| // SPDX-License-Identifier: GPL-2.0 | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/idle.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/init.h> | 
 | #include <linux/export.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/random.h> | 
 | #include <linux/user-return-notifier.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/stackprotector.h> | 
 | #include <linux/cpuidle.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/elf-randomize.h> | 
 | #include <trace/events/power.h> | 
 | #include <linux/hw_breakpoint.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/syscalls.h> | 
 | #include <linux/uaccess.h> | 
 | #include <asm/mwait.h> | 
 | #include <asm/fpu/internal.h> | 
 | #include <asm/debugreg.h> | 
 | #include <asm/nmi.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mce.h> | 
 | #include <asm/vm86.h> | 
 | #include <asm/switch_to.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/prctl.h> | 
 | #include <asm/spec-ctrl.h> | 
 | #include <asm/proto.h> | 
 |  | 
 | #include "process.h" | 
 |  | 
 | /* | 
 |  * per-CPU TSS segments. Threads are completely 'soft' on Linux, | 
 |  * no more per-task TSS's. The TSS size is kept cacheline-aligned | 
 |  * so they are allowed to end up in the .data..cacheline_aligned | 
 |  * section. Since TSS's are completely CPU-local, we want them | 
 |  * on exact cacheline boundaries, to eliminate cacheline ping-pong. | 
 |  */ | 
 | __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { | 
 | 	.x86_tss = { | 
 | 		/* | 
 | 		 * .sp0 is only used when entering ring 0 from a lower | 
 | 		 * privilege level.  Since the init task never runs anything | 
 | 		 * but ring 0 code, there is no need for a valid value here. | 
 | 		 * Poison it. | 
 | 		 */ | 
 | 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1, | 
 |  | 
 | 		/* | 
 | 		 * .sp1 is cpu_current_top_of_stack.  The init task never | 
 | 		 * runs user code, but cpu_current_top_of_stack should still | 
 | 		 * be well defined before the first context switch. | 
 | 		 */ | 
 | 		.sp1 = TOP_OF_INIT_STACK, | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 		.ss0 = __KERNEL_DS, | 
 | 		.ss1 = __KERNEL_CS, | 
 | 		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET, | 
 | #endif | 
 | 	 }, | 
 | #ifdef CONFIG_X86_32 | 
 | 	 /* | 
 | 	  * Note that the .io_bitmap member must be extra-big. This is because | 
 | 	  * the CPU will access an additional byte beyond the end of the IO | 
 | 	  * permission bitmap. The extra byte must be all 1 bits, and must | 
 | 	  * be within the limit. | 
 | 	  */ | 
 | 	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 }, | 
 | #endif | 
 | }; | 
 | EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); | 
 |  | 
 | DEFINE_PER_CPU(bool, __tss_limit_invalid); | 
 | EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); | 
 |  | 
 | /* | 
 |  * this gets called so that we can store lazy state into memory and copy the | 
 |  * current task into the new thread. | 
 |  */ | 
 | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) | 
 | { | 
 | 	memcpy(dst, src, arch_task_struct_size); | 
 | #ifdef CONFIG_VM86 | 
 | 	dst->thread.vm86 = NULL; | 
 | #endif | 
 |  | 
 | 	return fpu__copy(dst, src); | 
 | } | 
 |  | 
 | /* | 
 |  * Free current thread data structures etc.. | 
 |  */ | 
 | void exit_thread(struct task_struct *tsk) | 
 | { | 
 | 	struct thread_struct *t = &tsk->thread; | 
 | 	unsigned long *bp = t->io_bitmap_ptr; | 
 | 	struct fpu *fpu = &t->fpu; | 
 |  | 
 | 	if (bp) { | 
 | 		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); | 
 |  | 
 | 		t->io_bitmap_ptr = NULL; | 
 | 		clear_thread_flag(TIF_IO_BITMAP); | 
 | 		/* | 
 | 		 * Careful, clear this in the TSS too: | 
 | 		 */ | 
 | 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max); | 
 | 		t->io_bitmap_max = 0; | 
 | 		put_cpu(); | 
 | 		kfree(bp); | 
 | 	} | 
 |  | 
 | 	free_vm86(t); | 
 |  | 
 | 	fpu__drop(fpu); | 
 | } | 
 |  | 
 | void flush_thread(void) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	flush_ptrace_hw_breakpoint(tsk); | 
 | 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); | 
 |  | 
 | 	fpu__clear(&tsk->thread.fpu); | 
 | } | 
 |  | 
 | void disable_TSC(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (!test_and_set_thread_flag(TIF_NOTSC)) | 
 | 		/* | 
 | 		 * Must flip the CPU state synchronously with | 
 | 		 * TIF_NOTSC in the current running context. | 
 | 		 */ | 
 | 		cr4_set_bits(X86_CR4_TSD); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void enable_TSC(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (test_and_clear_thread_flag(TIF_NOTSC)) | 
 | 		/* | 
 | 		 * Must flip the CPU state synchronously with | 
 | 		 * TIF_NOTSC in the current running context. | 
 | 		 */ | 
 | 		cr4_clear_bits(X86_CR4_TSD); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | int get_tsc_mode(unsigned long adr) | 
 | { | 
 | 	unsigned int val; | 
 |  | 
 | 	if (test_thread_flag(TIF_NOTSC)) | 
 | 		val = PR_TSC_SIGSEGV; | 
 | 	else | 
 | 		val = PR_TSC_ENABLE; | 
 |  | 
 | 	return put_user(val, (unsigned int __user *)adr); | 
 | } | 
 |  | 
 | int set_tsc_mode(unsigned int val) | 
 | { | 
 | 	if (val == PR_TSC_SIGSEGV) | 
 | 		disable_TSC(); | 
 | 	else if (val == PR_TSC_ENABLE) | 
 | 		enable_TSC(); | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_PER_CPU(u64, msr_misc_features_shadow); | 
 |  | 
 | static void set_cpuid_faulting(bool on) | 
 | { | 
 | 	u64 msrval; | 
 |  | 
 | 	msrval = this_cpu_read(msr_misc_features_shadow); | 
 | 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; | 
 | 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); | 
 | 	this_cpu_write(msr_misc_features_shadow, msrval); | 
 | 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); | 
 | } | 
 |  | 
 | static void disable_cpuid(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (!test_and_set_thread_flag(TIF_NOCPUID)) { | 
 | 		/* | 
 | 		 * Must flip the CPU state synchronously with | 
 | 		 * TIF_NOCPUID in the current running context. | 
 | 		 */ | 
 | 		set_cpuid_faulting(true); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void enable_cpuid(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (test_and_clear_thread_flag(TIF_NOCPUID)) { | 
 | 		/* | 
 | 		 * Must flip the CPU state synchronously with | 
 | 		 * TIF_NOCPUID in the current running context. | 
 | 		 */ | 
 | 		set_cpuid_faulting(false); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static int get_cpuid_mode(void) | 
 | { | 
 | 	return !test_thread_flag(TIF_NOCPUID); | 
 | } | 
 |  | 
 | static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) | 
 | { | 
 | 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (cpuid_enabled) | 
 | 		enable_cpuid(); | 
 | 	else | 
 | 		disable_cpuid(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Called immediately after a successful exec. | 
 |  */ | 
 | void arch_setup_new_exec(void) | 
 | { | 
 | 	/* If cpuid was previously disabled for this task, re-enable it. */ | 
 | 	if (test_thread_flag(TIF_NOCPUID)) | 
 | 		enable_cpuid(); | 
 |  | 
 | 	/* | 
 | 	 * Don't inherit TIF_SSBD across exec boundary when | 
 | 	 * PR_SPEC_DISABLE_NOEXEC is used. | 
 | 	 */ | 
 | 	if (test_thread_flag(TIF_SSBD) && | 
 | 	    task_spec_ssb_noexec(current)) { | 
 | 		clear_thread_flag(TIF_SSBD); | 
 | 		task_clear_spec_ssb_disable(current); | 
 | 		task_clear_spec_ssb_noexec(current); | 
 | 		speculation_ctrl_update(task_thread_info(current)->flags); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void switch_to_bitmap(struct thread_struct *prev, | 
 | 				    struct thread_struct *next, | 
 | 				    unsigned long tifp, unsigned long tifn) | 
 | { | 
 | 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); | 
 |  | 
 | 	if (tifn & _TIF_IO_BITMAP) { | 
 | 		/* | 
 | 		 * Copy the relevant range of the IO bitmap. | 
 | 		 * Normally this is 128 bytes or less: | 
 | 		 */ | 
 | 		memcpy(tss->io_bitmap, next->io_bitmap_ptr, | 
 | 		       max(prev->io_bitmap_max, next->io_bitmap_max)); | 
 | 		/* | 
 | 		 * Make sure that the TSS limit is correct for the CPU | 
 | 		 * to notice the IO bitmap. | 
 | 		 */ | 
 | 		refresh_tss_limit(); | 
 | 	} else if (tifp & _TIF_IO_BITMAP) { | 
 | 		/* | 
 | 		 * Clear any possible leftover bits: | 
 | 		 */ | 
 | 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | struct ssb_state { | 
 | 	struct ssb_state	*shared_state; | 
 | 	raw_spinlock_t		lock; | 
 | 	unsigned int		disable_state; | 
 | 	unsigned long		local_state; | 
 | }; | 
 |  | 
 | #define LSTATE_SSB	0 | 
 |  | 
 | static DEFINE_PER_CPU(struct ssb_state, ssb_state); | 
 |  | 
 | void speculative_store_bypass_ht_init(void) | 
 | { | 
 | 	struct ssb_state *st = this_cpu_ptr(&ssb_state); | 
 | 	unsigned int this_cpu = smp_processor_id(); | 
 | 	unsigned int cpu; | 
 |  | 
 | 	st->local_state = 0; | 
 |  | 
 | 	/* | 
 | 	 * Shared state setup happens once on the first bringup | 
 | 	 * of the CPU. It's not destroyed on CPU hotunplug. | 
 | 	 */ | 
 | 	if (st->shared_state) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_init(&st->lock); | 
 |  | 
 | 	/* | 
 | 	 * Go over HT siblings and check whether one of them has set up the | 
 | 	 * shared state pointer already. | 
 | 	 */ | 
 | 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { | 
 | 		if (cpu == this_cpu) | 
 | 			continue; | 
 |  | 
 | 		if (!per_cpu(ssb_state, cpu).shared_state) | 
 | 			continue; | 
 |  | 
 | 		/* Link it to the state of the sibling: */ | 
 | 		st->shared_state = per_cpu(ssb_state, cpu).shared_state; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First HT sibling to come up on the core.  Link shared state of | 
 | 	 * the first HT sibling to itself. The siblings on the same core | 
 | 	 * which come up later will see the shared state pointer and link | 
 | 	 * themself to the state of this CPU. | 
 | 	 */ | 
 | 	st->shared_state = st; | 
 | } | 
 |  | 
 | /* | 
 |  * Logic is: First HT sibling enables SSBD for both siblings in the core | 
 |  * and last sibling to disable it, disables it for the whole core. This how | 
 |  * MSR_SPEC_CTRL works in "hardware": | 
 |  * | 
 |  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL | 
 |  */ | 
 | static __always_inline void amd_set_core_ssb_state(unsigned long tifn) | 
 | { | 
 | 	struct ssb_state *st = this_cpu_ptr(&ssb_state); | 
 | 	u64 msr = x86_amd_ls_cfg_base; | 
 |  | 
 | 	if (!static_cpu_has(X86_FEATURE_ZEN)) { | 
 | 		msr |= ssbd_tif_to_amd_ls_cfg(tifn); | 
 | 		wrmsrl(MSR_AMD64_LS_CFG, msr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (tifn & _TIF_SSBD) { | 
 | 		/* | 
 | 		 * Since this can race with prctl(), block reentry on the | 
 | 		 * same CPU. | 
 | 		 */ | 
 | 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) | 
 | 			return; | 
 |  | 
 | 		msr |= x86_amd_ls_cfg_ssbd_mask; | 
 |  | 
 | 		raw_spin_lock(&st->shared_state->lock); | 
 | 		/* First sibling enables SSBD: */ | 
 | 		if (!st->shared_state->disable_state) | 
 | 			wrmsrl(MSR_AMD64_LS_CFG, msr); | 
 | 		st->shared_state->disable_state++; | 
 | 		raw_spin_unlock(&st->shared_state->lock); | 
 | 	} else { | 
 | 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) | 
 | 			return; | 
 |  | 
 | 		raw_spin_lock(&st->shared_state->lock); | 
 | 		st->shared_state->disable_state--; | 
 | 		if (!st->shared_state->disable_state) | 
 | 			wrmsrl(MSR_AMD64_LS_CFG, msr); | 
 | 		raw_spin_unlock(&st->shared_state->lock); | 
 | 	} | 
 | } | 
 | #else | 
 | static __always_inline void amd_set_core_ssb_state(unsigned long tifn) | 
 | { | 
 | 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); | 
 |  | 
 | 	wrmsrl(MSR_AMD64_LS_CFG, msr); | 
 | } | 
 | #endif | 
 |  | 
 | static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) | 
 | { | 
 | 	/* | 
 | 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, | 
 | 	 * so ssbd_tif_to_spec_ctrl() just works. | 
 | 	 */ | 
 | 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the MSRs managing speculation control, during context switch. | 
 |  * | 
 |  * tifp: Previous task's thread flags | 
 |  * tifn: Next task's thread flags | 
 |  */ | 
 | static __always_inline void __speculation_ctrl_update(unsigned long tifp, | 
 | 						      unsigned long tifn) | 
 | { | 
 | 	unsigned long tif_diff = tifp ^ tifn; | 
 | 	u64 msr = x86_spec_ctrl_base; | 
 | 	bool updmsr = false; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	/* Handle change of TIF_SSBD depending on the mitigation method. */ | 
 | 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { | 
 | 		if (tif_diff & _TIF_SSBD) | 
 | 			amd_set_ssb_virt_state(tifn); | 
 | 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { | 
 | 		if (tif_diff & _TIF_SSBD) | 
 | 			amd_set_core_ssb_state(tifn); | 
 | 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || | 
 | 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) { | 
 | 		updmsr |= !!(tif_diff & _TIF_SSBD); | 
 | 		msr |= ssbd_tif_to_spec_ctrl(tifn); | 
 | 	} | 
 |  | 
 | 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ | 
 | 	if (IS_ENABLED(CONFIG_SMP) && | 
 | 	    static_branch_unlikely(&switch_to_cond_stibp)) { | 
 | 		updmsr |= !!(tif_diff & _TIF_SPEC_IB); | 
 | 		msr |= stibp_tif_to_spec_ctrl(tifn); | 
 | 	} | 
 |  | 
 | 	if (updmsr) | 
 | 		update_spec_ctrl_cond(msr); | 
 | } | 
 |  | 
 | static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) | 
 | { | 
 | 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { | 
 | 		if (task_spec_ssb_disable(tsk)) | 
 | 			set_tsk_thread_flag(tsk, TIF_SSBD); | 
 | 		else | 
 | 			clear_tsk_thread_flag(tsk, TIF_SSBD); | 
 |  | 
 | 		if (task_spec_ib_disable(tsk)) | 
 | 			set_tsk_thread_flag(tsk, TIF_SPEC_IB); | 
 | 		else | 
 | 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB); | 
 | 	} | 
 | 	/* Return the updated threadinfo flags*/ | 
 | 	return task_thread_info(tsk)->flags; | 
 | } | 
 |  | 
 | void speculation_ctrl_update(unsigned long tif) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Forced update. Make sure all relevant TIF flags are different */ | 
 | 	local_irq_save(flags); | 
 | 	__speculation_ctrl_update(~tif, tif); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Called from seccomp/prctl update */ | 
 | void speculation_ctrl_update_current(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	speculation_ctrl_update(speculation_ctrl_update_tif(current)); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) | 
 | { | 
 | 	struct thread_struct *prev, *next; | 
 | 	unsigned long tifp, tifn; | 
 |  | 
 | 	prev = &prev_p->thread; | 
 | 	next = &next_p->thread; | 
 |  | 
 | 	tifn = READ_ONCE(task_thread_info(next_p)->flags); | 
 | 	tifp = READ_ONCE(task_thread_info(prev_p)->flags); | 
 | 	switch_to_bitmap(prev, next, tifp, tifn); | 
 |  | 
 | 	propagate_user_return_notify(prev_p, next_p); | 
 |  | 
 | 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && | 
 | 	    arch_has_block_step()) { | 
 | 		unsigned long debugctl, msk; | 
 |  | 
 | 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
 | 		debugctl &= ~DEBUGCTLMSR_BTF; | 
 | 		msk = tifn & _TIF_BLOCKSTEP; | 
 | 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; | 
 | 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
 | 	} | 
 |  | 
 | 	if ((tifp ^ tifn) & _TIF_NOTSC) | 
 | 		cr4_toggle_bits_irqsoff(X86_CR4_TSD); | 
 |  | 
 | 	if ((tifp ^ tifn) & _TIF_NOCPUID) | 
 | 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); | 
 |  | 
 | 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { | 
 | 		__speculation_ctrl_update(tifp, tifn); | 
 | 	} else { | 
 | 		speculation_ctrl_update_tif(prev_p); | 
 | 		tifn = speculation_ctrl_update_tif(next_p); | 
 |  | 
 | 		/* Enforce MSR update to ensure consistent state */ | 
 | 		__speculation_ctrl_update(~tifn, tifn); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Idle related variables and functions | 
 |  */ | 
 | unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; | 
 | EXPORT_SYMBOL(boot_option_idle_override); | 
 |  | 
 | static void (*x86_idle)(void); | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | static inline void play_dead(void) | 
 | { | 
 | 	BUG(); | 
 | } | 
 | #endif | 
 |  | 
 | void arch_cpu_idle_enter(void) | 
 | { | 
 | 	tsc_verify_tsc_adjust(false); | 
 | 	local_touch_nmi(); | 
 | } | 
 |  | 
 | void arch_cpu_idle_dead(void) | 
 | { | 
 | 	play_dead(); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from the generic idle code. | 
 |  */ | 
 | void arch_cpu_idle(void) | 
 | { | 
 | 	x86_idle(); | 
 | } | 
 |  | 
 | /* | 
 |  * We use this if we don't have any better idle routine.. | 
 |  */ | 
 | void __cpuidle default_idle(void) | 
 | { | 
 | 	trace_cpu_idle_rcuidle(1, smp_processor_id()); | 
 | 	safe_halt(); | 
 | 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); | 
 | } | 
 | #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) | 
 | EXPORT_SYMBOL(default_idle); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_XEN | 
 | bool xen_set_default_idle(void) | 
 | { | 
 | 	bool ret = !!x86_idle; | 
 |  | 
 | 	x86_idle = default_idle; | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | void stop_this_cpu(void *dummy) | 
 | { | 
 | 	local_irq_disable(); | 
 | 	/* | 
 | 	 * Remove this CPU: | 
 | 	 */ | 
 | 	set_cpu_online(smp_processor_id(), false); | 
 | 	disable_local_APIC(); | 
 | 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); | 
 |  | 
 | 	/* | 
 | 	 * Use wbinvd on processors that support SME. This provides support | 
 | 	 * for performing a successful kexec when going from SME inactive | 
 | 	 * to SME active (or vice-versa). The cache must be cleared so that | 
 | 	 * if there are entries with the same physical address, both with and | 
 | 	 * without the encryption bit, they don't race each other when flushed | 
 | 	 * and potentially end up with the wrong entry being committed to | 
 | 	 * memory. | 
 | 	 */ | 
 | 	if (boot_cpu_has(X86_FEATURE_SME)) | 
 | 		native_wbinvd(); | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * Use native_halt() so that memory contents don't change | 
 | 		 * (stack usage and variables) after possibly issuing the | 
 | 		 * native_wbinvd() above. | 
 | 		 */ | 
 | 		native_halt(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power | 
 |  * states (local apic timer and TSC stop). | 
 |  */ | 
 | static void amd_e400_idle(void) | 
 | { | 
 | 	/* | 
 | 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E | 
 | 	 * gets set after static_cpu_has() places have been converted via | 
 | 	 * alternatives. | 
 | 	 */ | 
 | 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { | 
 | 		default_idle(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tick_broadcast_enter(); | 
 |  | 
 | 	default_idle(); | 
 |  | 
 | 	/* | 
 | 	 * The switch back from broadcast mode needs to be called with | 
 | 	 * interrupts disabled. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 | 	tick_broadcast_exit(); | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Intel Core2 and older machines prefer MWAIT over HALT for C1. | 
 |  * We can't rely on cpuidle installing MWAIT, because it will not load | 
 |  * on systems that support only C1 -- so the boot default must be MWAIT. | 
 |  * | 
 |  * Some AMD machines are the opposite, they depend on using HALT. | 
 |  * | 
 |  * So for default C1, which is used during boot until cpuidle loads, | 
 |  * use MWAIT-C1 on Intel HW that has it, else use HALT. | 
 |  */ | 
 | static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) | 
 | { | 
 | 	/* User has disallowed the use of MWAIT. Fallback to HALT */ | 
 | 	if (boot_option_idle_override == IDLE_NOMWAIT) | 
 | 		return 0; | 
 |  | 
 | 	if (c->x86_vendor != X86_VENDOR_INTEL) | 
 | 		return 0; | 
 |  | 
 | 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT | 
 |  * with interrupts enabled and no flags, which is backwards compatible with the | 
 |  * original MWAIT implementation. | 
 |  */ | 
 | static __cpuidle void mwait_idle(void) | 
 | { | 
 | 	if (!current_set_polling_and_test()) { | 
 | 		trace_cpu_idle_rcuidle(1, smp_processor_id()); | 
 | 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { | 
 | 			mb(); /* quirk */ | 
 | 			clflush((void *)¤t_thread_info()->flags); | 
 | 			mb(); /* quirk */ | 
 | 		} | 
 |  | 
 | 		__monitor((void *)¤t_thread_info()->flags, 0, 0); | 
 | 		if (!need_resched()) | 
 | 			__sti_mwait(0, 0); | 
 | 		else | 
 | 			local_irq_enable(); | 
 | 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); | 
 | 	} else { | 
 | 		local_irq_enable(); | 
 | 	} | 
 | 	__current_clr_polling(); | 
 | } | 
 |  | 
 | void select_idle_routine(const struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) | 
 | 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); | 
 | #endif | 
 | 	if (x86_idle || boot_option_idle_override == IDLE_POLL) | 
 | 		return; | 
 |  | 
 | 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { | 
 | 		pr_info("using AMD E400 aware idle routine\n"); | 
 | 		x86_idle = amd_e400_idle; | 
 | 	} else if (prefer_mwait_c1_over_halt(c)) { | 
 | 		pr_info("using mwait in idle threads\n"); | 
 | 		x86_idle = mwait_idle; | 
 | 	} else | 
 | 		x86_idle = default_idle; | 
 | } | 
 |  | 
 | void amd_e400_c1e_apic_setup(void) | 
 | { | 
 | 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { | 
 | 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); | 
 | 		local_irq_disable(); | 
 | 		tick_broadcast_force(); | 
 | 		local_irq_enable(); | 
 | 	} | 
 | } | 
 |  | 
 | void __init arch_post_acpi_subsys_init(void) | 
 | { | 
 | 	u32 lo, hi; | 
 |  | 
 | 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * AMD E400 detection needs to happen after ACPI has been enabled. If | 
 | 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in | 
 | 	 * MSR_K8_INT_PENDING_MSG. | 
 | 	 */ | 
 | 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); | 
 | 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) | 
 | 		return; | 
 |  | 
 | 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) | 
 | 		mark_tsc_unstable("TSC halt in AMD C1E"); | 
 | 	pr_info("System has AMD C1E enabled\n"); | 
 | } | 
 |  | 
 | static int __init idle_setup(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!strcmp(str, "poll")) { | 
 | 		pr_info("using polling idle threads\n"); | 
 | 		boot_option_idle_override = IDLE_POLL; | 
 | 		cpu_idle_poll_ctrl(true); | 
 | 	} else if (!strcmp(str, "halt")) { | 
 | 		/* | 
 | 		 * When the boot option of idle=halt is added, halt is | 
 | 		 * forced to be used for CPU idle. In such case CPU C2/C3 | 
 | 		 * won't be used again. | 
 | 		 * To continue to load the CPU idle driver, don't touch | 
 | 		 * the boot_option_idle_override. | 
 | 		 */ | 
 | 		x86_idle = default_idle; | 
 | 		boot_option_idle_override = IDLE_HALT; | 
 | 	} else if (!strcmp(str, "nomwait")) { | 
 | 		/* | 
 | 		 * If the boot option of "idle=nomwait" is added, | 
 | 		 * it means that mwait will be disabled for CPU C1/C2/C3 | 
 | 		 * states. | 
 | 		 */ | 
 | 		boot_option_idle_override = IDLE_NOMWAIT; | 
 | 	} else | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("idle", idle_setup); | 
 |  | 
 | unsigned long arch_align_stack(unsigned long sp) | 
 | { | 
 | 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
 | 		sp -= get_random_int() % 8192; | 
 | 	return sp & ~0xf; | 
 | } | 
 |  | 
 | unsigned long arch_randomize_brk(struct mm_struct *mm) | 
 | { | 
 | 	if (mmap_is_ia32()) | 
 | 		return randomize_page(mm->brk, SZ_32M); | 
 |  | 
 | 	return randomize_page(mm->brk, SZ_1G); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from fs/proc with a reference on @p to find the function | 
 |  * which called into schedule(). This needs to be done carefully | 
 |  * because the task might wake up and we might look at a stack | 
 |  * changing under us. | 
 |  */ | 
 | unsigned long get_wchan(struct task_struct *p) | 
 | { | 
 | 	unsigned long start, bottom, top, sp, fp, ip, ret = 0; | 
 | 	int count = 0; | 
 |  | 
 | 	if (p == current || p->state == TASK_RUNNING) | 
 | 		return 0; | 
 |  | 
 | 	if (!try_get_task_stack(p)) | 
 | 		return 0; | 
 |  | 
 | 	start = (unsigned long)task_stack_page(p); | 
 | 	if (!start) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Layout of the stack page: | 
 | 	 * | 
 | 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) | 
 | 	 * PADDING | 
 | 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING | 
 | 	 * stack | 
 | 	 * ----------- bottom = start | 
 | 	 * | 
 | 	 * The tasks stack pointer points at the location where the | 
 | 	 * framepointer is stored. The data on the stack is: | 
 | 	 * ... IP FP ... IP FP | 
 | 	 * | 
 | 	 * We need to read FP and IP, so we need to adjust the upper | 
 | 	 * bound by another unsigned long. | 
 | 	 */ | 
 | 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; | 
 | 	top -= 2 * sizeof(unsigned long); | 
 | 	bottom = start; | 
 |  | 
 | 	sp = READ_ONCE(p->thread.sp); | 
 | 	if (sp < bottom || sp > top) | 
 | 		goto out; | 
 |  | 
 | 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); | 
 | 	do { | 
 | 		if (fp < bottom || fp > top) | 
 | 			goto out; | 
 | 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); | 
 | 		if (!in_sched_functions(ip)) { | 
 | 			ret = ip; | 
 | 			goto out; | 
 | 		} | 
 | 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); | 
 | 	} while (count++ < 16 && p->state != TASK_RUNNING); | 
 |  | 
 | out: | 
 | 	put_task_stack(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | long do_arch_prctl_common(struct task_struct *task, int option, | 
 | 			  unsigned long cpuid_enabled) | 
 | { | 
 | 	switch (option) { | 
 | 	case ARCH_GET_CPUID: | 
 | 		return get_cpuid_mode(); | 
 | 	case ARCH_SET_CPUID: | 
 | 		return set_cpuid_mode(task, cpuid_enabled); | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } |