| /* | 
 |  * Copyright (C) 2001 Sistina Software (UK) Limited. | 
 |  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm-core.h" | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/dax.h> | 
 |  | 
 | #define DM_MSG_PREFIX "table" | 
 |  | 
 | #define MAX_DEPTH 16 | 
 | #define NODE_SIZE L1_CACHE_BYTES | 
 | #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) | 
 | #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) | 
 |  | 
 | struct dm_table { | 
 | 	struct mapped_device *md; | 
 | 	enum dm_queue_mode type; | 
 |  | 
 | 	/* btree table */ | 
 | 	unsigned int depth; | 
 | 	unsigned int counts[MAX_DEPTH];	/* in nodes */ | 
 | 	sector_t *index[MAX_DEPTH]; | 
 |  | 
 | 	unsigned int num_targets; | 
 | 	unsigned int num_allocated; | 
 | 	sector_t *highs; | 
 | 	struct dm_target *targets; | 
 |  | 
 | 	struct target_type *immutable_target_type; | 
 |  | 
 | 	bool integrity_supported:1; | 
 | 	bool singleton:1; | 
 | 	unsigned integrity_added:1; | 
 |  | 
 | 	/* | 
 | 	 * Indicates the rw permissions for the new logical | 
 | 	 * device.  This should be a combination of FMODE_READ | 
 | 	 * and FMODE_WRITE. | 
 | 	 */ | 
 | 	fmode_t mode; | 
 |  | 
 | 	/* a list of devices used by this table */ | 
 | 	struct list_head devices; | 
 |  | 
 | 	/* events get handed up using this callback */ | 
 | 	void (*event_fn)(void *); | 
 | 	void *event_context; | 
 |  | 
 | 	struct dm_md_mempools *mempools; | 
 |  | 
 | 	struct list_head target_callbacks; | 
 |  | 
 | #ifdef CONFIG_BLK_INLINE_ENCRYPTION | 
 | 	struct blk_keyslot_manager *ksm; | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * Similar to ceiling(log_size(n)) | 
 |  */ | 
 | static unsigned int int_log(unsigned int n, unsigned int base) | 
 | { | 
 | 	int result = 0; | 
 |  | 
 | 	while (n > 1) { | 
 | 		n = dm_div_up(n, base); | 
 | 		result++; | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the index of the child node of the n'th node k'th key. | 
 |  */ | 
 | static inline unsigned int get_child(unsigned int n, unsigned int k) | 
 | { | 
 | 	return (n * CHILDREN_PER_NODE) + k; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the n'th node of level l from table t. | 
 |  */ | 
 | static inline sector_t *get_node(struct dm_table *t, | 
 | 				 unsigned int l, unsigned int n) | 
 | { | 
 | 	return t->index[l] + (n * KEYS_PER_NODE); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the highest key that you could lookup from the n'th | 
 |  * node on level l of the btree. | 
 |  */ | 
 | static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) | 
 | { | 
 | 	for (; l < t->depth - 1; l++) | 
 | 		n = get_child(n, CHILDREN_PER_NODE - 1); | 
 |  | 
 | 	if (n >= t->counts[l]) | 
 | 		return (sector_t) - 1; | 
 |  | 
 | 	return get_node(t, l, n)[KEYS_PER_NODE - 1]; | 
 | } | 
 |  | 
 | /* | 
 |  * Fills in a level of the btree based on the highs of the level | 
 |  * below it. | 
 |  */ | 
 | static int setup_btree_index(unsigned int l, struct dm_table *t) | 
 | { | 
 | 	unsigned int n, k; | 
 | 	sector_t *node; | 
 |  | 
 | 	for (n = 0U; n < t->counts[l]; n++) { | 
 | 		node = get_node(t, l, n); | 
 |  | 
 | 		for (k = 0U; k < KEYS_PER_NODE; k++) | 
 | 			node[k] = high(t, l + 1, get_child(n, k)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) | 
 | { | 
 | 	unsigned long size; | 
 | 	void *addr; | 
 |  | 
 | 	/* | 
 | 	 * Check that we're not going to overflow. | 
 | 	 */ | 
 | 	if (nmemb > (ULONG_MAX / elem_size)) | 
 | 		return NULL; | 
 |  | 
 | 	size = nmemb * elem_size; | 
 | 	addr = vzalloc(size); | 
 |  | 
 | 	return addr; | 
 | } | 
 | EXPORT_SYMBOL(dm_vcalloc); | 
 |  | 
 | /* | 
 |  * highs, and targets are managed as dynamic arrays during a | 
 |  * table load. | 
 |  */ | 
 | static int alloc_targets(struct dm_table *t, unsigned int num) | 
 | { | 
 | 	sector_t *n_highs; | 
 | 	struct dm_target *n_targets; | 
 |  | 
 | 	/* | 
 | 	 * Allocate both the target array and offset array at once. | 
 | 	 */ | 
 | 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + | 
 | 					  sizeof(sector_t)); | 
 | 	if (!n_highs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	n_targets = (struct dm_target *) (n_highs + num); | 
 |  | 
 | 	memset(n_highs, -1, sizeof(*n_highs) * num); | 
 | 	vfree(t->highs); | 
 |  | 
 | 	t->num_allocated = num; | 
 | 	t->highs = n_highs; | 
 | 	t->targets = n_targets; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_table_create(struct dm_table **result, fmode_t mode, | 
 | 		    unsigned num_targets, struct mapped_device *md) | 
 | { | 
 | 	struct dm_table *t; | 
 |  | 
 | 	if (num_targets > DM_MAX_TARGETS) | 
 | 		return -EOVERFLOW; | 
 |  | 
 | 	t = kzalloc(sizeof(*t), GFP_KERNEL); | 
 |  | 
 | 	if (!t) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_LIST_HEAD(&t->devices); | 
 | 	INIT_LIST_HEAD(&t->target_callbacks); | 
 |  | 
 | 	if (!num_targets) | 
 | 		num_targets = KEYS_PER_NODE; | 
 |  | 
 | 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE); | 
 |  | 
 | 	if (!num_targets) { | 
 | 		kfree(t); | 
 | 		return -EOVERFLOW; | 
 | 	} | 
 |  | 
 | 	if (alloc_targets(t, num_targets)) { | 
 | 		kfree(t); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	t->type = DM_TYPE_NONE; | 
 | 	t->mode = mode; | 
 | 	t->md = md; | 
 | 	*result = t; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_devices(struct list_head *devices, struct mapped_device *md) | 
 | { | 
 | 	struct list_head *tmp, *next; | 
 |  | 
 | 	list_for_each_safe(tmp, next, devices) { | 
 | 		struct dm_dev_internal *dd = | 
 | 		    list_entry(tmp, struct dm_dev_internal, list); | 
 | 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", | 
 | 		       dm_device_name(md), dd->dm_dev->name); | 
 | 		dm_put_table_device(md, dd->dm_dev); | 
 | 		kfree(dd); | 
 | 	} | 
 | } | 
 |  | 
 | static void dm_table_destroy_keyslot_manager(struct dm_table *t); | 
 |  | 
 | void dm_table_destroy(struct dm_table *t) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	/* free the indexes */ | 
 | 	if (t->depth >= 2) | 
 | 		vfree(t->index[t->depth - 2]); | 
 |  | 
 | 	/* free the targets */ | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		struct dm_target *tgt = t->targets + i; | 
 |  | 
 | 		if (tgt->type->dtr) | 
 | 			tgt->type->dtr(tgt); | 
 |  | 
 | 		dm_put_target_type(tgt->type); | 
 | 	} | 
 |  | 
 | 	vfree(t->highs); | 
 |  | 
 | 	/* free the device list */ | 
 | 	free_devices(&t->devices, t->md); | 
 |  | 
 | 	dm_free_md_mempools(t->mempools); | 
 |  | 
 | 	dm_table_destroy_keyslot_manager(t); | 
 |  | 
 | 	kfree(t); | 
 | } | 
 |  | 
 | /* | 
 |  * See if we've already got a device in the list. | 
 |  */ | 
 | static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) | 
 | { | 
 | 	struct dm_dev_internal *dd; | 
 |  | 
 | 	list_for_each_entry (dd, l, list) | 
 | 		if (dd->dm_dev->bdev->bd_dev == dev) | 
 | 			return dd; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * If possible, this checks an area of a destination device is invalid. | 
 |  */ | 
 | static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, | 
 | 				  sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	struct queue_limits *limits = data; | 
 | 	struct block_device *bdev = dev->bdev; | 
 | 	sector_t dev_size = | 
 | 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; | 
 | 	unsigned short logical_block_size_sectors = | 
 | 		limits->logical_block_size >> SECTOR_SHIFT; | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	/* | 
 | 	 * Some devices exist without request functions, | 
 | 	 * such as loop devices not yet bound to backing files. | 
 | 	 * Forbid the use of such devices. | 
 | 	 */ | 
 | 	q = bdev_get_queue(bdev); | 
 | 	if (!q || !q->make_request_fn) { | 
 | 		DMWARN("%s: %s is not yet initialised: " | 
 | 		       "start=%llu, len=%llu, dev_size=%llu", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b), | 
 | 		       (unsigned long long)start, | 
 | 		       (unsigned long long)len, | 
 | 		       (unsigned long long)dev_size); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!dev_size) | 
 | 		return 0; | 
 |  | 
 | 	if ((start >= dev_size) || (start + len > dev_size)) { | 
 | 		DMWARN("%s: %s too small for target: " | 
 | 		       "start=%llu, len=%llu, dev_size=%llu", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b), | 
 | 		       (unsigned long long)start, | 
 | 		       (unsigned long long)len, | 
 | 		       (unsigned long long)dev_size); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the target is mapped to zoned block device(s), check | 
 | 	 * that the zones are not partially mapped. | 
 | 	 */ | 
 | 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { | 
 | 		unsigned int zone_sectors = bdev_zone_sectors(bdev); | 
 |  | 
 | 		if (start & (zone_sectors - 1)) { | 
 | 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", | 
 | 			       dm_device_name(ti->table->md), | 
 | 			       (unsigned long long)start, | 
 | 			       zone_sectors, bdevname(bdev, b)); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Note: The last zone of a zoned block device may be smaller | 
 | 		 * than other zones. So for a target mapping the end of a | 
 | 		 * zoned block device with such a zone, len would not be zone | 
 | 		 * aligned. We do not allow such last smaller zone to be part | 
 | 		 * of the mapping here to ensure that mappings with multiple | 
 | 		 * devices do not end up with a smaller zone in the middle of | 
 | 		 * the sector range. | 
 | 		 */ | 
 | 		if (len & (zone_sectors - 1)) { | 
 | 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", | 
 | 			       dm_device_name(ti->table->md), | 
 | 			       (unsigned long long)len, | 
 | 			       zone_sectors, bdevname(bdev, b)); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (logical_block_size_sectors <= 1) | 
 | 		return 0; | 
 |  | 
 | 	if (start & (logical_block_size_sectors - 1)) { | 
 | 		DMWARN("%s: start=%llu not aligned to h/w " | 
 | 		       "logical block size %u of %s", | 
 | 		       dm_device_name(ti->table->md), | 
 | 		       (unsigned long long)start, | 
 | 		       limits->logical_block_size, bdevname(bdev, b)); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (len & (logical_block_size_sectors - 1)) { | 
 | 		DMWARN("%s: len=%llu not aligned to h/w " | 
 | 		       "logical block size %u of %s", | 
 | 		       dm_device_name(ti->table->md), | 
 | 		       (unsigned long long)len, | 
 | 		       limits->logical_block_size, bdevname(bdev, b)); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This upgrades the mode on an already open dm_dev, being | 
 |  * careful to leave things as they were if we fail to reopen the | 
 |  * device and not to touch the existing bdev field in case | 
 |  * it is accessed concurrently inside dm_table_any_congested(). | 
 |  */ | 
 | static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, | 
 | 			struct mapped_device *md) | 
 | { | 
 | 	int r; | 
 | 	struct dm_dev *old_dev, *new_dev; | 
 |  | 
 | 	old_dev = dd->dm_dev; | 
 |  | 
 | 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, | 
 | 				dd->dm_dev->mode | new_mode, &new_dev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	dd->dm_dev = new_dev; | 
 | 	dm_put_table_device(md, old_dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the path to a device | 
 |  */ | 
 | dev_t dm_get_dev_t(const char *path) | 
 | { | 
 | 	dev_t dev; | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	bdev = lookup_bdev(path); | 
 | 	if (IS_ERR(bdev)) | 
 | 		dev = name_to_dev_t(path); | 
 | 	else { | 
 | 		dev = bdev->bd_dev; | 
 | 		bdput(bdev); | 
 | 	} | 
 |  | 
 | 	return dev; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_get_dev_t); | 
 |  | 
 | /* | 
 |  * Add a device to the list, or just increment the usage count if | 
 |  * it's already present. | 
 |  */ | 
 | int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, | 
 | 		  struct dm_dev **result) | 
 | { | 
 | 	int r; | 
 | 	dev_t dev; | 
 | 	unsigned int major, minor; | 
 | 	char dummy; | 
 | 	struct dm_dev_internal *dd; | 
 | 	struct dm_table *t = ti->table; | 
 |  | 
 | 	BUG_ON(!t); | 
 |  | 
 | 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { | 
 | 		/* Extract the major/minor numbers */ | 
 | 		dev = MKDEV(major, minor); | 
 | 		if (MAJOR(dev) != major || MINOR(dev) != minor) | 
 | 			return -EOVERFLOW; | 
 | 	} else { | 
 | 		dev = dm_get_dev_t(path); | 
 | 		if (!dev) | 
 | 			return -ENODEV; | 
 | 	} | 
 |  | 
 | 	dd = find_device(&t->devices, dev); | 
 | 	if (!dd) { | 
 | 		dd = kmalloc(sizeof(*dd), GFP_KERNEL); | 
 | 		if (!dd) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { | 
 | 			kfree(dd); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		refcount_set(&dd->count, 1); | 
 | 		list_add(&dd->list, &t->devices); | 
 | 		goto out; | 
 |  | 
 | 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { | 
 | 		r = upgrade_mode(dd, mode, t->md); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 | 	refcount_inc(&dd->count); | 
 | out: | 
 | 	*result = dd->dm_dev; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(dm_get_device); | 
 |  | 
 | static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, | 
 | 				sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct queue_limits *limits = data; | 
 | 	struct block_device *bdev = dev->bdev; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	if (unlikely(!q)) { | 
 | 		DMWARN("%s: Cannot set limits for nonexistent device %s", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (bdev_stack_limits(limits, bdev, start) < 0) | 
 | 		DMWARN("%s: adding target device %s caused an alignment inconsistency: " | 
 | 		       "physical_block_size=%u, logical_block_size=%u, " | 
 | 		       "alignment_offset=%u, start=%llu", | 
 | 		       dm_device_name(ti->table->md), bdevname(bdev, b), | 
 | 		       q->limits.physical_block_size, | 
 | 		       q->limits.logical_block_size, | 
 | 		       q->limits.alignment_offset, | 
 | 		       (unsigned long long) start << SECTOR_SHIFT); | 
 |  | 
 | 	limits->zoned = blk_queue_zoned_model(q); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Decrement a device's use count and remove it if necessary. | 
 |  */ | 
 | void dm_put_device(struct dm_target *ti, struct dm_dev *d) | 
 | { | 
 | 	int found = 0; | 
 | 	struct list_head *devices = &ti->table->devices; | 
 | 	struct dm_dev_internal *dd; | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		if (dd->dm_dev == d) { | 
 | 			found = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!found) { | 
 | 		DMWARN("%s: device %s not in table devices list", | 
 | 		       dm_device_name(ti->table->md), d->name); | 
 | 		return; | 
 | 	} | 
 | 	if (refcount_dec_and_test(&dd->count)) { | 
 | 		dm_put_table_device(ti->table->md, d); | 
 | 		list_del(&dd->list); | 
 | 		kfree(dd); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(dm_put_device); | 
 |  | 
 | /* | 
 |  * Checks to see if the target joins onto the end of the table. | 
 |  */ | 
 | static int adjoin(struct dm_table *table, struct dm_target *ti) | 
 | { | 
 | 	struct dm_target *prev; | 
 |  | 
 | 	if (!table->num_targets) | 
 | 		return !ti->begin; | 
 |  | 
 | 	prev = &table->targets[table->num_targets - 1]; | 
 | 	return (ti->begin == (prev->begin + prev->len)); | 
 | } | 
 |  | 
 | /* | 
 |  * Used to dynamically allocate the arg array. | 
 |  * | 
 |  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must | 
 |  * process messages even if some device is suspended. These messages have a | 
 |  * small fixed number of arguments. | 
 |  * | 
 |  * On the other hand, dm-switch needs to process bulk data using messages and | 
 |  * excessive use of GFP_NOIO could cause trouble. | 
 |  */ | 
 | static char **realloc_argv(unsigned *size, char **old_argv) | 
 | { | 
 | 	char **argv; | 
 | 	unsigned new_size; | 
 | 	gfp_t gfp; | 
 |  | 
 | 	if (*size) { | 
 | 		new_size = *size * 2; | 
 | 		gfp = GFP_KERNEL; | 
 | 	} else { | 
 | 		new_size = 8; | 
 | 		gfp = GFP_NOIO; | 
 | 	} | 
 | 	argv = kmalloc_array(new_size, sizeof(*argv), gfp); | 
 | 	if (argv && old_argv) { | 
 | 		memcpy(argv, old_argv, *size * sizeof(*argv)); | 
 | 		*size = new_size; | 
 | 	} | 
 |  | 
 | 	kfree(old_argv); | 
 | 	return argv; | 
 | } | 
 |  | 
 | /* | 
 |  * Destructively splits up the argument list to pass to ctr. | 
 |  */ | 
 | int dm_split_args(int *argc, char ***argvp, char *input) | 
 | { | 
 | 	char *start, *end = input, *out, **argv = NULL; | 
 | 	unsigned array_size = 0; | 
 |  | 
 | 	*argc = 0; | 
 |  | 
 | 	if (!input) { | 
 | 		*argvp = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	argv = realloc_argv(&array_size, argv); | 
 | 	if (!argv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	while (1) { | 
 | 		/* Skip whitespace */ | 
 | 		start = skip_spaces(end); | 
 |  | 
 | 		if (!*start) | 
 | 			break;	/* success, we hit the end */ | 
 |  | 
 | 		/* 'out' is used to remove any back-quotes */ | 
 | 		end = out = start; | 
 | 		while (*end) { | 
 | 			/* Everything apart from '\0' can be quoted */ | 
 | 			if (*end == '\\' && *(end + 1)) { | 
 | 				*out++ = *(end + 1); | 
 | 				end += 2; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (isspace(*end)) | 
 | 				break;	/* end of token */ | 
 |  | 
 | 			*out++ = *end++; | 
 | 		} | 
 |  | 
 | 		/* have we already filled the array ? */ | 
 | 		if ((*argc + 1) > array_size) { | 
 | 			argv = realloc_argv(&array_size, argv); | 
 | 			if (!argv) | 
 | 				return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		/* we know this is whitespace */ | 
 | 		if (*end) | 
 | 			end++; | 
 |  | 
 | 		/* terminate the string and put it in the array */ | 
 | 		*out = '\0'; | 
 | 		argv[*argc] = start; | 
 | 		(*argc)++; | 
 | 	} | 
 |  | 
 | 	*argvp = argv; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Impose necessary and sufficient conditions on a devices's table such | 
 |  * that any incoming bio which respects its logical_block_size can be | 
 |  * processed successfully.  If it falls across the boundary between | 
 |  * two or more targets, the size of each piece it gets split into must | 
 |  * be compatible with the logical_block_size of the target processing it. | 
 |  */ | 
 | static int validate_hardware_logical_block_alignment(struct dm_table *table, | 
 | 						 struct queue_limits *limits) | 
 | { | 
 | 	/* | 
 | 	 * This function uses arithmetic modulo the logical_block_size | 
 | 	 * (in units of 512-byte sectors). | 
 | 	 */ | 
 | 	unsigned short device_logical_block_size_sects = | 
 | 		limits->logical_block_size >> SECTOR_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Offset of the start of the next table entry, mod logical_block_size. | 
 | 	 */ | 
 | 	unsigned short next_target_start = 0; | 
 |  | 
 | 	/* | 
 | 	 * Given an aligned bio that extends beyond the end of a | 
 | 	 * target, how many sectors must the next target handle? | 
 | 	 */ | 
 | 	unsigned short remaining = 0; | 
 |  | 
 | 	struct dm_target *ti; | 
 | 	struct queue_limits ti_limits; | 
 | 	unsigned i; | 
 |  | 
 | 	/* | 
 | 	 * Check each entry in the table in turn. | 
 | 	 */ | 
 | 	for (i = 0; i < dm_table_get_num_targets(table); i++) { | 
 | 		ti = dm_table_get_target(table, i); | 
 |  | 
 | 		blk_set_stacking_limits(&ti_limits); | 
 |  | 
 | 		/* combine all target devices' limits */ | 
 | 		if (ti->type->iterate_devices) | 
 | 			ti->type->iterate_devices(ti, dm_set_device_limits, | 
 | 						  &ti_limits); | 
 |  | 
 | 		/* | 
 | 		 * If the remaining sectors fall entirely within this | 
 | 		 * table entry are they compatible with its logical_block_size? | 
 | 		 */ | 
 | 		if (remaining < ti->len && | 
 | 		    remaining & ((ti_limits.logical_block_size >> | 
 | 				  SECTOR_SHIFT) - 1)) | 
 | 			break;	/* Error */ | 
 |  | 
 | 		next_target_start = | 
 | 		    (unsigned short) ((next_target_start + ti->len) & | 
 | 				      (device_logical_block_size_sects - 1)); | 
 | 		remaining = next_target_start ? | 
 | 		    device_logical_block_size_sects - next_target_start : 0; | 
 | 	} | 
 |  | 
 | 	if (remaining) { | 
 | 		DMWARN("%s: table line %u (start sect %llu len %llu) " | 
 | 		       "not aligned to h/w logical block size %u", | 
 | 		       dm_device_name(table->md), i, | 
 | 		       (unsigned long long) ti->begin, | 
 | 		       (unsigned long long) ti->len, | 
 | 		       limits->logical_block_size); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_table_add_target(struct dm_table *t, const char *type, | 
 | 			sector_t start, sector_t len, char *params) | 
 | { | 
 | 	int r = -EINVAL, argc; | 
 | 	char **argv; | 
 | 	struct dm_target *tgt; | 
 |  | 
 | 	if (t->singleton) { | 
 | 		DMERR("%s: target type %s must appear alone in table", | 
 | 		      dm_device_name(t->md), t->targets->type->name); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	BUG_ON(t->num_targets >= t->num_allocated); | 
 |  | 
 | 	tgt = t->targets + t->num_targets; | 
 | 	memset(tgt, 0, sizeof(*tgt)); | 
 |  | 
 | 	if (!len) { | 
 | 		DMERR("%s: zero-length target", dm_device_name(t->md)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tgt->type = dm_get_target_type(type); | 
 | 	if (!tgt->type) { | 
 | 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (dm_target_needs_singleton(tgt->type)) { | 
 | 		if (t->num_targets) { | 
 | 			tgt->error = "singleton target type must appear alone in table"; | 
 | 			goto bad; | 
 | 		} | 
 | 		t->singleton = true; | 
 | 	} | 
 |  | 
 | 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { | 
 | 		tgt->error = "target type may not be included in a read-only table"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (t->immutable_target_type) { | 
 | 		if (t->immutable_target_type != tgt->type) { | 
 | 			tgt->error = "immutable target type cannot be mixed with other target types"; | 
 | 			goto bad; | 
 | 		} | 
 | 	} else if (dm_target_is_immutable(tgt->type)) { | 
 | 		if (t->num_targets) { | 
 | 			tgt->error = "immutable target type cannot be mixed with other target types"; | 
 | 			goto bad; | 
 | 		} | 
 | 		t->immutable_target_type = tgt->type; | 
 | 	} | 
 |  | 
 | 	if (dm_target_has_integrity(tgt->type)) | 
 | 		t->integrity_added = 1; | 
 |  | 
 | 	tgt->table = t; | 
 | 	tgt->begin = start; | 
 | 	tgt->len = len; | 
 | 	tgt->error = "Unknown error"; | 
 |  | 
 | 	/* | 
 | 	 * Does this target adjoin the previous one ? | 
 | 	 */ | 
 | 	if (!adjoin(t, tgt)) { | 
 | 		tgt->error = "Gap in table"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	r = dm_split_args(&argc, &argv, params); | 
 | 	if (r) { | 
 | 		tgt->error = "couldn't split parameters (insufficient memory)"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	r = tgt->type->ctr(tgt, argc, argv); | 
 | 	kfree(argv); | 
 | 	if (r) | 
 | 		goto bad; | 
 |  | 
 | 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; | 
 |  | 
 | 	if (!tgt->num_discard_bios && tgt->discards_supported) | 
 | 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", | 
 | 		       dm_device_name(t->md), type); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  bad: | 
 | 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); | 
 | 	dm_put_target_type(tgt->type); | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Target argument parsing helpers. | 
 |  */ | 
 | static int validate_next_arg(const struct dm_arg *arg, | 
 | 			     struct dm_arg_set *arg_set, | 
 | 			     unsigned *value, char **error, unsigned grouped) | 
 | { | 
 | 	const char *arg_str = dm_shift_arg(arg_set); | 
 | 	char dummy; | 
 |  | 
 | 	if (!arg_str || | 
 | 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) || | 
 | 	    (*value < arg->min) || | 
 | 	    (*value > arg->max) || | 
 | 	    (grouped && arg_set->argc < *value)) { | 
 | 		*error = arg->error; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, | 
 | 		unsigned *value, char **error) | 
 | { | 
 | 	return validate_next_arg(arg, arg_set, value, error, 0); | 
 | } | 
 | EXPORT_SYMBOL(dm_read_arg); | 
 |  | 
 | int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, | 
 | 		      unsigned *value, char **error) | 
 | { | 
 | 	return validate_next_arg(arg, arg_set, value, error, 1); | 
 | } | 
 | EXPORT_SYMBOL(dm_read_arg_group); | 
 |  | 
 | const char *dm_shift_arg(struct dm_arg_set *as) | 
 | { | 
 | 	char *r; | 
 |  | 
 | 	if (as->argc) { | 
 | 		as->argc--; | 
 | 		r = *as->argv; | 
 | 		as->argv++; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(dm_shift_arg); | 
 |  | 
 | void dm_consume_args(struct dm_arg_set *as, unsigned num_args) | 
 | { | 
 | 	BUG_ON(as->argc < num_args); | 
 | 	as->argc -= num_args; | 
 | 	as->argv += num_args; | 
 | } | 
 | EXPORT_SYMBOL(dm_consume_args); | 
 |  | 
 | static bool __table_type_bio_based(enum dm_queue_mode table_type) | 
 | { | 
 | 	return (table_type == DM_TYPE_BIO_BASED || | 
 | 		table_type == DM_TYPE_DAX_BIO_BASED); | 
 | } | 
 |  | 
 | static bool __table_type_request_based(enum dm_queue_mode table_type) | 
 | { | 
 | 	return table_type == DM_TYPE_REQUEST_BASED; | 
 | } | 
 |  | 
 | void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) | 
 | { | 
 | 	t->type = type; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_table_set_type); | 
 |  | 
 | /* validate the dax capability of the target device span */ | 
 | int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 			sector_t start, sector_t len, void *data) | 
 | { | 
 | 	int blocksize = *(int *) data, id; | 
 | 	bool rc; | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); | 
 | 	dax_read_unlock(id); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Check devices support synchronous DAX */ | 
 | static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 					      sector_t start, sector_t len, void *data) | 
 | { | 
 | 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev); | 
 | } | 
 |  | 
 | bool dm_table_supports_dax(struct dm_table *t, | 
 | 			   iterate_devices_callout_fn iterate_fn, int *blocksize) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	/* Ensure that all targets support DAX. */ | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (!ti->type->direct_access) | 
 | 			return false; | 
 |  | 
 | 		if (!ti->type->iterate_devices || | 
 | 		    ti->type->iterate_devices(ti, iterate_fn, blocksize)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, | 
 | 				  sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct block_device *bdev = dev->bdev; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 |  | 
 | 	/* request-based cannot stack on partitions! */ | 
 | 	if (bdev != bdev->bd_contains) | 
 | 		return false; | 
 |  | 
 | 	return queue_is_mq(q); | 
 | } | 
 |  | 
 | static int dm_table_determine_type(struct dm_table *t) | 
 | { | 
 | 	unsigned i; | 
 | 	unsigned bio_based = 0, request_based = 0, hybrid = 0; | 
 | 	struct dm_target *tgt; | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 | 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md); | 
 | 	int page_size = PAGE_SIZE; | 
 |  | 
 | 	if (t->type != DM_TYPE_NONE) { | 
 | 		/* target already set the table's type */ | 
 | 		if (t->type == DM_TYPE_BIO_BASED) { | 
 | 			/* possibly upgrade to a variant of bio-based */ | 
 | 			goto verify_bio_based; | 
 | 		} | 
 | 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); | 
 | 		goto verify_rq_based; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		tgt = t->targets + i; | 
 | 		if (dm_target_hybrid(tgt)) | 
 | 			hybrid = 1; | 
 | 		else if (dm_target_request_based(tgt)) | 
 | 			request_based = 1; | 
 | 		else | 
 | 			bio_based = 1; | 
 |  | 
 | 		if (bio_based && request_based) { | 
 | 			DMERR("Inconsistent table: different target types" | 
 | 			      " can't be mixed up"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (hybrid && !bio_based && !request_based) { | 
 | 		/* | 
 | 		 * The targets can work either way. | 
 | 		 * Determine the type from the live device. | 
 | 		 * Default to bio-based if device is new. | 
 | 		 */ | 
 | 		if (__table_type_request_based(live_md_type)) | 
 | 			request_based = 1; | 
 | 		else | 
 | 			bio_based = 1; | 
 | 	} | 
 |  | 
 | 	if (bio_based) { | 
 | verify_bio_based: | 
 | 		/* We must use this table as bio-based */ | 
 | 		t->type = DM_TYPE_BIO_BASED; | 
 | 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) || | 
 | 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { | 
 | 			t->type = DM_TYPE_DAX_BIO_BASED; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!request_based); /* No targets in this table */ | 
 |  | 
 | 	t->type = DM_TYPE_REQUEST_BASED; | 
 |  | 
 | verify_rq_based: | 
 | 	/* | 
 | 	 * Request-based dm supports only tables that have a single target now. | 
 | 	 * To support multiple targets, request splitting support is needed, | 
 | 	 * and that needs lots of changes in the block-layer. | 
 | 	 * (e.g. request completion process for partial completion.) | 
 | 	 */ | 
 | 	if (t->num_targets > 1) { | 
 | 		DMERR("request-based DM doesn't support multiple targets"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (list_empty(devices)) { | 
 | 		int srcu_idx; | 
 | 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); | 
 |  | 
 | 		/* inherit live table's type */ | 
 | 		if (live_table) | 
 | 			t->type = live_table->type; | 
 | 		dm_put_live_table(t->md, srcu_idx); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	tgt = dm_table_get_immutable_target(t); | 
 | 	if (!tgt) { | 
 | 		DMERR("table load rejected: immutable target is required"); | 
 | 		return -EINVAL; | 
 | 	} else if (tgt->max_io_len) { | 
 | 		DMERR("table load rejected: immutable target that splits IO is not supported"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Non-request-stackable devices can't be used for request-based dm */ | 
 | 	if (!tgt->type->iterate_devices || | 
 | 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { | 
 | 		DMERR("table load rejected: including non-request-stackable devices"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | enum dm_queue_mode dm_table_get_type(struct dm_table *t) | 
 | { | 
 | 	return t->type; | 
 | } | 
 |  | 
 | struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) | 
 | { | 
 | 	return t->immutable_target_type; | 
 | } | 
 |  | 
 | struct dm_target *dm_table_get_immutable_target(struct dm_table *t) | 
 | { | 
 | 	/* Immutable target is implicitly a singleton */ | 
 | 	if (t->num_targets > 1 || | 
 | 	    !dm_target_is_immutable(t->targets[0].type)) | 
 | 		return NULL; | 
 |  | 
 | 	return t->targets; | 
 | } | 
 |  | 
 | struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 | 		if (dm_target_is_wildcard(ti->type)) | 
 | 			return ti; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | bool dm_table_bio_based(struct dm_table *t) | 
 | { | 
 | 	return __table_type_bio_based(dm_table_get_type(t)); | 
 | } | 
 |  | 
 | bool dm_table_request_based(struct dm_table *t) | 
 | { | 
 | 	return __table_type_request_based(dm_table_get_type(t)); | 
 | } | 
 |  | 
 | static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) | 
 | { | 
 | 	enum dm_queue_mode type = dm_table_get_type(t); | 
 | 	unsigned per_io_data_size = 0; | 
 | 	unsigned min_pool_size = 0; | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	if (unlikely(type == DM_TYPE_NONE)) { | 
 | 		DMWARN("no table type is set, can't allocate mempools"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (__table_type_bio_based(type)) | 
 | 		for (i = 0; i < t->num_targets; i++) { | 
 | 			ti = t->targets + i; | 
 | 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size); | 
 | 			min_pool_size = max(min_pool_size, ti->num_flush_bios); | 
 | 		} | 
 |  | 
 | 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, | 
 | 					   per_io_data_size, min_pool_size); | 
 | 	if (!t->mempools) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_table_free_md_mempools(struct dm_table *t) | 
 | { | 
 | 	dm_free_md_mempools(t->mempools); | 
 | 	t->mempools = NULL; | 
 | } | 
 |  | 
 | struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) | 
 | { | 
 | 	return t->mempools; | 
 | } | 
 |  | 
 | static int setup_indexes(struct dm_table *t) | 
 | { | 
 | 	int i; | 
 | 	unsigned int total = 0; | 
 | 	sector_t *indexes; | 
 |  | 
 | 	/* allocate the space for *all* the indexes */ | 
 | 	for (i = t->depth - 2; i >= 0; i--) { | 
 | 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); | 
 | 		total += t->counts[i]; | 
 | 	} | 
 |  | 
 | 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); | 
 | 	if (!indexes) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* set up internal nodes, bottom-up */ | 
 | 	for (i = t->depth - 2; i >= 0; i--) { | 
 | 		t->index[i] = indexes; | 
 | 		indexes += (KEYS_PER_NODE * t->counts[i]); | 
 | 		setup_btree_index(i, t); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Builds the btree to index the map. | 
 |  */ | 
 | static int dm_table_build_index(struct dm_table *t) | 
 | { | 
 | 	int r = 0; | 
 | 	unsigned int leaf_nodes; | 
 |  | 
 | 	/* how many indexes will the btree have ? */ | 
 | 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); | 
 | 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); | 
 |  | 
 | 	/* leaf layer has already been set up */ | 
 | 	t->counts[t->depth - 1] = leaf_nodes; | 
 | 	t->index[t->depth - 1] = t->highs; | 
 |  | 
 | 	if (t->depth >= 2) | 
 | 		r = setup_indexes(t); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool integrity_profile_exists(struct gendisk *disk) | 
 | { | 
 | 	return !!blk_get_integrity(disk); | 
 | } | 
 |  | 
 | /* | 
 |  * Get a disk whose integrity profile reflects the table's profile. | 
 |  * Returns NULL if integrity support was inconsistent or unavailable. | 
 |  */ | 
 | static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) | 
 | { | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 | 	struct dm_dev_internal *dd = NULL; | 
 | 	struct gendisk *prev_disk = NULL, *template_disk = NULL; | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		struct dm_target *ti = dm_table_get_target(t, i); | 
 | 		if (!dm_target_passes_integrity(ti->type)) | 
 | 			goto no_integrity; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		template_disk = dd->dm_dev->bdev->bd_disk; | 
 | 		if (!integrity_profile_exists(template_disk)) | 
 | 			goto no_integrity; | 
 | 		else if (prev_disk && | 
 | 			 blk_integrity_compare(prev_disk, template_disk) < 0) | 
 | 			goto no_integrity; | 
 | 		prev_disk = template_disk; | 
 | 	} | 
 |  | 
 | 	return template_disk; | 
 |  | 
 | no_integrity: | 
 | 	if (prev_disk) | 
 | 		DMWARN("%s: integrity not set: %s and %s profile mismatch", | 
 | 		       dm_device_name(t->md), | 
 | 		       prev_disk->disk_name, | 
 | 		       template_disk->disk_name); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Register the mapped device for blk_integrity support if the | 
 |  * underlying devices have an integrity profile.  But all devices may | 
 |  * not have matching profiles (checking all devices isn't reliable | 
 |  * during table load because this table may use other DM device(s) which | 
 |  * must be resumed before they will have an initialized integity | 
 |  * profile).  Consequently, stacked DM devices force a 2 stage integrity | 
 |  * profile validation: First pass during table load, final pass during | 
 |  * resume. | 
 |  */ | 
 | static int dm_table_register_integrity(struct dm_table *t) | 
 | { | 
 | 	struct mapped_device *md = t->md; | 
 | 	struct gendisk *template_disk = NULL; | 
 |  | 
 | 	/* If target handles integrity itself do not register it here. */ | 
 | 	if (t->integrity_added) | 
 | 		return 0; | 
 |  | 
 | 	template_disk = dm_table_get_integrity_disk(t); | 
 | 	if (!template_disk) | 
 | 		return 0; | 
 |  | 
 | 	if (!integrity_profile_exists(dm_disk(md))) { | 
 | 		t->integrity_supported = true; | 
 | 		/* | 
 | 		 * Register integrity profile during table load; we can do | 
 | 		 * this because the final profile must match during resume. | 
 | 		 */ | 
 | 		blk_integrity_register(dm_disk(md), | 
 | 				       blk_get_integrity(template_disk)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If DM device already has an initialized integrity | 
 | 	 * profile the new profile should not conflict. | 
 | 	 */ | 
 | 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { | 
 | 		DMWARN("%s: conflict with existing integrity profile: " | 
 | 		       "%s profile mismatch", | 
 | 		       dm_device_name(t->md), | 
 | 		       template_disk->disk_name); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Preserve existing integrity profile */ | 
 | 	t->integrity_supported = true; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_INLINE_ENCRYPTION | 
 |  | 
 | struct dm_keyslot_manager { | 
 | 	struct blk_keyslot_manager ksm; | 
 | 	struct mapped_device *md; | 
 | }; | 
 |  | 
 | static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, | 
 | 				     sector_t start, sector_t len, void *data) | 
 | { | 
 | 	const struct blk_crypto_key *key = data; | 
 |  | 
 | 	blk_crypto_evict_key(bdev_get_queue(dev->bdev), key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When an inline encryption key is evicted from a device-mapper device, evict | 
 |  * it from all the underlying devices. | 
 |  */ | 
 | static int dm_keyslot_evict(struct blk_keyslot_manager *ksm, | 
 | 			    const struct blk_crypto_key *key, unsigned int slot) | 
 | { | 
 | 	struct dm_keyslot_manager *dksm = container_of(ksm, | 
 | 						       struct dm_keyslot_manager, | 
 | 						       ksm); | 
 | 	struct mapped_device *md = dksm->md; | 
 | 	struct dm_table *t; | 
 | 	int srcu_idx; | 
 | 	int i; | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	t = dm_get_live_table(md, &srcu_idx); | 
 | 	if (!t) | 
 | 		return 0; | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 | 		if (!ti->type->iterate_devices) | 
 | 			continue; | 
 | 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, | 
 | 					  (void *)key); | 
 | 	} | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct dm_derive_raw_secret_args { | 
 | 	const u8 *wrapped_key; | 
 | 	unsigned int wrapped_key_size; | 
 | 	u8 *secret; | 
 | 	unsigned int secret_size; | 
 | 	int err; | 
 | }; | 
 |  | 
 | static int dm_derive_raw_secret_callback(struct dm_target *ti, | 
 | 					 struct dm_dev *dev, sector_t start, | 
 | 					 sector_t len, void *data) | 
 | { | 
 | 	struct dm_derive_raw_secret_args *args = data; | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	if (!args->err) | 
 | 		return 0; | 
 |  | 
 | 	if (!q->ksm) { | 
 | 		args->err = -EOPNOTSUPP; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	args->err = blk_ksm_derive_raw_secret(q->ksm, args->wrapped_key, | 
 | 					      args->wrapped_key_size, | 
 | 					      args->secret, | 
 | 					      args->secret_size); | 
 | 	/* Try another device in case this fails. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the raw_secret from the underlying device.  Given that only one | 
 |  * raw_secret can exist for a particular wrappedkey, retrieve it only from the | 
 |  * first device that supports derive_raw_secret(). | 
 |  */ | 
 | static int dm_derive_raw_secret(struct blk_keyslot_manager *ksm, | 
 | 				const u8 *wrapped_key, | 
 | 				unsigned int wrapped_key_size, | 
 | 				u8 *secret, unsigned int secret_size) | 
 | { | 
 | 	struct dm_keyslot_manager *dksm = container_of(ksm, | 
 | 						       struct dm_keyslot_manager, | 
 | 						       ksm); | 
 | 	struct mapped_device *md = dksm->md; | 
 | 	struct dm_derive_raw_secret_args args = { | 
 | 		.wrapped_key = wrapped_key, | 
 | 		.wrapped_key_size = wrapped_key_size, | 
 | 		.secret = secret, | 
 | 		.secret_size = secret_size, | 
 | 		.err = -EOPNOTSUPP, | 
 | 	}; | 
 | 	struct dm_table *t; | 
 | 	int srcu_idx; | 
 | 	int i; | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	t = dm_get_live_table(md, &srcu_idx); | 
 | 	if (!t) | 
 | 		return -EOPNOTSUPP; | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 | 		if (!ti->type->iterate_devices) | 
 | 			continue; | 
 | 		ti->type->iterate_devices(ti, dm_derive_raw_secret_callback, | 
 | 					  &args); | 
 | 		if (!args.err) | 
 | 			break; | 
 | 	} | 
 | 	dm_put_live_table(md, srcu_idx); | 
 | 	return args.err; | 
 | } | 
 |  | 
 |  | 
 | static struct blk_ksm_ll_ops dm_ksm_ll_ops = { | 
 | 	.keyslot_evict = dm_keyslot_evict, | 
 | 	.derive_raw_secret = dm_derive_raw_secret, | 
 | }; | 
 |  | 
 | static int device_intersect_crypto_modes(struct dm_target *ti, | 
 | 					 struct dm_dev *dev, sector_t start, | 
 | 					 sector_t len, void *data) | 
 | { | 
 | 	struct blk_keyslot_manager *parent = data; | 
 | 	struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm; | 
 |  | 
 | 	blk_ksm_intersect_modes(parent, child); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) | 
 | { | 
 | 	struct dm_keyslot_manager *dksm = container_of(ksm, | 
 | 						       struct dm_keyslot_manager, | 
 | 						       ksm); | 
 |  | 
 | 	if (!ksm) | 
 | 		return; | 
 |  | 
 | 	blk_ksm_destroy(ksm); | 
 | 	kfree(dksm); | 
 | } | 
 |  | 
 | static void dm_table_destroy_keyslot_manager(struct dm_table *t) | 
 | { | 
 | 	dm_destroy_keyslot_manager(t->ksm); | 
 | 	t->ksm = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Constructs and initializes t->ksm with a keyslot manager that | 
 |  * represents the common set of crypto capabilities of the devices | 
 |  * described by the dm_table. However, if the constructed keyslot | 
 |  * manager does not support a superset of the crypto capabilities | 
 |  * supported by the current keyslot manager of the mapped_device, | 
 |  * it returns an error instead, since we don't support restricting | 
 |  * crypto capabilities on table changes. Finally, if the constructed | 
 |  * keyslot manager doesn't actually support any crypto modes at all, | 
 |  * it just returns NULL. | 
 |  */ | 
 | static int dm_table_construct_keyslot_manager(struct dm_table *t) | 
 | { | 
 | 	struct dm_keyslot_manager *dksm; | 
 | 	struct blk_keyslot_manager *ksm; | 
 | 	struct dm_target *ti; | 
 | 	unsigned int i; | 
 | 	bool ksm_is_empty = true; | 
 |  | 
 | 	dksm = kmalloc(sizeof(*dksm), GFP_KERNEL); | 
 | 	if (!dksm) | 
 | 		return -ENOMEM; | 
 | 	dksm->md = t->md; | 
 |  | 
 | 	ksm = &dksm->ksm; | 
 | 	blk_ksm_init_passthrough(ksm); | 
 | 	ksm->ksm_ll_ops = dm_ksm_ll_ops; | 
 | 	ksm->max_dun_bytes_supported = UINT_MAX; | 
 | 	memset(ksm->crypto_modes_supported, 0xFF, | 
 | 	       sizeof(ksm->crypto_modes_supported)); | 
 | 	ksm->features = BLK_CRYPTO_FEATURE_STANDARD_KEYS | | 
 | 			BLK_CRYPTO_FEATURE_WRAPPED_KEYS; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (!dm_target_passes_crypto(ti->type)) { | 
 | 			blk_ksm_intersect_modes(ksm, NULL); | 
 | 			break; | 
 | 		} | 
 | 		if (!ti->type->iterate_devices) | 
 | 			continue; | 
 | 		ti->type->iterate_devices(ti, device_intersect_crypto_modes, | 
 | 					  ksm); | 
 | 	} | 
 |  | 
 | 	if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) { | 
 | 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); | 
 | 		dm_destroy_keyslot_manager(ksm); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the new KSM doesn't actually support any crypto modes, we may as | 
 | 	 * well represent it with a NULL ksm. | 
 | 	 */ | 
 | 	ksm_is_empty = true; | 
 | 	for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) { | 
 | 		if (ksm->crypto_modes_supported[i]) { | 
 | 			ksm_is_empty = false; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ksm_is_empty) { | 
 | 		dm_destroy_keyslot_manager(ksm); | 
 | 		ksm = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * t->ksm is only set temporarily while the table is being set | 
 | 	 * up, and it gets set to NULL after the capabilities have | 
 | 	 * been transferred to the request_queue. | 
 | 	 */ | 
 | 	t->ksm = ksm; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dm_update_keyslot_manager(struct request_queue *q, | 
 | 				      struct dm_table *t) | 
 | { | 
 | 	if (!t->ksm) | 
 | 		return; | 
 |  | 
 | 	/* Make the ksm less restrictive */ | 
 | 	if (!q->ksm) { | 
 | 		blk_ksm_register(t->ksm, q); | 
 | 	} else { | 
 | 		blk_ksm_update_capabilities(q->ksm, t->ksm); | 
 | 		dm_destroy_keyslot_manager(t->ksm); | 
 | 	} | 
 | 	t->ksm = NULL; | 
 | } | 
 |  | 
 | #else /* CONFIG_BLK_INLINE_ENCRYPTION */ | 
 |  | 
 | static int dm_table_construct_keyslot_manager(struct dm_table *t) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) | 
 | { | 
 | } | 
 |  | 
 | static void dm_table_destroy_keyslot_manager(struct dm_table *t) | 
 | { | 
 | } | 
 |  | 
 | static void dm_update_keyslot_manager(struct request_queue *q, | 
 | 				      struct dm_table *t) | 
 | { | 
 | } | 
 |  | 
 | #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ | 
 |  | 
 | /* | 
 |  * Prepares the table for use by building the indices, | 
 |  * setting the type, and allocating mempools. | 
 |  */ | 
 | int dm_table_complete(struct dm_table *t) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = dm_table_determine_type(t); | 
 | 	if (r) { | 
 | 		DMERR("unable to determine table type"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_build_index(t); | 
 | 	if (r) { | 
 | 		DMERR("unable to build btrees"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_register_integrity(t); | 
 | 	if (r) { | 
 | 		DMERR("could not register integrity profile."); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_construct_keyslot_manager(t); | 
 | 	if (r) { | 
 | 		DMERR("could not construct keyslot manager."); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = dm_table_alloc_md_mempools(t, t->md); | 
 | 	if (r) | 
 | 		DMERR("unable to allocate mempools"); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(_event_lock); | 
 | void dm_table_event_callback(struct dm_table *t, | 
 | 			     void (*fn)(void *), void *context) | 
 | { | 
 | 	mutex_lock(&_event_lock); | 
 | 	t->event_fn = fn; | 
 | 	t->event_context = context; | 
 | 	mutex_unlock(&_event_lock); | 
 | } | 
 |  | 
 | void dm_table_event(struct dm_table *t) | 
 | { | 
 | 	mutex_lock(&_event_lock); | 
 | 	if (t->event_fn) | 
 | 		t->event_fn(t->event_context); | 
 | 	mutex_unlock(&_event_lock); | 
 | } | 
 | EXPORT_SYMBOL(dm_table_event); | 
 |  | 
 | inline sector_t dm_table_get_size(struct dm_table *t) | 
 | { | 
 | 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; | 
 | } | 
 | EXPORT_SYMBOL(dm_table_get_size); | 
 |  | 
 | struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) | 
 | { | 
 | 	if (index >= t->num_targets) | 
 | 		return NULL; | 
 |  | 
 | 	return t->targets + index; | 
 | } | 
 |  | 
 | /* | 
 |  * Search the btree for the correct target. | 
 |  * | 
 |  * Caller should check returned pointer for NULL | 
 |  * to trap I/O beyond end of device. | 
 |  */ | 
 | struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) | 
 | { | 
 | 	unsigned int l, n = 0, k = 0; | 
 | 	sector_t *node; | 
 |  | 
 | 	if (unlikely(sector >= dm_table_get_size(t))) | 
 | 		return NULL; | 
 |  | 
 | 	for (l = 0; l < t->depth; l++) { | 
 | 		n = get_child(n, k); | 
 | 		node = get_node(t, l, n); | 
 |  | 
 | 		for (k = 0; k < KEYS_PER_NODE; k++) | 
 | 			if (node[k] >= sector) | 
 | 				break; | 
 | 	} | 
 |  | 
 | 	return &t->targets[(KEYS_PER_NODE * n) + k]; | 
 | } | 
 |  | 
 | /* | 
 |  * type->iterate_devices() should be called when the sanity check needs to | 
 |  * iterate and check all underlying data devices. iterate_devices() will | 
 |  * iterate all underlying data devices until it encounters a non-zero return | 
 |  * code, returned by whether the input iterate_devices_callout_fn, or | 
 |  * iterate_devices() itself internally. | 
 |  * | 
 |  * For some target type (e.g. dm-stripe), one call of iterate_devices() may | 
 |  * iterate multiple underlying devices internally, in which case a non-zero | 
 |  * return code returned by iterate_devices_callout_fn will stop the iteration | 
 |  * in advance. | 
 |  * | 
 |  * Cases requiring _any_ underlying device supporting some kind of attribute, | 
 |  * should use the iteration structure like dm_table_any_dev_attr(), or call | 
 |  * it directly. @func should handle semantics of positive examples, e.g. | 
 |  * capable of something. | 
 |  * | 
 |  * Cases requiring _all_ underlying devices supporting some kind of attribute, | 
 |  * should use the iteration structure like dm_table_supports_nowait() or | 
 |  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that | 
 |  * uses an @anti_func that handle semantics of counter examples, e.g. not | 
 |  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); | 
 |  */ | 
 | static bool dm_table_any_dev_attr(struct dm_table *t, | 
 | 				  iterate_devices_callout_fn func, void *data) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (ti->type->iterate_devices && | 
 | 		    ti->type->iterate_devices(ti, func, data)) | 
 | 			return true; | 
 |         } | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int count_device(struct dm_target *ti, struct dm_dev *dev, | 
 | 			sector_t start, sector_t len, void *data) | 
 | { | 
 | 	unsigned *num_devices = data; | 
 |  | 
 | 	(*num_devices)++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether a table has no data devices attached using each | 
 |  * target's iterate_devices method. | 
 |  * Returns false if the result is unknown because a target doesn't | 
 |  * support iterate_devices. | 
 |  */ | 
 | bool dm_table_has_no_data_devices(struct dm_table *table) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i, num_devices; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(table); i++) { | 
 | 		ti = dm_table_get_target(table, i); | 
 |  | 
 | 		if (!ti->type->iterate_devices) | 
 | 			return false; | 
 |  | 
 | 		num_devices = 0; | 
 | 		ti->type->iterate_devices(ti, count_device, &num_devices); | 
 | 		if (num_devices) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, | 
 | 				  sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 | 	enum blk_zoned_model *zoned_model = data; | 
 |  | 
 | 	return !q || blk_queue_zoned_model(q) != *zoned_model; | 
 | } | 
 |  | 
 | static bool dm_table_supports_zoned_model(struct dm_table *t, | 
 | 					  enum blk_zoned_model zoned_model) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (zoned_model == BLK_ZONED_HM && | 
 | 		    !dm_target_supports_zoned_hm(ti->type)) | 
 | 			return false; | 
 |  | 
 | 		if (!ti->type->iterate_devices || | 
 | 		    ti->type->iterate_devices(ti, device_not_zoned_model, &zoned_model)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, | 
 | 					   sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 | 	unsigned int *zone_sectors = data; | 
 |  | 
 | 	return !q || blk_queue_zone_sectors(q) != *zone_sectors; | 
 | } | 
 |  | 
 | static int validate_hardware_zoned_model(struct dm_table *table, | 
 | 					 enum blk_zoned_model zoned_model, | 
 | 					 unsigned int zone_sectors) | 
 | { | 
 | 	if (zoned_model == BLK_ZONED_NONE) | 
 | 		return 0; | 
 |  | 
 | 	if (!dm_table_supports_zoned_model(table, zoned_model)) { | 
 | 		DMERR("%s: zoned model is not consistent across all devices", | 
 | 		      dm_device_name(table->md)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Check zone size validity and compatibility */ | 
 | 	if (!zone_sectors || !is_power_of_2(zone_sectors)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { | 
 | 		DMERR("%s: zone sectors is not consistent across all devices", | 
 | 		      dm_device_name(table->md)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Establish the new table's queue_limits and validate them. | 
 |  */ | 
 | int dm_calculate_queue_limits(struct dm_table *table, | 
 | 			      struct queue_limits *limits) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	struct queue_limits ti_limits; | 
 | 	unsigned i; | 
 | 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE; | 
 | 	unsigned int zone_sectors = 0; | 
 |  | 
 | 	blk_set_stacking_limits(limits); | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(table); i++) { | 
 | 		blk_set_stacking_limits(&ti_limits); | 
 |  | 
 | 		ti = dm_table_get_target(table, i); | 
 |  | 
 | 		if (!ti->type->iterate_devices) | 
 | 			goto combine_limits; | 
 |  | 
 | 		/* | 
 | 		 * Combine queue limits of all the devices this target uses. | 
 | 		 */ | 
 | 		ti->type->iterate_devices(ti, dm_set_device_limits, | 
 | 					  &ti_limits); | 
 |  | 
 | 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { | 
 | 			/* | 
 | 			 * After stacking all limits, validate all devices | 
 | 			 * in table support this zoned model and zone sectors. | 
 | 			 */ | 
 | 			zoned_model = ti_limits.zoned; | 
 | 			zone_sectors = ti_limits.chunk_sectors; | 
 | 		} | 
 |  | 
 | 		/* Set I/O hints portion of queue limits */ | 
 | 		if (ti->type->io_hints) | 
 | 			ti->type->io_hints(ti, &ti_limits); | 
 |  | 
 | 		/* | 
 | 		 * Check each device area is consistent with the target's | 
 | 		 * overall queue limits. | 
 | 		 */ | 
 | 		if (ti->type->iterate_devices(ti, device_area_is_invalid, | 
 | 					      &ti_limits)) | 
 | 			return -EINVAL; | 
 |  | 
 | combine_limits: | 
 | 		/* | 
 | 		 * Merge this target's queue limits into the overall limits | 
 | 		 * for the table. | 
 | 		 */ | 
 | 		if (blk_stack_limits(limits, &ti_limits, 0) < 0) | 
 | 			DMWARN("%s: adding target device " | 
 | 			       "(start sect %llu len %llu) " | 
 | 			       "caused an alignment inconsistency", | 
 | 			       dm_device_name(table->md), | 
 | 			       (unsigned long long) ti->begin, | 
 | 			       (unsigned long long) ti->len); | 
 |  | 
 | 		/* | 
 | 		 * FIXME: this should likely be moved to blk_stack_limits(), would | 
 | 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits() | 
 | 		 */ | 
 | 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { | 
 | 			/* | 
 | 			 * By default, the stacked limits zoned model is set to | 
 | 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update | 
 | 			 * this model using the first target model reported | 
 | 			 * that is not BLK_ZONED_NONE. This will be either the | 
 | 			 * first target device zoned model or the model reported | 
 | 			 * by the target .io_hints. | 
 | 			 */ | 
 | 			limits->zoned = ti_limits.zoned; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Verify that the zoned model and zone sectors, as determined before | 
 | 	 * any .io_hints override, are the same across all devices in the table. | 
 | 	 * - this is especially relevant if .io_hints is emulating a disk-managed | 
 | 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. | 
 | 	 * BUT... | 
 | 	 */ | 
 | 	if (limits->zoned != BLK_ZONED_NONE) { | 
 | 		/* | 
 | 		 * ...IF the above limits stacking determined a zoned model | 
 | 		 * validate that all of the table's devices conform to it. | 
 | 		 */ | 
 | 		zoned_model = limits->zoned; | 
 | 		zone_sectors = limits->chunk_sectors; | 
 | 	} | 
 | 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return validate_hardware_logical_block_alignment(table, limits); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that all devices have an integrity profile that matches the | 
 |  * DM device's registered integrity profile.  If the profiles don't | 
 |  * match then unregister the DM device's integrity profile. | 
 |  */ | 
 | static void dm_table_verify_integrity(struct dm_table *t) | 
 | { | 
 | 	struct gendisk *template_disk = NULL; | 
 |  | 
 | 	if (t->integrity_added) | 
 | 		return; | 
 |  | 
 | 	if (t->integrity_supported) { | 
 | 		/* | 
 | 		 * Verify that the original integrity profile | 
 | 		 * matches all the devices in this table. | 
 | 		 */ | 
 | 		template_disk = dm_table_get_integrity_disk(t); | 
 | 		if (template_disk && | 
 | 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (integrity_profile_exists(dm_disk(t->md))) { | 
 | 		DMWARN("%s: unable to establish an integrity profile", | 
 | 		       dm_device_name(t->md)); | 
 | 		blk_integrity_unregister(dm_disk(t->md)); | 
 | 	} | 
 | } | 
 |  | 
 | static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 				sector_t start, sector_t len, void *data) | 
 | { | 
 | 	unsigned long flush = (unsigned long) data; | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && (q->queue_flags & flush); | 
 | } | 
 |  | 
 | static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	/* | 
 | 	 * Require at least one underlying device to support flushes. | 
 | 	 * t->devices includes internal dm devices such as mirror logs | 
 | 	 * so we need to use iterate_devices here, which targets | 
 | 	 * supporting flushes must provide. | 
 | 	 */ | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (!ti->num_flush_bios) | 
 | 			continue; | 
 |  | 
 | 		if (ti->flush_supported) | 
 | 			return true; | 
 |  | 
 | 		if (ti->type->iterate_devices && | 
 | 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int device_dax_write_cache_enabled(struct dm_target *ti, | 
 | 					  struct dm_dev *dev, sector_t start, | 
 | 					  sector_t len, void *data) | 
 | { | 
 | 	struct dax_device *dax_dev = dev->dax_dev; | 
 |  | 
 | 	if (!dax_dev) | 
 | 		return false; | 
 |  | 
 | 	if (dax_write_cache_enabled(dax_dev)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, | 
 | 				sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && !blk_queue_nonrot(q); | 
 | } | 
 |  | 
 | static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, | 
 | 			     sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && !blk_queue_add_random(q); | 
 | } | 
 |  | 
 | static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 					 sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && !q->limits.max_write_same_sectors; | 
 | } | 
 |  | 
 | static bool dm_table_supports_write_same(struct dm_table *t) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (!ti->num_write_same_bios) | 
 | 			return false; | 
 |  | 
 | 		if (!ti->type->iterate_devices || | 
 | 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 					   sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && !q->limits.max_write_zeroes_sectors; | 
 | } | 
 |  | 
 | static bool dm_table_supports_write_zeroes(struct dm_table *t) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i = 0; | 
 |  | 
 | 	while (i < dm_table_get_num_targets(t)) { | 
 | 		ti = dm_table_get_target(t, i++); | 
 |  | 
 | 		if (!ti->num_write_zeroes_bios) | 
 | 			return false; | 
 |  | 
 | 		if (!ti->type->iterate_devices || | 
 | 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, | 
 | 				      sector_t start, sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && !blk_queue_discard(q); | 
 | } | 
 |  | 
 | static bool dm_table_supports_discards(struct dm_table *t) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (!ti->num_discard_bios) | 
 | 			return false; | 
 |  | 
 | 		/* | 
 | 		 * Either the target provides discard support (as implied by setting | 
 | 		 * 'discards_supported') or it relies on _all_ data devices having | 
 | 		 * discard support. | 
 | 		 */ | 
 | 		if (!ti->discards_supported && | 
 | 		    (!ti->type->iterate_devices || | 
 | 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_not_secure_erase_capable(struct dm_target *ti, | 
 | 					   struct dm_dev *dev, sector_t start, | 
 | 					   sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && !blk_queue_secure_erase(q); | 
 | } | 
 |  | 
 | static bool dm_table_supports_secure_erase(struct dm_table *t) | 
 | { | 
 | 	struct dm_target *ti; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < dm_table_get_num_targets(t); i++) { | 
 | 		ti = dm_table_get_target(t, i); | 
 |  | 
 | 		if (!ti->num_secure_erase_bios) | 
 | 			return false; | 
 |  | 
 | 		if (!ti->type->iterate_devices || | 
 | 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int device_requires_stable_pages(struct dm_target *ti, | 
 | 					struct dm_dev *dev, sector_t start, | 
 | 					sector_t len, void *data) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 |  | 
 | 	return q && bdi_cap_stable_pages_required(q->backing_dev_info); | 
 | } | 
 |  | 
 | void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, | 
 | 			       struct queue_limits *limits) | 
 | { | 
 | 	bool wc = false, fua = false; | 
 | 	int page_size = PAGE_SIZE; | 
 |  | 
 | 	/* | 
 | 	 * Copy table's limits to the DM device's request_queue | 
 | 	 */ | 
 | 	q->limits = *limits; | 
 |  | 
 | 	if (!dm_table_supports_discards(t)) { | 
 | 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); | 
 | 		/* Must also clear discard limits... */ | 
 | 		q->limits.max_discard_sectors = 0; | 
 | 		q->limits.max_hw_discard_sectors = 0; | 
 | 		q->limits.discard_granularity = 0; | 
 | 		q->limits.discard_alignment = 0; | 
 | 		q->limits.discard_misaligned = 0; | 
 | 	} else | 
 | 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); | 
 |  | 
 | 	if (dm_table_supports_secure_erase(t)) | 
 | 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); | 
 |  | 
 | 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { | 
 | 		wc = true; | 
 | 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) | 
 | 			fua = true; | 
 | 	} | 
 | 	blk_queue_write_cache(q, wc, fua); | 
 |  | 
 | 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) { | 
 | 		blk_queue_flag_set(QUEUE_FLAG_DAX, q); | 
 | 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL)) | 
 | 			set_dax_synchronous(t->md->dax_dev); | 
 | 	} | 
 | 	else | 
 | 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q); | 
 |  | 
 | 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) | 
 | 		dax_write_cache(t->md->dax_dev, true); | 
 |  | 
 | 	/* Ensure that all underlying devices are non-rotational. */ | 
 | 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) | 
 | 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); | 
 | 	else | 
 | 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q); | 
 |  | 
 | 	if (!dm_table_supports_write_same(t)) | 
 | 		q->limits.max_write_same_sectors = 0; | 
 | 	if (!dm_table_supports_write_zeroes(t)) | 
 | 		q->limits.max_write_zeroes_sectors = 0; | 
 |  | 
 | 	dm_table_verify_integrity(t); | 
 |  | 
 | 	/* | 
 | 	 * Some devices don't use blk_integrity but still want stable pages | 
 | 	 * because they do their own checksumming. | 
 | 	 * If any underlying device requires stable pages, a table must require | 
 | 	 * them as well.  Only targets that support iterate_devices are considered: | 
 | 	 * don't want error, zero, etc to require stable pages. | 
 | 	 */ | 
 | 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) | 
 | 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; | 
 | 	else | 
 | 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; | 
 |  | 
 | 	/* | 
 | 	 * Determine whether or not this queue's I/O timings contribute | 
 | 	 * to the entropy pool, Only request-based targets use this. | 
 | 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not | 
 | 	 * have it set. | 
 | 	 */ | 
 | 	if (blk_queue_add_random(q) && | 
 | 	    dm_table_any_dev_attr(t, device_is_not_random, NULL)) | 
 | 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); | 
 |  | 
 | 	/* | 
 | 	 * For a zoned target, the number of zones should be updated for the | 
 | 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based | 
 | 	 * target, this is all that is needed. | 
 | 	 */ | 
 | #ifdef CONFIG_BLK_DEV_ZONED | 
 | 	if (blk_queue_is_zoned(q)) { | 
 | 		WARN_ON_ONCE(queue_is_mq(q)); | 
 | 		q->nr_zones = blkdev_nr_zones(t->md->disk); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	dm_update_keyslot_manager(q, t); | 
 |  | 
 | 	/* Allow reads to exceed readahead limits */ | 
 | 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); | 
 | } | 
 |  | 
 | unsigned int dm_table_get_num_targets(struct dm_table *t) | 
 | { | 
 | 	return t->num_targets; | 
 | } | 
 |  | 
 | struct list_head *dm_table_get_devices(struct dm_table *t) | 
 | { | 
 | 	return &t->devices; | 
 | } | 
 |  | 
 | fmode_t dm_table_get_mode(struct dm_table *t) | 
 | { | 
 | 	return t->mode; | 
 | } | 
 | EXPORT_SYMBOL(dm_table_get_mode); | 
 |  | 
 | enum suspend_mode { | 
 | 	PRESUSPEND, | 
 | 	PRESUSPEND_UNDO, | 
 | 	POSTSUSPEND, | 
 | }; | 
 |  | 
 | static void suspend_targets(struct dm_table *t, enum suspend_mode mode) | 
 | { | 
 | 	int i = t->num_targets; | 
 | 	struct dm_target *ti = t->targets; | 
 |  | 
 | 	lockdep_assert_held(&t->md->suspend_lock); | 
 |  | 
 | 	while (i--) { | 
 | 		switch (mode) { | 
 | 		case PRESUSPEND: | 
 | 			if (ti->type->presuspend) | 
 | 				ti->type->presuspend(ti); | 
 | 			break; | 
 | 		case PRESUSPEND_UNDO: | 
 | 			if (ti->type->presuspend_undo) | 
 | 				ti->type->presuspend_undo(ti); | 
 | 			break; | 
 | 		case POSTSUSPEND: | 
 | 			if (ti->type->postsuspend) | 
 | 				ti->type->postsuspend(ti); | 
 | 			break; | 
 | 		} | 
 | 		ti++; | 
 | 	} | 
 | } | 
 |  | 
 | void dm_table_presuspend_targets(struct dm_table *t) | 
 | { | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	suspend_targets(t, PRESUSPEND); | 
 | } | 
 |  | 
 | void dm_table_presuspend_undo_targets(struct dm_table *t) | 
 | { | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	suspend_targets(t, PRESUSPEND_UNDO); | 
 | } | 
 |  | 
 | void dm_table_postsuspend_targets(struct dm_table *t) | 
 | { | 
 | 	if (!t) | 
 | 		return; | 
 |  | 
 | 	suspend_targets(t, POSTSUSPEND); | 
 | } | 
 |  | 
 | int dm_table_resume_targets(struct dm_table *t) | 
 | { | 
 | 	int i, r = 0; | 
 |  | 
 | 	lockdep_assert_held(&t->md->suspend_lock); | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		struct dm_target *ti = t->targets + i; | 
 |  | 
 | 		if (!ti->type->preresume) | 
 | 			continue; | 
 |  | 
 | 		r = ti->type->preresume(ti); | 
 | 		if (r) { | 
 | 			DMERR("%s: %s: preresume failed, error = %d", | 
 | 			      dm_device_name(t->md), ti->type->name, r); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < t->num_targets; i++) { | 
 | 		struct dm_target *ti = t->targets + i; | 
 |  | 
 | 		if (ti->type->resume) | 
 | 			ti->type->resume(ti); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) | 
 | { | 
 | 	list_add(&cb->list, &t->target_callbacks); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); | 
 |  | 
 | int dm_table_any_congested(struct dm_table *t, int bdi_bits) | 
 | { | 
 | 	struct dm_dev_internal *dd; | 
 | 	struct list_head *devices = dm_table_get_devices(t); | 
 | 	struct dm_target_callbacks *cb; | 
 | 	int r = 0; | 
 |  | 
 | 	list_for_each_entry(dd, devices, list) { | 
 | 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); | 
 | 		char b[BDEVNAME_SIZE]; | 
 |  | 
 | 		if (likely(q)) | 
 | 			r |= bdi_congested(q->backing_dev_info, bdi_bits); | 
 | 		else | 
 | 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s", | 
 | 				     dm_device_name(t->md), | 
 | 				     bdevname(dd->dm_dev->bdev, b)); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(cb, &t->target_callbacks, list) | 
 | 		if (cb->congested_fn) | 
 | 			r |= cb->congested_fn(cb, bdi_bits); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | struct mapped_device *dm_table_get_md(struct dm_table *t) | 
 | { | 
 | 	return t->md; | 
 | } | 
 | EXPORT_SYMBOL(dm_table_get_md); | 
 |  | 
 | const char *dm_table_device_name(struct dm_table *t) | 
 | { | 
 | 	return dm_device_name(t->md); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dm_table_device_name); | 
 |  | 
 | void dm_table_run_md_queue_async(struct dm_table *t) | 
 | { | 
 | 	struct mapped_device *md; | 
 | 	struct request_queue *queue; | 
 |  | 
 | 	if (!dm_table_request_based(t)) | 
 | 		return; | 
 |  | 
 | 	md = dm_table_get_md(t); | 
 | 	queue = dm_get_md_queue(md); | 
 | 	if (queue) | 
 | 		blk_mq_run_hw_queues(queue, true); | 
 | } | 
 | EXPORT_SYMBOL(dm_table_run_md_queue_async); | 
 |  |