmp_start = fde_tmp->initial_location; | 
 | 		tmp_end = fde_tmp->initial_location + fde_tmp->address_range; | 
 |  | 
 | 		parent = *rb_node; | 
 |  | 
 | 		if (start < tmp_start) | 
 | 			rb_node = &parent->rb_left; | 
 | 		else if (start >= tmp_end) | 
 | 			rb_node = &parent->rb_right; | 
 | 		else | 
 | 			WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	rb_link_node(&fde->node, parent, rb_node); | 
 | 	rb_insert_color(&fde->node, &fde_root); | 
 |  | 
 | #ifdef CONFIG_MODULES | 
 | 	if (mod != NULL) | 
 | 		list_add_tail(&fde->link, &mod->arch.fde_list); | 
 | #endif | 
 |  | 
 | 	spin_unlock_irqrestore(&dwarf_fde_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dwarf_unwinder_dump(struct task_struct *task, | 
 | 				struct pt_regs *regs, | 
 | 				unsigned long *sp, | 
 | 				const struct stacktrace_ops *ops, | 
 | 				void *data) | 
 | { | 
 | 	struct dwarf_frame *frame, *_frame; | 
 | 	unsigned long return_addr; | 
 |  | 
 | 	_frame = NULL; | 
 | 	return_addr = 0; | 
 |  | 
 | 	while (1) { | 
 | 		frame = dwarf_unwind_stack(return_addr, _frame); | 
 |  | 
 | 		if (_frame) | 
 | 			dwarf_free_frame(_frame); | 
 |  | 
 | 		_frame = frame; | 
 |  | 
 | 		if (!frame || !frame->return_addr) | 
 | 			break; | 
 |  | 
 | 		return_addr = frame->return_addr; | 
 | 		ops->address(data, return_addr, 1); | 
 | 	} | 
 |  | 
 | 	if (frame) | 
 | 		dwarf_free_frame(frame); | 
 | } | 
 |  | 
 | static struct unwinder dwarf_unwinder = { | 
 | 	.name = "dwarf-unwinder", | 
 | 	.dump = dwarf_unwinder_dump, | 
 | 	.rating = 150, | 
 | }; | 
 |  | 
 | static void __init dwarf_unwinder_cleanup(void) | 
 | { | 
 | 	struct dwarf_fde *fde, *next_fde; | 
 | 	struct dwarf_cie *cie, *next_cie; | 
 |  | 
 | 	/* | 
 | 	 * Deallocate all the memory allocated for the DWARF unwinder. | 
 | 	 * Traverse all the FDE/CIE lists and remove and free all the | 
 | 	 * memory associated with those data structures. | 
 | 	 */ | 
 | 	rbtree_postorder_for_each_entry_safe(fde, next_fde, &fde_root, node) | 
 | 		kfree(fde); | 
 |  | 
 | 	rbtree_postorder_for_each_entry_safe(cie, next_cie, &cie_root, node) | 
 | 		kfree(cie); | 
 |  | 
 | 	mempool_destroy(dwarf_reg_pool); | 
 | 	mempool_destroy(dwarf_frame_pool); | 
 | 	kmem_cache_destroy(dwarf_reg_cachep); | 
 | 	kmem_cache_destroy(dwarf_frame_cachep); | 
 | } | 
 |  | 
 | /** | 
 |  *	dwarf_parse_section - parse DWARF section | 
 |  *	@eh_frame_start: start address of the .eh_frame section | 
 |  *	@eh_frame_end: end address of the .eh_frame section | 
 |  *	@mod: the kernel module containing the .eh_frame section | 
 |  * | 
 |  *	Parse the information in a .eh_frame section. | 
 |  */ | 
 | static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end, | 
 | 			       struct module *mod) | 
 | { | 
 | 	u32 entry_type; | 
 | 	void *p, *entry; | 
 | 	int count, err = 0; | 
 | 	unsigned long len = 0; | 
 | 	unsigned int c_entries, f_entries; | 
 | 	unsigned char *end; | 
 |  | 
 | 	c_entries = 0; | 
 | 	f_entries = 0; | 
 | 	entry = eh_frame_start; | 
 |  | 
 | 	while ((char *)entry < eh_frame_end) { | 
 | 		p = entry; | 
 |  | 
 | 		count = dwarf_entry_len(p, &len); | 
 | 		if (count == 0) { | 
 | 			/* | 
 | 			 * We read a bogus length field value. There is | 
 | 			 * nothing we can do here apart from disabling | 
 | 			 * the DWARF unwinder. We can't even skip this | 
 | 			 * entry and move to the next one because 'len' | 
 | 			 * tells us where our next entry is. | 
 | 			 */ | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} else | 
 | 			p += count; | 
 |  | 
 | 		/* initial length does not include itself */ | 
 | 		end = p + len; | 
 |  | 
 | 		entry_type = get_unaligned((u32 *)p); | 
 | 		p += 4; | 
 |  | 
 | 		if (entry_type == DW_EH_FRAME_CIE) { | 
 | 			err = dwarf_parse_cie(entry, p, len, end, mod); | 
 | 			if (err < 0) | 
 | 				goto out; | 
 | 			else | 
 | 				c_entries++; | 
 | 		} else { | 
 | 			err = dwarf_parse_fde(entry, entry_type, p, len, | 
 | 					      end, mod); | 
 | 			if (err < 0) | 
 | 				goto out; | 
 | 			else | 
 | 				f_entries++; | 
 | 		} | 
 |  | 
 | 		entry = (char *)entry + len + 4; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n", | 
 | 	       c_entries, f_entries); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MODULES | 
 | int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, | 
 | 			  struct module *me) | 
 | { | 
 | 	unsigned int i, err; | 
 | 	unsigned long start, end; | 
 | 	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; | 
 |  | 
 | 	start = end = 0; | 
 |  | 
 | 	for (i = 1; i < hdr->e_shnum; i++) { | 
 | 		/* Alloc bit cleared means "ignore it." */ | 
 | 		if ((sechdrs[i].sh_flags & SHF_ALLOC) | 
 | 		    && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) { | 
 | 			start = sechdrs[i].sh_addr; | 
 | 			end = start + sechdrs[i].sh_size; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Did we find the .eh_frame section? */ | 
 | 	if (i != hdr->e_shnum) { | 
 | 		INIT_LIST_HEAD(&me->arch.cie_list); | 
 | 		INIT_LIST_HEAD(&me->arch.fde_list); | 
 | 		err = dwarf_parse_section((char *)start, (char *)end, me); | 
 | 		if (err) { | 
 | 			printk(KERN_WARNING "%s: failed to parse DWARF info\n", | 
 | 			       me->name); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	module_dwarf_cleanup - remove FDE/CIEs associated with @mod | 
 |  *	@mod: the module that is being unloaded | 
 |  * | 
 |  *	Remove any FDEs and CIEs from the global lists that came from | 
 |  *	@mod's .eh_frame section because @mod is being unloaded. | 
 |  */ | 
 | void module_dwarf_cleanup(struct module *mod) | 
 | { | 
 | 	struct dwarf_fde *fde, *ftmp; | 
 | 	struct dwarf_cie *cie, *ctmp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&dwarf_cie_lock, flags); | 
 |  | 
 | 	list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) { | 
 | 		list_del(&cie->link); | 
 | 		rb_erase(&cie->node, &cie_root); | 
 | 		kfree(cie); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&dwarf_cie_lock, flags); | 
 |  | 
 | 	spin_lock_irqsave(&dwarf_fde_lock, flags); | 
 |  | 
 | 	list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) { | 
 | 		list_del(&fde->link); | 
 | 		rb_erase(&fde->node, &fde_root); | 
 | 		kfree(fde); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&dwarf_fde_lock, flags); | 
 | } | 
 | #endif /* CONFIG_MODULES */ | 
 |  | 
 | /** | 
 |  *	dwarf_unwinder_init - initialise the dwarf unwinder | 
 |  * | 
 |  *	Build the data structures describing the .dwarf_frame section to | 
 |  *	make it easier to lookup CIE and FDE entries. Because the | 
 |  *	.eh_frame section is packed as tightly as possible it is not | 
 |  *	easy to lookup the FDE for a given PC, so we build a list of FDE | 
 |  *	and CIE entries that make it easier. | 
 |  */ | 
 | static int __init dwarf_unwinder_init(void) | 
 | { | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	dwarf_frame_cachep = kmem_cache_create("dwarf_frames", | 
 | 			sizeof(struct dwarf_frame), 0, | 
 | 			SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); | 
 |  | 
 | 	dwarf_reg_cachep = kmem_cache_create("dwarf_regs", | 
 | 			sizeof(struct dwarf_reg), 0, | 
 | 			SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); | 
 |  | 
 | 	dwarf_frame_pool = mempool_create_slab_pool(DWARF_FRAME_MIN_REQ, | 
 | 						    dwarf_frame_cachep); | 
 | 	if (!dwarf_frame_pool) | 
 | 		goto out; | 
 |  | 
 | 	dwarf_reg_pool = mempool_create_slab_pool(DWARF_REG_MIN_REQ, | 
 | 						  dwarf_reg_cachep); | 
 | 	if (!dwarf_reg_pool) | 
 | 		goto out; | 
 |  | 
 | 	err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = unwinder_register(&dwarf_unwinder); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	dwarf_unwinder_ready = 1; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err); | 
 | 	dwarf_unwinder_cleanup(); | 
 | 	return err; | 
 | } | 
 | early_initcall(dwarf_unwinder_init); |