| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /*  KVM paravirtual clock driver. A clocksource implementation | 
 |     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. | 
 | */ | 
 |  | 
 | #include <linux/clocksource.h> | 
 | #include <linux/kvm_para.h> | 
 | #include <asm/pvclock.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/apic.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/cpuhotplug.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/set_memory.h> | 
 |  | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/mem_encrypt.h> | 
 | #include <asm/x86_init.h> | 
 | #include <asm/kvmclock.h> | 
 |  | 
 | static int kvmclock __initdata = 1; | 
 | static int kvmclock_vsyscall __initdata = 1; | 
 | static int msr_kvm_system_time __ro_after_init; | 
 | static int msr_kvm_wall_clock __ro_after_init; | 
 | static u64 kvm_sched_clock_offset __ro_after_init; | 
 |  | 
 | static int __init parse_no_kvmclock(char *arg) | 
 | { | 
 | 	kvmclock = 0; | 
 | 	return 0; | 
 | } | 
 | early_param("no-kvmclock", parse_no_kvmclock); | 
 |  | 
 | static int __init parse_no_kvmclock_vsyscall(char *arg) | 
 | { | 
 | 	kvmclock_vsyscall = 0; | 
 | 	return 0; | 
 | } | 
 | early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall); | 
 |  | 
 | /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */ | 
 | #define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS) | 
 | #define HVC_BOOT_ARRAY_SIZE \ | 
 | 	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info)) | 
 |  | 
 | static struct pvclock_vsyscall_time_info | 
 | 			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE); | 
 | static struct pvclock_wall_clock wall_clock __bss_decrypted; | 
 | static struct pvclock_vsyscall_time_info *hvclock_mem; | 
 | DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu); | 
 | EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu); | 
 |  | 
 | /* | 
 |  * The wallclock is the time of day when we booted. Since then, some time may | 
 |  * have elapsed since the hypervisor wrote the data. So we try to account for | 
 |  * that with system time | 
 |  */ | 
 | static void kvm_get_wallclock(struct timespec64 *now) | 
 | { | 
 | 	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock)); | 
 | 	preempt_disable(); | 
 | 	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static int kvm_set_wallclock(const struct timespec64 *now) | 
 | { | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static u64 kvm_clock_read(void) | 
 | { | 
 | 	u64 ret; | 
 |  | 
 | 	preempt_disable_notrace(); | 
 | 	ret = pvclock_clocksource_read(this_cpu_pvti()); | 
 | 	preempt_enable_notrace(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 kvm_clock_get_cycles(struct clocksource *cs) | 
 | { | 
 | 	return kvm_clock_read(); | 
 | } | 
 |  | 
 | static u64 kvm_sched_clock_read(void) | 
 | { | 
 | 	return kvm_clock_read() - kvm_sched_clock_offset; | 
 | } | 
 |  | 
 | static inline void kvm_sched_clock_init(bool stable) | 
 | { | 
 | 	if (!stable) | 
 | 		clear_sched_clock_stable(); | 
 | 	kvm_sched_clock_offset = kvm_clock_read(); | 
 | 	pv_ops.time.sched_clock = kvm_sched_clock_read; | 
 |  | 
 | 	pr_info("kvm-clock: using sched offset of %llu cycles", | 
 | 		kvm_sched_clock_offset); | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) > | 
 | 		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time)); | 
 | } | 
 |  | 
 | /* | 
 |  * If we don't do that, there is the possibility that the guest | 
 |  * will calibrate under heavy load - thus, getting a lower lpj - | 
 |  * and execute the delays themselves without load. This is wrong, | 
 |  * because no delay loop can finish beforehand. | 
 |  * Any heuristics is subject to fail, because ultimately, a large | 
 |  * poll of guests can be running and trouble each other. So we preset | 
 |  * lpj here | 
 |  */ | 
 | static unsigned long kvm_get_tsc_khz(void) | 
 | { | 
 | 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); | 
 | 	return pvclock_tsc_khz(this_cpu_pvti()); | 
 | } | 
 |  | 
 | static void __init kvm_get_preset_lpj(void) | 
 | { | 
 | 	unsigned long khz; | 
 | 	u64 lpj; | 
 |  | 
 | 	khz = kvm_get_tsc_khz(); | 
 |  | 
 | 	lpj = ((u64)khz * 1000); | 
 | 	do_div(lpj, HZ); | 
 | 	preset_lpj = lpj; | 
 | } | 
 |  | 
 | bool kvm_check_and_clear_guest_paused(void) | 
 | { | 
 | 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); | 
 | 	bool ret = false; | 
 |  | 
 | 	if (!src) | 
 | 		return ret; | 
 |  | 
 | 	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) { | 
 | 		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED; | 
 | 		pvclock_touch_watchdogs(); | 
 | 		ret = true; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct clocksource kvm_clock = { | 
 | 	.name	= "kvm-clock", | 
 | 	.read	= kvm_clock_get_cycles, | 
 | 	.rating	= 400, | 
 | 	.mask	= CLOCKSOURCE_MASK(64), | 
 | 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(kvm_clock); | 
 |  | 
 | static void kvm_register_clock(char *txt) | 
 | { | 
 | 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); | 
 | 	u64 pa; | 
 |  | 
 | 	if (!src) | 
 | 		return; | 
 |  | 
 | 	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL; | 
 | 	wrmsrl(msr_kvm_system_time, pa); | 
 | 	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt); | 
 | } | 
 |  | 
 | static void kvm_save_sched_clock_state(void) | 
 | { | 
 | } | 
 |  | 
 | static void kvm_restore_sched_clock_state(void) | 
 | { | 
 | 	kvm_register_clock("primary cpu clock, resume"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | static void kvm_setup_secondary_clock(void) | 
 | { | 
 | 	kvm_register_clock("secondary cpu clock"); | 
 | } | 
 | #endif | 
 |  | 
 | void kvmclock_disable(void) | 
 | { | 
 | 	if (msr_kvm_system_time) | 
 | 		native_write_msr(msr_kvm_system_time, 0, 0); | 
 | } | 
 |  | 
 | static void __init kvmclock_init_mem(void) | 
 | { | 
 | 	unsigned long ncpus; | 
 | 	unsigned int order; | 
 | 	struct page *p; | 
 | 	int r; | 
 |  | 
 | 	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus()) | 
 | 		return; | 
 |  | 
 | 	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE; | 
 | 	order = get_order(ncpus * sizeof(*hvclock_mem)); | 
 |  | 
 | 	p = alloc_pages(GFP_KERNEL, order); | 
 | 	if (!p) { | 
 | 		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hvclock_mem = page_address(p); | 
 |  | 
 | 	/* | 
 | 	 * hvclock is shared between the guest and the hypervisor, must | 
 | 	 * be mapped decrypted. | 
 | 	 */ | 
 | 	if (sev_active()) { | 
 | 		r = set_memory_decrypted((unsigned long) hvclock_mem, | 
 | 					 1UL << order); | 
 | 		if (r) { | 
 | 			__free_pages(p, order); | 
 | 			hvclock_mem = NULL; | 
 | 			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n"); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	memset(hvclock_mem, 0, PAGE_SIZE << order); | 
 | } | 
 |  | 
 | static int __init kvm_setup_vsyscall_timeinfo(void) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	u8 flags; | 
 |  | 
 | 	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall) | 
 | 		return 0; | 
 |  | 
 | 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti); | 
 | 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) | 
 | 		return 0; | 
 |  | 
 | 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK; | 
 | #endif | 
 |  | 
 | 	kvmclock_init_mem(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_initcall(kvm_setup_vsyscall_timeinfo); | 
 |  | 
 | static int kvmclock_setup_percpu(unsigned int cpu) | 
 | { | 
 | 	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu); | 
 |  | 
 | 	/* | 
 | 	 * The per cpu area setup replicates CPU0 data to all cpu | 
 | 	 * pointers. So carefully check. CPU0 has been set up in init | 
 | 	 * already. | 
 | 	 */ | 
 | 	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0))) | 
 | 		return 0; | 
 |  | 
 | 	/* Use the static page for the first CPUs, allocate otherwise */ | 
 | 	if (cpu < HVC_BOOT_ARRAY_SIZE) | 
 | 		p = &hv_clock_boot[cpu]; | 
 | 	else if (hvclock_mem) | 
 | 		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE; | 
 | 	else | 
 | 		return -ENOMEM; | 
 |  | 
 | 	per_cpu(hv_clock_per_cpu, cpu) = p; | 
 | 	return p ? 0 : -ENOMEM; | 
 | } | 
 |  | 
 | void __init kvmclock_init(void) | 
 | { | 
 | 	u8 flags; | 
 |  | 
 | 	if (!kvm_para_available() || !kvmclock) | 
 | 		return; | 
 |  | 
 | 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) { | 
 | 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; | 
 | 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; | 
 | 	} else if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) { | 
 | 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; | 
 | 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; | 
 | 	} else { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu", | 
 | 			      kvmclock_setup_percpu, NULL) < 0) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_info("kvm-clock: Using msrs %x and %x", | 
 | 		msr_kvm_system_time, msr_kvm_wall_clock); | 
 |  | 
 | 	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]); | 
 | 	kvm_register_clock("primary cpu clock"); | 
 | 	pvclock_set_pvti_cpu0_va(hv_clock_boot); | 
 |  | 
 | 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT)) | 
 | 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); | 
 |  | 
 | 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti); | 
 | 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT); | 
 |  | 
 | 	x86_platform.calibrate_tsc = kvm_get_tsc_khz; | 
 | 	x86_platform.calibrate_cpu = kvm_get_tsc_khz; | 
 | 	x86_platform.get_wallclock = kvm_get_wallclock; | 
 | 	x86_platform.set_wallclock = kvm_set_wallclock; | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | 	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock; | 
 | #endif | 
 | 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state; | 
 | 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state; | 
 | 	kvm_get_preset_lpj(); | 
 |  | 
 | 	/* | 
 | 	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate | 
 | 	 * with P/T states and does not stop in deep C-states. | 
 | 	 * | 
 | 	 * Invariant TSC exposed by host means kvmclock is not necessary: | 
 | 	 * can use TSC as clocksource. | 
 | 	 * | 
 | 	 */ | 
 | 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && | 
 | 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && | 
 | 	    !check_tsc_unstable()) | 
 | 		kvm_clock.rating = 299; | 
 |  | 
 | 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC); | 
 | 	pv_info.name = "KVM"; | 
 | } |