blob: 04775be64cb4ceea251015c8d80d53eaf2a7bc70 [file] [log] [blame]
/*
* Base driver for Marvell 88PM800
*
* Copyright (C) 2013 Marvell International Ltd.
* Haojian Zhuang <haojian.zhuang@marvell.com>
* Joseph(Yossi) Hanin <yhanin@marvell.com>
* Qiao Zhou <zhouqiao@marvell.com>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file "COPYING" in the main directory of this
* archive for more details.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/switch.h>
#include <linux/mfd/core.h>
#include <linux/mfd/88pm80x.h>
#include <linux/of_device.h>
#include <linux/reboot.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
/* static DEFINE_MUTEX(audio_mode_mutex); */
/* Interrupt Registers */
#define PM800_INT_STATUS1 (0x05)
#define PM800_ONKEY_INT_STS1 (1 << 0)
#define PM800_EXTON_INT_STS1 (1 << 1)
#define PM800_CHG_INT_STS1 (1 << 2)
#define PM800_BAT_INT_STS1 (1 << 3)
#define PM800_RTC_INT_STS1 (1 << 4)
#define PM800_CLASSD_OC_INT_STS1 (1 << 5)
#define PM800_INT_STATUS2 (0x06)
#define PM800_VBAT_INT_STS2 (1 << 0)
#define PM800_VSYS_INT_STS2 (1 << 1)
#define PM800_VCHG_INT_STS2 (1 << 2)
#define PM800_TINT_INT_STS2 (1 << 3)
#define PM800_GPADC0_INT_STS2 (1 << 4)
#define PM800_TBAT_INT_STS2 (1 << 5)
#define PM800_GPADC2_INT_STS2 (1 << 6)
#define PM800_GPADC3_INT_STS2 (1 << 7)
#define PM800_INT_STATUS3 (0x07)
#define PM800_INT_STATUS4 (0x08)
#define PM800_GPIO0_INT_STS4 (1 << 0)
#define PM800_GPIO1_INT_STS4 (1 << 1)
#define PM800_GPIO2_INT_STS4 (1 << 2)
#define PM800_GPIO3_INT_STS4 (1 << 3)
#define PM800_GPIO4_INT_STS4 (1 << 4)
#define PM800_INT_ENA_1 (0x09)
#define PM800_ONKEY_INT_ENA1 (1 << 0)
#define PM800_EXTON_INT_ENA1 (1 << 1)
#define PM800_CHG_INT_ENA1 (1 << 2)
#define PM800_BAT_INT_ENA1 (1 << 3)
#define PM800_RTC_INT_ENA1 (1 << 4)
#define PM800_CLASSD_OC_INT_ENA1 (1 << 5)
#define PM800_INT_ENA_2 (0x0A)
#define PM800_VBAT_INT_ENA2 (1 << 0)
#define PM800_VSYS_INT_ENA2 (1 << 1)
#define PM800_VCHG_INT_ENA2 (1 << 2)
#define PM800_TINT_INT_ENA2 (1 << 3)
#define PM822_IRQ_LDO_PGOOD_EN (1 << 4)
#define PM822_IRQ_BUCK_PGOOD_EN (1 << 5)
#define PM800_INT_ENA_3 (0x0B)
#define PM800_GPADC0_INT_ENA3 (1 << 0)
#define PM800_GPADC1_INT_ENA3 (1 << 1)
#define PM800_GPADC2_INT_ENA3 (1 << 2)
#define PM800_GPADC3_INT_ENA3 (1 << 3)
#define PM800_GPADC4_INT_ENA3 (1 << 4)
#define PM822_IRQ_HS_DET_EN (1 << 5)
#define PM800_INT_ENA_4 (0x0C)
#define PM800_GPIO0_INT_ENA4 (1 << 0)
#define PM800_GPIO1_INT_ENA4 (1 << 1)
#define PM800_GPIO2_INT_ENA4 (1 << 2)
#define PM800_GPIO3_INT_ENA4 (1 << 3)
#define PM800_GPIO4_INT_ENA4 (1 << 4)
#define PM800_POWER_REG_NUM (0x9a)
#define PM800_GPADC_REG_NUM (0xb5)
#define PM822_POWER_REG_NUM (0x98)
#define PM822_GPADC_REG_NUM (0xc7)
#define PM80X_BASE_REG_NUM 0xf0
#define PM80X_POWER_REG_NUM 0x9b
#define PM80X_GPADC_REG_NUM 0xb6
/* number of INT_ENA & INT_STATUS regs */
#define PM800_INT_REG_NUM (4)
const struct regmap_config pm800_power_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = PM800_POWER_REG_NUM,
};
const struct regmap_config pm800_gpadc_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = PM800_GPADC_REG_NUM,
};
const struct regmap_config pm822_power_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = PM822_POWER_REG_NUM,
};
const struct regmap_config pm822_gpadc_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = PM822_GPADC_REG_NUM,
};
const struct regmap_config pm80x_test_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
enum {
VBBAT,
VBAT,
VSYS,
VCHG,
GPADC0,
GPADC1,
GPADC2,
GPADC3,
GPADC4,
MIC_DET = GPADC4,
TINT,
PMOD
};
struct pm800_gpadc_convert {
int multi;
int add;
int div;
};
struct pm800_gpadc_info {
int id;
const char *name;
const char *units;
unsigned int meas_reg;
unsigned int avg_reg;
unsigned int min_reg;
unsigned int max_reg;
unsigned int sleep_reg;
unsigned int sleep_enable_bit;
unsigned int enable_reg;
unsigned int enable_bit;
unsigned int bias_reg;
unsigned int bias_mask;
unsigned int bias_en_reg;
unsigned int bias_en_bit;
unsigned int bias_out_bit;
struct pm800_gpadc_convert conv;
};
/*
* gname - name of the GPADC
* uni - measurement units
* ereg - enable register
* ebit - enable bit
* mul - multiplication number to convert measurement
* adds - add number to convert measurement
* dive - divide number to convert measurement
*/
#define PM800_GPADC(gname, uni, ereg, ebit, mul, adds, dive) \
.id = gname, \
.name = #gname, \
.units = (#uni), \
.meas_reg = PM800_##gname##_MEAS1, \
.enable_reg = PM800_GPADC_MEAS_##ereg, \
.enable_bit = PM800_MEAS_##ebit, \
.conv = { \
.multi = mul, \
.add = adds, \
.div = dive, \
},
/*
* fld - the field to assign value to him
* cnum - chip number 00/22/60
* name - name of the GPADC
* type - the value type (min/max/avg...)
*/
#define PM800_GPADC_EXTRA(fld, cnum, name, type) .fld = PM8##cnum##_##name##_##type,
/*
* breg - bias register
* bereg - bias enable register
* bebit - bias enable bit
* bmask - bias mask register
*/
#define PM800_GPADC_BIAS(breg, bereg, bebit, bmask) \
.bias_reg = PM800_GPADC_BIAS##breg, \
.bias_mask = PM800_GPADC_BIAS_MASK##bmask, \
.bias_en_reg = PM800_GP_BIAS_##bereg, \
.bias_en_bit = PM800_GPADC_GP_BIAS_EN##bebit, \
.bias_out_bit = PM800_GPADC_GP_BIAS_OUT##bebit,
#define PM800_GPADC_CHECK_EN(val) (val ? "enable" : "disable")
#define IS_DUMMY(val) (val & 0xF00)
#define PM800_GPADC_CONV(value, conv, mul) \
{ \
value = ((value * conv->multi + conv->add) / conv->div) * mul; \
}
static struct pm800_gpadc_info pm800_gpadc_info[] = {
/*
* PM800_GPADC(gname, uni, ereg, ebit, mul, adds, dive)
* PM800_GPADC_EXTRA(fld, cnum, name, type)
* PM800_GPADC_BIAS(breg, bereg, bebit, bmask)
*/
{
PM800_GPADC(VBBAT, mV, EN1, EN1_VBBAT, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VBAT, mV, EN1, EN1_VBAT, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VBAT, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VBAT, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VBAT, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, VBAT, SLP)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VSYS, mV, EN1, EN1_VSYS, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VSYS, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VSYS, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VSYS, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VCHG, mV, EN2, EN1_VCHG, 1709, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VCHG, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VCHG, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VCHG, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(GPADC0, mV, EN2, GP0_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, ENA1, 0, 0)
}, {
PM800_GPADC(GPADC1, mV, EN2, GP1_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(2, ENA1, 1, 1)
}, {
PM800_GPADC(GPADC2, mV, EN2, GP2_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(3, ENA1, 2, 0)
}, {
PM800_GPADC(GPADC3, mV, EN2, GP3_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, GPADC3, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, GPADC3, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, GPADC3, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(4, ENA1, 3, 1)
}, {
PM800_GPADC(GPADC4, mV, EN2, GP4_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, GPADC4, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, GPADC4, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, GPADC4, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(TINT, C, EN2, TINT_EN, 342, -884000, 3611)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(PMOD, mV, EN2, PMOD_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}
};
static struct pm800_gpadc_info pm822_gpadc_info[] = {
/*
* PM800_GPADC(gname, uni, ereg, ebit, mul, adds, dive)
* PM800_GPADC_EXTRA(fld, cnum, name, type)
* PM800_GPADC_BIAS(breg, bereg, bebit, bmask)
*/
{PM800_GPADC(VBBAT, mV, EN1, EN1_VBBAT, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VBAT, mV, EN1, EN1_VBAT, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VBAT, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VBAT, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VBAT, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, VBAT, SLP)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VSYS, mV, EN1, EN1_VSYS, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VSYS, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VSYS, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VSYS, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(GPADC0, mV, EN2, GP0_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, ENA1, 0, 0)
}, {
PM800_GPADC(GPADC1, mV, EN2, GP1_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(2, ENA1, 1, 0)
}, {
PM800_GPADC(GPADC2, mV, EN2, GP2_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(3, ENA1, 2, 0)
}, {
PM800_GPADC(GPADC3, mV, EN2, GP3_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, GPADC3, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, GPADC3, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, GPADC3, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(4, ENA1, 3, 0)
}, {
PM800_GPADC(MIC_DET, mV, EN2, MIC_DET_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 22, MIC_DET, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, MIC_DET, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, MIC_DET, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(TINT, C, EN2, TINT_EN, 342, -884000, 3611)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(PMOD, mV, EN2, PMOD_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}
};
static struct pm800_gpadc_info pm860_gpadc_info[] = {
/*
* PM800_GPADC(gname, uni, ereg, ebit, mul, adds, dive)
* PM800_GPADC_EXTRA(fld, cnum, name, type)
* PM800_GPADC_BIAS(breg, bereg, bebit, bmask)
*/
{PM800_GPADC(VBBAT, mV, EN1, EN1_VBBAT, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VBAT, mV, EN1, EN1_VBAT, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VBAT, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VBAT, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VBAT, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, VBAT, SLP)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(VSYS, mV, EN1, EN1_VSYS, 1367, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, VSYS, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, VSYS, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, VSYS, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(GPADC0, mV, EN2, GP0_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, ENA1, 0, 0)
}, {
PM800_GPADC(GPADC1, mV, EN2, GP1_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(2, ENA1, 1, 0)
}, {
PM800_GPADC(GPADC2, mV, EN2, GP2_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(3, ENA1, 2, 0)
}, {
PM800_GPADC(GPADC3, mV, EN2, GP3_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 60, GPADC3, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, GPADC3, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, GPADC3, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(4, ENA1, 3, 0)
}, {
PM800_GPADC(MIC_DET, mV, EN2, MIC_DET_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, MIC_DET, AVG1)
PM800_GPADC_EXTRA(min_reg, 00, MIC_DET, MIN1)
PM800_GPADC_EXTRA(max_reg, 00, MIC_DET, MAX1)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(TINT, C, EN2, TINT_EN, 104, -273000, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}, {
PM800_GPADC(PMOD, mV, EN2, PMOD_EN, 342, 0, 1000)
PM800_GPADC_EXTRA(avg_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(min_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(max_reg, 00, DUMMY, DUMMY)
PM800_GPADC_EXTRA(sleep_reg, 00, DUMMY, DUMMY)
PM800_GPADC_BIAS(1, DUMMY, 0, 0)
}
};
/* Interrupt Number in 88PM800 */
enum {
PM800_IRQ_ONKEY = 0, /*EN1b0 *//*0 */
PM800_IRQ_EXTON, /*EN1b1 */
PM800_IRQ_CHG, /*EN1b2 */
PM800_IRQ_BAT, /*EN1b3 */
PM800_IRQ_RTC, /*EN1b4 */
PM800_IRQ_CLASSD, /*EN1b5 *//*5 */
PM800_IRQ_VBAT, /*EN2b0 */
PM800_IRQ_VSYS, /*EN2b1 */
PM800_IRQ_VCHG, /*EN2b2 */
PM800_IRQ_TINT, /*EN2b3 */
PM822_IRQ_LDO_PGOOD, /*EN2b4 *//*10 */
PM822_IRQ_BUCK_PGOOD, /*EN2b5 */
PM800_IRQ_GPADC0, /*EN3b0 */
PM800_IRQ_GPADC1, /*EN3b1 */
PM800_IRQ_GPADC2, /*EN3b2 */
PM800_IRQ_GPADC3, /*EN3b3 *//*15 */
PM800_IRQ_GPADC4 = 16, /*EN3b4 */
PM822_IRQ_MIC_DET = 16, /*EN3b4 */
PM822_IRQ_HS_DET = 17, /*EN3b4 */
PM800_IRQ_GPIO0, /*EN4b0 */
PM800_IRQ_GPIO1, /*EN4b1 */
PM800_IRQ_GPIO2, /*EN4b2 *//*20 */
PM800_IRQ_GPIO3, /*EN4b3 */
PM800_IRQ_GPIO4, /*EN4b4 */
PM800_MAX_IRQ,
};
/* PM800: generation identification number */
#define PM800_CHIP_GEN_ID_NUM 0x3
enum pm8xx_parent {
PM822 = 0x822,
PM800 = 0x800,
};
static const struct i2c_device_id pm80x_id_table[] = {
{"88pm822", PM822},
{"88pm800", PM800},
{} /* NULL terminated */
};
MODULE_DEVICE_TABLE(i2c, pm80x_id_table);
static const struct of_device_id pm80x_dt_ids[] = {
{ .compatible = "marvell,88pm800", },
{ .compatible = "marvell,88pm822", },
{},
};
MODULE_DEVICE_TABLE(of, pm80x_dt_ids);
static struct resource rtc_resources[] = {
{
.name = "88pm80x-rtc",
.start = PM800_IRQ_RTC,
.end = PM800_IRQ_RTC,
.flags = IORESOURCE_IRQ,
},
};
static struct mfd_cell rtc_devs[] = {
{
.name = "88pm80x-rtc",
.of_compatible = "marvell,88pm80x-rtc",
.num_resources = ARRAY_SIZE(rtc_resources),
.resources = &rtc_resources[0],
.id = -1,
},
};
static struct resource onkey_resources[] = {
{
.name = "88pm80x-onkey",
.start = PM800_IRQ_ONKEY,
.end = PM800_IRQ_ONKEY,
.flags = IORESOURCE_IRQ,
},
};
static struct mfd_cell onkey_devs[] = {
{
.name = "88pm80x-onkey",
.of_compatible = "marvell,88pm80x-onkey",
.num_resources = 1,
.resources = &onkey_resources[0],
.id = -1,
},
};
static struct resource bat_resources[] = {
{
.name = "88pm80x-bat",
.start = PM800_IRQ_VBAT,
.end = PM800_IRQ_VBAT,
.flags = IORESOURCE_IRQ,
},
};
static struct mfd_cell bat_devs[] = {
{
.name = "88pm80x-bat",
.of_compatible = "marvell,88pm80x-bat",
.num_resources = 1,
.resources = &bat_resources[0],
.id = -1,
},
};
#ifdef CONFIG_PAPI_88PM80X
static struct mfd_cell papi_devs[] = {
{
.name = "88pm80x-papi",
.of_compatible = "marvell,88pm80x-papi",
.id = -1,
},
};
#endif
static struct resource usb_resources_exton[] = {
{
.name = "88pm80x-usb",
.start = PM800_IRQ_EXTON,
.end = PM800_IRQ_EXTON,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp0-id",
.start = PM800_IRQ_GPADC0,
.end = PM800_IRQ_GPADC0,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp1-id",
.start = PM800_IRQ_GPADC1,
.end = PM800_IRQ_GPADC1,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp2-id",
.start = PM800_IRQ_GPADC2,
.end = PM800_IRQ_GPADC2,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp3-id",
.start = PM800_IRQ_GPADC3,
.end = PM800_IRQ_GPADC3,
.flags = IORESOURCE_IRQ,
},
};
static struct resource usb_resources[] = {
{
.name = "88pm80x-usb",
.start = PM800_IRQ_CHG,
.end = PM800_IRQ_CHG,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp0-id",
.start = PM800_IRQ_GPADC0,
.end = PM800_IRQ_GPADC0,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp1-id",
.start = PM800_IRQ_GPADC1,
.end = PM800_IRQ_GPADC1,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp2-id",
.start = PM800_IRQ_GPADC2,
.end = PM800_IRQ_GPADC2,
.flags = IORESOURCE_IRQ,
},
{
.name = "88pm80x-gp3-id",
.start = PM800_IRQ_GPADC3,
.end = PM800_IRQ_GPADC3,
.flags = IORESOURCE_IRQ,
},
};
static struct mfd_cell usb_devs[] = {
{
.name = "88pm80x-usb",
.of_compatible = "marvell,88pm80x-usb",
.num_resources = ARRAY_SIZE(usb_resources),
.resources = &usb_resources[0],
.id = -1,
},
};
static struct mfd_cell usb_devs_exton[] = {
{
.name = "88pm80x-usb",
.of_compatible = "marvell,88pm80x-usb",
.num_resources = ARRAY_SIZE(usb_resources_exton),
.resources = &usb_resources_exton[0],
.id = -1,
},
};
static struct mfd_cell regulator_devs[] = {
{
.name = "88pm800-regulator",
.of_compatible = "marvell,88pm800-regulator",
.id = -1,
},
};
static struct mfd_cell dvc_devs[] = {
{
.name = "88pm8xx-dvc",
.of_compatible = "marvell,88pm8xx-dvc",
.id = -1,
},
};
static struct mfd_cell vibrator_devs[] = {
{
.name = "88pm80x-vibrator",
.of_compatible = "marvell,88pm80x-vibrator",
.id = -1,
},
};
static struct mfd_cell debug_devs[] = {
{
.name = "88pm80x-debug",
.of_compatible = "marvell,88pm80x-debug",
.id = -1,
},
};
static struct mfd_cell wdt_devs[] = {
{
.name = "88pm80x-wdt",
.of_compatible = "marvell,88pm80x-wdt",
.id = -1,
},
};
static const struct regmap_irq pm800_irqs[] = {
/* INT0 */
[PM800_IRQ_ONKEY] = {
.mask = PM800_ONKEY_INT_ENA1,
},
[PM800_IRQ_EXTON] = {
.mask = PM800_EXTON_INT_ENA1,
},
[PM800_IRQ_CHG] = {
.mask = PM800_CHG_INT_ENA1,
},
[PM800_IRQ_BAT] = {
.mask = PM800_BAT_INT_ENA1,
},
[PM800_IRQ_RTC] = {
.mask = PM800_RTC_INT_ENA1,
},
[PM800_IRQ_CLASSD] = {
.mask = PM800_CLASSD_OC_INT_ENA1,
},
/* INT1 */
[PM800_IRQ_VBAT] = {
.reg_offset = 1,
.mask = PM800_VBAT_INT_ENA2,
},
[PM800_IRQ_VSYS] = {
.reg_offset = 1,
.mask = PM800_VSYS_INT_ENA2,
},
[PM800_IRQ_VCHG] = {
.reg_offset = 1,
.mask = PM800_VCHG_INT_ENA2,
},
[PM800_IRQ_TINT] = {
.reg_offset = 1,
.mask = PM800_TINT_INT_ENA2,
},
[PM822_IRQ_LDO_PGOOD] = {
.reg_offset = 1,
.mask = PM822_IRQ_LDO_PGOOD_EN,
},
[PM822_IRQ_BUCK_PGOOD] = {
.reg_offset = 1,
.mask = PM822_IRQ_BUCK_PGOOD_EN,
},
/* INT2 */
[PM800_IRQ_GPADC0] = {
.reg_offset = 2,
.mask = PM800_GPADC0_INT_ENA3,
},
[PM800_IRQ_GPADC1] = {
.reg_offset = 2,
.mask = PM800_GPADC1_INT_ENA3,
},
[PM800_IRQ_GPADC2] = {
.reg_offset = 2,
.mask = PM800_GPADC2_INT_ENA3,
},
[PM800_IRQ_GPADC3] = {
.reg_offset = 2,
.mask = PM800_GPADC3_INT_ENA3,
},
[PM800_IRQ_GPADC4] = {
.reg_offset = 2,
.mask = PM800_GPADC4_INT_ENA3,
},
[PM822_IRQ_HS_DET] = {
.reg_offset = 2,
.mask = PM822_IRQ_HS_DET_EN,
},
/* INT3 */
[PM800_IRQ_GPIO0] = {
.reg_offset = 3,
.mask = PM800_GPIO0_INT_ENA4,
},
[PM800_IRQ_GPIO1] = {
.reg_offset = 3,
.mask = PM800_GPIO1_INT_ENA4,
},
[PM800_IRQ_GPIO2] = {
.reg_offset = 3,
.mask = PM800_GPIO2_INT_ENA4,
},
[PM800_IRQ_GPIO3] = {
.reg_offset = 3,
.mask = PM800_GPIO3_INT_ENA4,
},
[PM800_IRQ_GPIO4] = {
.reg_offset = 3,
.mask = PM800_GPIO4_INT_ENA4,
},
};
static struct resource headset_resources_800[] = {
{
.name = "gpio-03",
.start = PM800_IRQ_GPIO3,
.end = PM800_IRQ_GPIO3,
.flags = IORESOURCE_IRQ,
},
{
.name = "gpadc4",
.start = PM800_IRQ_GPADC4,
.end = PM800_IRQ_GPADC4,
.flags = IORESOURCE_IRQ,
},
};
static struct resource headset_resources_822[] = {
{
.name = "88pm822-headset",
.start = PM822_IRQ_HS_DET,
.end = PM822_IRQ_HS_DET,
.flags = IORESOURCE_IRQ,
},
{
.name = "gpadc4",
.start = PM800_IRQ_GPADC4,
.end = PM800_IRQ_GPADC4,
.flags = IORESOURCE_IRQ,
},
};
static struct mfd_cell headset_devs_800[] = {
{
.name = "88pm800-headset",
.of_compatible = "marvell,88pm80x-headset",
.num_resources = ARRAY_SIZE(headset_resources_800),
.resources = &headset_resources_800[0],
.id = -1,
},
};
static bool chg_irq_from_exton;
static int init_vbat_volt = 4200;
int get_init_batt_vol(void)
{
return init_vbat_volt;
}
static int pm800_gpadc_check_en(struct regmap *map, unsigned int reg, unsigned int mask)
{
int ret;
unsigned int enable;
ret = regmap_bulk_read(map, reg, &enable, 1);
if (ret < 0)
return ret;
enable = (enable & mask);
return enable;
}
static int pm800_gpadc_get_meas(struct regmap *map, unsigned int reg, unsigned int *value)
{
int ret;
unsigned char val[2];
ret = regmap_bulk_read(map, reg, val, 2);
if (ret < 0) {
*value = reg;
return ret;
}
*value = (val[0] << 4) | (val[1] & 0x0f);
return 0;
}
static int pm800_gpadc_print_bias(struct regmap *map, struct pm800_gpadc_info *info,
char *buf, int *len)
{
unsigned int en_mask, out_mask, mask, val = 0;
int ret;
mask = info->bias_mask;
en_mask = info->bias_en_bit;
out_mask = info->bias_out_bit;
if (!IS_DUMMY(info->bias_en_reg)) {
ret = regmap_bulk_read(map, info->bias_en_reg, &val, 1);
if (ret < 0)
return ret;
else {
/*
* the bias is enabled if:
* GP_BIAS_EN is 0
* GP_BIAS_EN is 1 and GP_BIAS_OUT is 1
* thus, !GP_BIAS_EN || GP_BIAS_OUT
*/
val = (!(val & en_mask) || (val & out_mask));
}
if (val) {
ret = regmap_bulk_read(map, info->bias_reg, &val, 1);
if (ret < 0)
return ret;
else {
val = ((val & mask) >> (ffs(mask) - 1)) * 5 + 1;
*len += sprintf(buf + *len, " %-4d |", val);
}
} else
*len += sprintf(buf + *len, "%s |", "Disable");
} else
*len += sprintf(buf + *len, " %-4s |", "-");
return val;
}
static int pm800_gpadc_print(struct regmap *map, struct pm800_gpadc_info *info,
int id, char *buf, int *len)
{
int ret[5], i;
unsigned int val[5] = {0};
int enlarge = 1;
struct pm800_gpadc_convert *conv;
conv = &info->conv;
if (id == GPADC4) {
ret[0] = regmap_bulk_read(map, PM800_GPADC_MISC_CONFIG1, val, 1);
if (ret[0] < 0)
return ret[0];
if (!(val[0] & PM800_GPADC_MISC_DIRECT))
enlarge = 4;
}
/*
* ret[i] > 0 when the register is dummy
* ret[i] = 0 when a value was read successfully
* ret[i] < 0 when the read attempt was failed
*/
if (!IS_DUMMY(info->meas_reg))
ret[0] = pm800_gpadc_get_meas(map, info->meas_reg, &val[0]);
else
ret[0] = 1;
if (!IS_DUMMY(info->avg_reg))
ret[1] = pm800_gpadc_get_meas(map, info->avg_reg, &val[1]);
else
ret[1] = 1;
if (!IS_DUMMY(info->min_reg))
ret[2] = pm800_gpadc_get_meas(map, info->min_reg, &val[2]);
else
ret[2] = 1;
if (!IS_DUMMY(info->max_reg))
ret[3] = pm800_gpadc_get_meas(map, info->max_reg, &val[3]);
else
ret[3] = 1;
if (!IS_DUMMY(info->sleep_reg))
ret[4] = pm800_gpadc_get_meas(map, info->sleep_reg, &val[4]);
else
ret[4] = 1;
for (i = 0; i < 5; i++) {
if (ret[i] < 0)
*len += sprintf(buf + *len, "ERR 0x%-2x|", val[i]);
else if (ret[i] > 0)
*len += sprintf(buf + *len, " %-4s |", "-");
else {
PM800_GPADC_CONV(val[i], conv, enlarge)
*len += sprintf(buf + *len, " %-4d |", val[i]);
}
}
pm800_gpadc_print_bias(map, info, buf, len);
*len += sprintf(buf + *len, "\n");
return *len;
}
int pm800_display_gpadc(struct pm80x_chip *chip, char *buf)
{
int gpadc_num, i, id, len = 0;
struct pm800_gpadc_info *info;
struct regmap *map = chip->subchip->regmap_gpadc;
struct pm800_gpadc_convert *conv;
ssize_t ret;
switch (chip->type) {
case CHIP_PM800:
gpadc_num = PM800_NUM_GPADC;
info = pm800_gpadc_info;
break;
case CHIP_PM822:
gpadc_num = PM822_NUM_GPADC;
info = pm822_gpadc_info;
break;
case CHIP_PM86X:
gpadc_num = PM860_NUM_GPADC;
info = pm860_gpadc_info;
break;
default:
pr_err("Cannot find chip type\n");
return -ENODEV;
}
len += sprintf(buf + len, "\nGPADC");
len += sprintf(buf + len, "\n--------------------------------------");
len += sprintf(buf + len, "----------------------------------------\n");
len += sprintf(buf + len, "| name | status | value | avg ");
len += sprintf(buf + len, "| min | max | slp |bias(uA)|");
len += sprintf(buf + len, "\n--------------------------------------");
len += sprintf(buf + len, "----------------------------------------\n");
for (i = 0; i < gpadc_num; i++) {
conv = &info[i].conv;
id = info[i].id;
len += sprintf(buf + len, "|%-7s %-4s|", info[i].name, info[i].units);
ret = pm800_gpadc_check_en(map, info[i].enable_reg, info[i].enable_bit);
if (ret < 0)
len += sprintf(buf + len, "ERR 0x%-2x |", info[i].enable_reg);
else
len += sprintf(buf + len, " %-7s |", PM800_GPADC_CHECK_EN(ret));
if (!ret) {
len += sprintf(buf + len, " %-4s |", "-");
len += sprintf(buf + len, " %-4s |", "-");
len += sprintf(buf + len, " %-4s |", "-");
len += sprintf(buf + len, " %-4s |", "-");
len += sprintf(buf + len, " %-4s |", "-");
len += sprintf(buf + len, " %-4s |\n", "-");
} else
pm800_gpadc_print(map, &info[i], id, buf, &len);
}
len += sprintf(buf + len, "--------------------------------------");
len += sprintf(buf + len, "----------------------------------------\n");
return len;
}
static void get_batt_init_volt(struct regmap *map)
{
int ret;
unsigned char buf[2];
ret = regmap_bulk_read(map, PM800_VBAT_AVG, buf, 2);
if (ret < 0) {
return;
}
init_vbat_volt = ((buf[0] & 0xff) << 4) | (buf[1] & 0x0f);
/* measure(mv) = value * 4 * 1.4 *1000/(2^12) */
init_vbat_volt = ((init_vbat_volt & 0xfff) * 7 * 100) >> 9;
}
static int device_gpadc_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
struct pm80x_subchip *subchip = chip->subchip;
struct regmap *map = subchip->regmap_gpadc;
int ret = 0;
if (!map) {
dev_warn(chip->dev,
"Warning: gpadc regmap is not available!\n");
return -EINVAL;
}
/*
* initialize GPADC without activating it turn on GPADC
* measurments
*/
ret = regmap_update_bits(map,
PM800_GPADC_MISC_CONFIG2,
PM800_GPADC_MISC_GPFSM_EN,
PM800_GPADC_MISC_GPFSM_EN);
if (ret < 0)
goto out;
/*
* This function configures the ADC as requires for
* CP implementation.CP does not "own" the ADC configuration
* registers and relies on AP.
* Reason: enable automatic ADC measurements needed
* for CP to get VBAT and RF temperature readings.
*/
ret = regmap_update_bits(map, PM800_GPADC_MEAS_EN1,
PM800_MEAS_EN1_VBAT, PM800_MEAS_EN1_VBAT);
if (ret < 0)
goto out;
/* enable all of the GPADC */
ret = regmap_update_bits(map, PM800_GPADC_MEAS_EN2, 0xff, 0x6c);
if (ret < 0)
goto out;
/*
* the defult of PM800 is GPADC operates at 100Ks/s rate
* and Number of GPADC slots with active current bias prior
* to GPADC sampling = 1 slot for all GPADCs set for
* Temprature mesurmants
*
* disable all the BIAS by default, other drivers will enable
* BIAS on demand
*/
ret = regmap_update_bits(map, PM800_GP_BIAS_ENA1, 0xff, 0x00);
if (ret < 0)
goto out;
get_batt_init_volt(map);
dev_info(chip->dev, "pm800 device_gpadc_init: Done\n");
return 0;
out:
dev_info(chip->dev, "pm800 device_gpadc_init: Failed!\n");
return ret;
}
static int device_onkey_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
ret = mfd_add_devices(chip->dev, 0, &onkey_devs[0],
ARRAY_SIZE(onkey_devs), &onkey_resources[0],
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret) {
dev_err(chip->dev, "Failed to add onkey subdev\n");
return ret;
}
return 0;
}
static int device_usb_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
struct mfd_cell *usb_devs_ptr;
if (chg_irq_from_exton)
usb_devs_ptr = usb_devs_exton;
else
usb_devs_ptr = usb_devs;
usb_devs_ptr[0].platform_data = pdata->usb;
usb_devs_ptr[0].pdata_size = sizeof(struct pm80x_usb_pdata);
/* usb_devs is the same size as usb_devs_exton */
ret = mfd_add_devices(chip->dev, 0, &usb_devs_ptr[0],
ARRAY_SIZE(usb_devs), NULL,
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret < 0) {
dev_err(chip->dev, "Failed to add usb subdev\n");
return ret;
}
return 0;
}
static int device_vibrator_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
vibrator_devs[0].platform_data = pdata->vibrator;
vibrator_devs[0].pdata_size = sizeof(struct pm80x_vibrator_pdata);
ret = mfd_add_devices(chip->dev, 0, &vibrator_devs[0],
ARRAY_SIZE(vibrator_devs), NULL,
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret < 0) {
dev_err(chip->dev, "Failed to add vibrator subdev\n");
return ret;
}
return 0;
}
static int device_rtc_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
rtc_devs[0].platform_data = pdata->rtc;
rtc_devs[0].pdata_size =
pdata->rtc ? sizeof(struct pm80x_rtc_pdata) : 0;
ret = mfd_add_devices(chip->dev, 0, &rtc_devs[0],
ARRAY_SIZE(rtc_devs), NULL,
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret) {
dev_err(chip->dev, "Failed to add rtc subdev\n");
return ret;
}
return 0;
}
static int device_battery_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
ret = mfd_add_devices(chip->dev, 0, &bat_devs[0],
ARRAY_SIZE(bat_devs), NULL,
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret) {
dev_err(chip->dev, "Failed to add battery subdev\n");
return ret;
}
return 0;
}
#ifdef CONFIG_PAPI_88PM80X
static int device_papi_init(struct pm80x_chip *chip)
{
int ret;
ret = mfd_add_devices(chip->dev, 0, &papi_devs[0],
ARRAY_SIZE(papi_devs), NULL, 0, NULL);
if (ret) {
dev_err(chip->dev, "Failed to add papi subdev\n");
return ret;
}
return 0;
}
#endif
static int device_regulator_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
ret = mfd_add_devices(chip->dev, 0, &regulator_devs[0],
ARRAY_SIZE(regulator_devs), NULL,
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret) {
dev_err(chip->dev, "Failed to add regulator subdev\n");
return ret;
}
return 0;
}
static int device_headset_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
switch (chip->type) {
case CHIP_PM800:
headset_devs_800[0].resources =
&headset_resources_800[0];
headset_devs_800[0].num_resources =
ARRAY_SIZE(headset_resources_800);
break;
case CHIP_PM86X:
case CHIP_PM822:
headset_devs_800[0].resources =
&headset_resources_822[0];
headset_devs_800[0].num_resources =
ARRAY_SIZE(headset_resources_822);
break;
default:
return -EINVAL;
}
headset_devs_800[0].platform_data = pdata->headset;
ret = mfd_add_devices(chip->dev, 0, &headset_devs_800[0],
ARRAY_SIZE(headset_devs_800), NULL,
regmap_irq_chip_get_base(chip->irq_data),
NULL);
if (ret) {
dev_err(chip->dev, "Failed to add headset subdev\n");
return ret;
}
return 0;
}
static int device_dvc_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
#ifdef CONFIG_CPU_ASR1901
return 0;
#endif
ret = mfd_add_devices(chip->dev, 0, &dvc_devs[0],
ARRAY_SIZE(dvc_devs), NULL,
regmap_irq_chip_get_base(chip->irq_data), NULL);
if (ret) {
dev_err(chip->dev, "Failed to add dvc subdev\n");
return ret;
}
return 0;
}
static int device_debug_init(struct pm80x_chip *chip)
{
return mfd_add_devices(chip->dev, 0, &debug_devs[0],
ARRAY_SIZE(debug_devs), NULL, 0, NULL);
}
static int device_wdt_init(struct pm80x_chip *chip)
{
return mfd_add_devices(chip->dev, 0, &wdt_devs[0],
ARRAY_SIZE(wdt_devs), NULL, 0, NULL);
}
static int device_irq_init_800(struct pm80x_chip *chip)
{
struct regmap *map = chip->regmap;
unsigned long flags = IRQF_ONESHOT;
int data, mask, ret = -EINVAL;
if (!map || !chip->irq) {
dev_err(chip->dev, "incorrect parameters\n");
return -EINVAL;
}
/*
* irq_mode defines the way of clearing interrupt. it's read-clear by
* default.
*/
mask =
PM800_WAKEUP2_INV_INT | PM800_WAKEUP2_INT_CLEAR |
PM800_WAKEUP2_INT_MASK;
data = (chip->irq_mode) ?
PM800_WAKEUP2_INT_WRITE_CLEAR : PM800_WAKEUP2_INT_READ_CLEAR;
ret = regmap_update_bits(map, PM800_WAKEUP2, mask, data);
if (ret < 0)
goto out;
ret =
regmap_add_irq_chip(chip->regmap, chip->irq, flags, -1,
chip->regmap_irq_chip, &chip->irq_data);
out:
return ret;
}
static void device_irq_exit_800(struct pm80x_chip *chip)
{
regmap_del_irq_chip(chip->irq, chip->irq_data);
}
static struct regmap_irq_chip pm800_irq_chip = {
.name = "88pm800",
.irqs = pm800_irqs,
.num_irqs = ARRAY_SIZE(pm800_irqs),
.num_regs = 4,
.status_base = PM800_INT_STATUS1,
.mask_base = PM800_INT_ENA_1,
.ack_base = PM800_INT_STATUS1,
.init_ack_masked = true,
.mask_invert = 1,
};
static int pm800_pages_init(struct pm80x_chip *chip)
{
struct pm80x_subchip *subchip;
struct i2c_client *client = chip->client;
int ret = 0;
subchip = chip->subchip;
if (!subchip || !subchip->power_page_addr || !subchip->gpadc_page_addr)
return -ENODEV;
/* PM800 block power page */
subchip->power_page = i2c_new_dummy(client->adapter,
subchip->power_page_addr);
if (subchip->power_page == NULL) {
ret = -ENODEV;
goto out;
}
if (chip->type == CHIP_PM800 || chip->type == CHIP_PM86X)
subchip->regmap_power = devm_regmap_init_i2c(
subchip->power_page,
&pm800_power_regmap_config);
else if (chip->type == CHIP_PM822)
subchip->regmap_power = devm_regmap_init_i2c(
subchip->power_page,
&pm822_power_regmap_config);
if (IS_ERR(subchip->regmap_power)) {
ret = PTR_ERR(subchip->regmap_power);
dev_err(chip->dev,
"Failed to allocate regmap_power: %d\n", ret);
goto out;
}
i2c_set_clientdata(subchip->power_page, chip);
/* PM800 block GPADC */
subchip->gpadc_page = i2c_new_dummy(client->adapter,
subchip->gpadc_page_addr);
if (subchip->gpadc_page == NULL) {
ret = -ENODEV;
goto out;
}
if (chip->type == CHIP_PM800 || chip->type == CHIP_PM86X)
subchip->regmap_gpadc = devm_regmap_init_i2c(
subchip->gpadc_page,
&pm800_gpadc_regmap_config);
else if (chip->type == CHIP_PM822)
subchip->regmap_gpadc = devm_regmap_init_i2c(
subchip->gpadc_page,
&pm822_gpadc_regmap_config);
if (IS_ERR(subchip->regmap_gpadc)) {
ret = PTR_ERR(subchip->regmap_gpadc);
dev_err(chip->dev,
"Failed to allocate regmap_gpadc: %d\n", ret);
goto out;
}
i2c_set_clientdata(subchip->gpadc_page, chip);
/* PM800 block TEST: i2c addr 0x37 */
subchip->test_page = i2c_new_dummy(client->adapter,
subchip->test_page_addr);
if (subchip->test_page == NULL) {
ret = -ENODEV;
goto out;
}
subchip->regmap_test = devm_regmap_init_i2c(
subchip->test_page,
&pm80x_test_regmap_config);
if (IS_ERR(subchip->regmap_test)) {
ret = PTR_ERR(subchip->regmap_test);
dev_err(chip->dev,
"Failed to allocate regmap_test: %d\n", ret);
goto out;
}
i2c_set_clientdata(subchip->test_page, chip);
out:
return ret;
}
static void pm800_pages_exit(struct pm80x_chip *chip)
{
struct pm80x_subchip *subchip;
subchip = chip->subchip;
if (subchip && subchip->power_page)
i2c_unregister_device(subchip->power_page);
if (subchip && subchip->gpadc_page)
i2c_unregister_device(subchip->gpadc_page);
if (subchip && subchip->test_page) {
regmap_exit(subchip->regmap_test);
i2c_unregister_device(subchip->test_page);
}
}
/* if there is not pm830 mounted on board, then we use pm80x fg */
static int __read_mostly force_pm80x_fg;
static int __init setup_pm80x_fg(char *__unused)
{
force_pm80x_fg = 1;
return 1;
}
__setup("force_pm80x_fg", setup_pm80x_fg);
static int device_800_init(struct pm80x_chip *chip,
struct pm80x_platform_data *pdata)
{
int ret;
unsigned int val;
if (!pdata) {
dev_warn(chip->dev, "pdata is null!!!\n");
return -EINVAL;
}
/*
* alarm wake up bit will be clear in device_irq_init(),
* read before that
*/
ret = regmap_read(chip->regmap, PM800_RTC_CONTROL, &val);
if (ret < 0) {
dev_err(chip->dev, "Failed to read RTC register: %d\n", ret);
goto out;
}
if (val & PM800_ALARM_WAKEUP) {
if (pdata && pdata->rtc)
pdata->rtc->rtc_wakeup = 1;
}
ret = regmap_read(chip->regmap, PM800_USER_DATA6, &val);
if (ret < 0) {
dev_err(chip->dev, "Failed to read RTC usr reg: %d\n", ret);
goto out;
}
if (val & (1 << 1)) {
/* clear */
regmap_update_bits(chip->regmap, PM800_USER_DATA6,
(1 << 1), (0 << 1));
if (pdata && pdata->rtc)
pdata->rtc->rtc_wakeup = 1;
}
ret = device_gpadc_init(chip, pdata);
if (ret < 0) {
dev_err(chip->dev, "[%s]Failed to init gpadc\n", __func__);
goto out;
}
chip->regmap_irq_chip = &pm800_irq_chip;
chip->irq_mode = pdata->irq_mode;
ret = device_irq_init_800(chip);
if (ret < 0) {
dev_err(chip->dev, "[%s]Failed to init pm800 irq\n", __func__);
goto out;
}
ret = device_onkey_init(chip, pdata);
if (ret) {
dev_err(chip->dev, "Failed to add onkey subdev\n");
goto out_dev;
}
ret = device_rtc_init(chip, pdata);
if (ret) {
dev_err(chip->dev, "Failed to add rtc subdev\n");
goto out;
}
/* there is no marvell charger on board */
if (force_pm80x_fg) {
ret = device_battery_init(chip, pdata);
if (ret) {
dev_err(chip->dev, "Failed to add battery subdev\n");
goto out;
}
}
ret = device_regulator_init(chip, pdata);
if (ret) {
dev_err(chip->dev, "Failed to add regulators subdev\n");
goto out;
}
ret = device_headset_init(chip, pdata);
if (ret < 0)
dev_warn(chip->dev, "Failed to add headset subdev\n");
ret = device_dvc_init(chip, pdata);
if (ret)
dev_warn(chip->dev, "Failed to add dvc subdev\n");
ret = device_usb_init(chip, pdata);
if (ret)
dev_warn(chip->dev, "Failed to add usb subdev\n");
ret = device_vibrator_init(chip, pdata);
if (ret)
dev_warn(chip->dev, "Failed to add vibrator subdev\n");
ret = device_debug_init(chip);
if (ret) {
dev_err(chip->dev, "failed to add debug subdev\n");
goto out_dev;
}
ret = device_wdt_init(chip);
if (ret) {
dev_err(chip->dev, "failed to add wdt subdev\n");
goto out_dev;
}
#ifdef CONFIG_PAPI_88PM80X
ret = device_papi_init(chip);
if (ret) {
dev_err(chip->dev, "Failed to add papi subdev\n");
goto out;
}
#endif
return 0;
out_dev:
mfd_remove_devices(chip->dev);
device_irq_exit_800(chip);
out:
return ret;
}
static int pm800_dt_init(struct device_node *np,
struct device *dev,
struct pm80x_platform_data *pdata)
{
pdata->irq_mode =
!of_property_read_bool(np, "marvell,88pm800-irq-write-clear");
chg_irq_from_exton = of_property_read_bool(np, "chg_irq_from_exton");
return 0;
}
/*
* board specfic configurations also parameters from customers,
* this parameters are passed form board dts file
*/
static int pmic_board_config(struct pm80x_chip *chip, struct device_node *np)
{
unsigned int page, reg, mask, data;
const __be32 *values;
int size, rows, index;
values = of_get_property(np, "marvell,pmic-board-cfg", &size);
if (!values) {
dev_warn(chip->dev, "no valid property for %s\n", np->name);
return 0;
}
size /= sizeof(*values); /* Number of elements in array */
rows = size / 4;
dev_info(chip->dev, "Proceed PMIC board specific configuration (%d items)\n", rows);
index = 0;
while (rows--) {
page = be32_to_cpup(values + index++);
reg = be32_to_cpup(values + index++);
mask = be32_to_cpup(values + index++);
data = be32_to_cpup(values + index++);
switch (page) {
case PM800_BASE_PAGE:
dev_info(chip->dev, "Base page 0x%02x update 0x%02x mask with value 0x%02x\n", reg, mask, data);
regmap_update_bits(chip->regmap, reg, mask, data);
break;
case PM800_POWER_PAGE:
dev_info(chip->dev, "Power page 0x%02x update 0x%02x mask with value 0x%02x\n", reg, mask, data);
regmap_update_bits(chip->subchip->regmap_power, reg, mask, data);
break;
case PM800_GPADC_PAGE:
dev_info(chip->dev, "GPADC page 0x%02x update 0x%02x mask with value 0x%02x\n", reg, mask, data);
regmap_update_bits(chip->subchip->regmap_gpadc, reg, mask, data);
break;
default:
dev_warn(chip->dev, "Unsupported page for %d\n", page);
break;
}
}
return 0;
}
static void parse_powerup_log(struct pm80x_chip *chip)
{
int powerup, bit;
char *powerup_name[7] = {
"ONKEY_WAKEUP ",
"CHG_WAKEUP ",
"EXTON_WAKEUP ",
"RSVD ",
"RTC_ALARM_WAKEUP",
"FAULT_WAKEUP ",
"BAT_WAKEUP "
};
/*power up log*/
regmap_read(chip->regmap, PM800_POWER_UP_LOG, &powerup);
dev_info(chip->dev, "Powerup log 0x%x: 0x%x\n",
PM800_POWER_UP_LOG, powerup);
dev_info(chip->dev, " -------------------------------\n");
dev_info(chip->dev, "| name(power up) | status |\n");
dev_info(chip->dev, "|--------------------|----------|\n");
for (bit = 0; bit < 7; bit++)
dev_info(chip->dev, "| %s | %x |\n",
powerup_name[bit], (powerup >> bit) & 1);
dev_info(chip->dev, " -------------------------------\n");
/* keep globals for external usage */
chip->powerup = powerup;
}
static void parse_powerdown_log(struct pm80x_chip *chip)
{
int powerdown1, powerdown2, bit;
char *powerdown1_name[8] = {
"OVER_TEMP ",
"UV_VSYS1 ",
"SW_PDOWN ",
"FL_ALARM ",
"WD ",
"LONG_ONKEY",
"OV_VSYS ",
"RTC_RESET "
};
char *powerdown2_name[5] = {
"HYB_DONE ",
"UV_VSYS2 ",
"HW_RESET ",
"PGOOD_PDOWN",
"LONKEY_RTC "
};
/*power down log1*/
regmap_read(chip->regmap, PM800_POWER_DOWN_LOG1, &powerdown1);
dev_info(chip->dev, "PowerDW Log1 0x%x: 0x%x\n",
PM800_POWER_DOWN_LOG1, powerdown1);
dev_info(chip->dev, " -------------------------------\n");
dev_info(chip->dev, "| name(power down1) | status |\n");
dev_info(chip->dev, "|--------------------|----------|\n");
for (bit = 0; bit < 8; bit++)
dev_info(chip->dev, "| %s | %x |\n",
powerdown1_name[bit], (powerdown1 >> bit) & 1);
dev_info(chip->dev, " -------------------------------\n");
/*power down log2*/
regmap_read(chip->regmap, PM800_POWER_DOWN_LOG2, &powerdown2);
dev_info(chip->dev, "PowerDW Log2 0x%x: 0x%x\n",
PM800_POWER_DOWN_LOG2, powerdown2);
dev_info(chip->dev, " -------------------------------\n");
dev_info(chip->dev, "| name(power down2) | status |\n");
dev_info(chip->dev, "|--------------------|----------|\n");
for (bit = 0; bit < 5; bit++)
dev_info(chip->dev, "| %s | %x |\n",
powerdown2_name[bit], (powerdown2 >> bit) & 1);
dev_info(chip->dev, " -------------------------------\n");
/* write to clear */
regmap_write(chip->regmap, PM800_POWER_DOWN_LOG1, 0xFF);
regmap_write(chip->regmap, PM800_POWER_DOWN_LOG2, 0xFF);
/* mask reserved bits and sleep indication */
powerdown2 &= 0x1E;
/* keep globals for external usage */
chip->powerdown1 = powerdown1;
chip->powerdown2 = powerdown2;
}
static int pm800_init_config(struct pm80x_chip *chip, struct device_node *np)
{
int data;
if (!chip || !chip->regmap || !chip->subchip
|| !chip->subchip->regmap_power) {
pr_err("%s:chip is not availiable!\n", __func__);
return -EINVAL;
}
if (np) /*have board specific parameters need to config*/
pmic_board_config(chip, np);
/*base page:reg 0xd0.7 = 1 32kHZ generated from XO */
regmap_read(chip->regmap, PM800_RTC_CONTROL, &data);
data |= (1 << 7);
regmap_write(chip->regmap, PM800_RTC_CONTROL, data);
/* Set internal digital sleep voltage as 1.2V */
regmap_read(chip->regmap, PM800_LOW_POWER1, &data);
data &= ~(0xf << 4);
regmap_write(chip->regmap, PM800_LOW_POWER1, data);
/* Enable 32Khz-out-3 low jitter XO_LJ = 1 in pm800
* Enable 32Khz-out-2 low jitter XO_LJ = 1 in pm822
* they are the same bit
*/
regmap_read(chip->regmap, PM800_LOW_POWER2, &data);
data |= (1 << 5);
regmap_write(chip->regmap, PM800_LOW_POWER2, data);
switch (chip->type) {
case CHIP_PM800:
/* Enable 32Khz-out-from XO 1, 2, 3 all enabled */
regmap_write(chip->regmap, PM800_RTC_MISC2, 0x2a);
break;
case CHIP_PM822:
/* select 22pF internal capacitance on XTAL1 and XTAL2*/
regmap_read(chip->regmap, PM800_RTC_MISC6, &data);
data |= (0x7 << 4);
regmap_write(chip->regmap, PM800_RTC_MISC6, data);
/* Enable 32Khz-out-from XO 1, 2 all enabled */
regmap_write(chip->regmap, PM800_RTC_MISC2, 0xa);
/* gps use the LDO13 set the current 170mA */
regmap_read(chip->subchip->regmap_power,
PM822_LDO13_CTRL, &data);
data &= ~(0x3);
data |= (0x2);
regmap_write(chip->subchip->regmap_power,
PM822_LDO13_CTRL, data);
/* low power config
* 1. base_page 0x21, BK_CKSLP_DIS is gated 1ms after sleep mode entry.
* 2. base_page 0x23, REF_SLP_EN reference group enter low power mode.
* REF_UVL_SEL set to be 5.6V
* 3. base_page 0x50, 0x55 OSC_CKLCK buck FLL is locked
* 4. gpadc_page 0x06, GP_SLEEP_MODE MEANS_OFF scale set to be 8
* MEANS_EN_SLP set to 1, GPADC operates in sleep duty cycle mode.
*/
regmap_read(chip->regmap, PM800_LOW_POWER2, &data);
data |= (1 << 4);
regmap_write(chip->regmap, PM800_LOW_POWER2, data);
regmap_read(chip->regmap, PM800_LOW_POWER_CONFIG4, &data);
data |= (1 << 4);
data &= ~(0x3 < 2);
regmap_write(chip->regmap, PM800_LOW_POWER_CONFIG4, data);
regmap_read(chip->regmap, PM800_OSC_CNTRL1, &data);
data |= (1 << 0);
regmap_write(chip->regmap, PM800_OSC_CNTRL1, data);
regmap_read(chip->regmap, PM800_OSC_CNTRL6, &data);
data &= ~(1 << 0);
regmap_write(chip->regmap, PM800_OSC_CNTRL6, data);
regmap_read(chip->subchip->regmap_gpadc, PM800_GPADC_MISC_CONFIG2, &data);
data |= (0x7 << 4);
regmap_write(chip->subchip->regmap_gpadc, PM800_GPADC_MISC_CONFIG2, data);
/*
* Enable LDO sleep mode
* TODO: GPS and RF module need to test after enable
* ldo3 sleep mode may make emmc not work when resume, disable it
*/
regmap_write(chip->subchip->regmap_power, PM800_LDO_SLP1, 0xba);
regmap_write(chip->subchip->regmap_power, PM800_LDO_SLP2, 0xaa);
regmap_write(chip->subchip->regmap_power, PM800_LDO_SLP3, 0xaa);
regmap_write(chip->subchip->regmap_power, PM800_LDO_SLP4, 0x0a);
break;
case CHIP_PM86X:
/* enable buck1 dual phase mode*/
regmap_read(chip->subchip->regmap_power, PM860_BUCK1_MISC,
&data);
data |= BUCK1_DUAL_PHASE_SEL;
regmap_write(chip->subchip->regmap_power, PM860_BUCK1_MISC,
data);
/*xo_cap sel bit(4~6)= 100 12pf register:0xe8*/
regmap_read(chip->regmap, PM860_MISC_RTC3, &data);
data |= (0x4 << 4);
regmap_write(chip->regmap, PM860_MISC_RTC3, data);
/* configure DVC pins according chip stepping */
switch (chip->chip_id) {
case CHIP_PM86X_ID_A0:
/*set gpio4 and gpio5 to be DVC mode for A0 */
regmap_read(chip->regmap, PM860_GPIO_4_5_CNTRL, &data);
data |= PM860_GPIO4_GPIO_MODE(7) | PM860_GPIO5_GPIO_MODE(7);
regmap_write(chip->regmap, PM860_GPIO_4_5_CNTRL, data);
/* enable SLP_CNT_HD for 88pm860 A0 chip */
regmap_update_bits(chip->regmap, PM860_A0_SLP_CNT2,
PM860_A0_SLP_CNT_HD, PM860_A0_SLP_CNT_HD);
/* configure gpio2 as RFPA mode */
regmap_update_bits(chip->regmap, PM800_GPIO_2_3_CNTRL,
PM860_GPIO2_MODE_MASK,
PM800_GPIO2_GPIO_MODE(0x2));
/* configure gpio3 as input */
regmap_update_bits(chip->regmap, PM800_GPIO_2_3_CNTRL,
PM860_GPIO3_MODE_MASK,
PM800_GPIO3_GPIO_MODE(0x0));
break;
case CHIP_PM86X_ID_Z3:
default:
/*set gpio3 and gpio4 to be DVC mode */
regmap_read(chip->regmap, PM860_GPIO_2_3_CNTRL, &data);
data |= PM860_GPIO3_GPIO_MODE(7);
regmap_write(chip->regmap, PM860_GPIO_2_3_CNTRL, data);
regmap_read(chip->regmap, PM860_GPIO_4_5_CNTRL, &data);
data |= PM860_GPIO4_GPIO_MODE(7);
regmap_write(chip->regmap, PM860_GPIO_4_5_CNTRL, data);
/* configure gpio2 as RFPA mode */
regmap_update_bits(chip->regmap, PM800_GPIO_2_3_CNTRL,
PM860_GPIO2_MODE_MASK,
PM800_GPIO2_GPIO_MODE(0x2));
/* configure gpio5 as input */
regmap_update_bits(chip->regmap, PM800_GPIO_4_5_CNTRL,
PM860_GPIO5_MODE_MASK,
PM860_GPIO5_GPIO_MODE(0));
break;
}
/* configure gpio0 as 32khz output buffer mode */
regmap_update_bits(chip->regmap, PM800_GPIO_0_1_CNTRL,
PM860_GPIO0_MODE_MASK,
PM800_GPIO0_GPIO_MODE(0x4));
/* configure gpio1 as input */
regmap_update_bits(chip->regmap, PM800_GPIO_0_1_CNTRL,
PM860_GPIO1_MODE_MASK,
PM800_GPIO1_GPIO_MODE(0x0));
break;
default:
dev_err(chip->dev, "Unknown device type: %d\n", chip->type);
break;
}
/*
* Block wakeup attempts when VSYS rises above
* VSYS_UNDER_RISE_TH1, or power off may fail.
* it is set to prevent contimuous attempt to power up
* incase the VSYS is above the VSYS_LOW_TH threshold.
*/
regmap_read(chip->regmap, PM800_RTC_MISC5, &data);
data |= 0x1;
regmap_write(chip->regmap, PM800_RTC_MISC5, data);
/* Enabele LDO and BUCK clock gating in lpm */
regmap_read(chip->regmap, PM800_LOW_POWER_CONFIG3, &data);
data |= (1 << 7);
regmap_write(chip->regmap, PM800_LOW_POWER_CONFIG3, data);
/*
* Disable reference group sleep mode
* - to reduce power fluctuation in suspend
*/
regmap_read(chip->regmap, PM800_LOW_POWER_CONFIG4, &data);
data &= ~(1 << 7);
regmap_write(chip->regmap, PM800_LOW_POWER_CONFIG4, data);
/* Enable voltage change in pmic, POWER_HOLD = 1 */
regmap_read(chip->regmap, PM800_WAKEUP1, &data);
data |= (1 << 7);
regmap_write(chip->regmap, PM800_WAKEUP1, data);
/*
* Enable buck sleep mode.
* But disable buck2 sleep mode here since it's for ddr/emmc, which
* is sensitive to the voltage and the chip may have latency before
* enter power save mode.
*/
regmap_write(chip->subchip->regmap_power, PM800_BUCK_SLP1, 0xae);
regmap_write(chip->subchip->regmap_power, PM800_BUCK_SLP2, 0x2);
/*set buck2 and buck4 driver selection to be full.
* this bit is now reserved and default value is 0, if want full
* drive possibility it should be set to 1.
* In A1 version it will be set to 1 by default.
*/
if (chip->type == CHIP_PM800) {
regmap_read(chip->subchip->regmap_power, 0x7D, &data);
data |= (1 << 4);
regmap_write(chip->subchip->regmap_power, 0x7D, data);
regmap_read(chip->subchip->regmap_power, 0x80, &data);
data |= (1 << 4);
regmap_write(chip->subchip->regmap_power, 0x80, data);
} else {
regmap_read(chip->subchip->regmap_power, 0x7c, &data);
data |= (1 << 2);
regmap_write(chip->subchip->regmap_power, 0x7c, data);
regmap_read(chip->subchip->regmap_power, 0x82, &data);
data |= (1 << 2);
regmap_write(chip->subchip->regmap_power, 0x82, data);
}
/* dump power up log */
parse_powerup_log(chip);
parse_powerdown_log(chip);
return 0;
}
extern struct pm80x_chip *pm80x_chip_g;
void sw_poweroff(void)
{
int ret;
/* try 3 times to reduce the fail rate */
pr_info("turning off power....\n");
ret = pmic_rw_reg(PM800_WAKEUP1, PM800_SW_PDOWN, PM800_SW_PDOWN);
if (ret < 0)
ret = pmic_rw_reg(PM800_WAKEUP1, PM800_SW_PDOWN, PM800_SW_PDOWN);
if (ret < 0)
ret = pmic_rw_reg(PM800_WAKEUP1, PM800_SW_PDOWN, PM800_SW_PDOWN);
if (ret < 0)
pr_err("%s, turn off power fail\n", __func__);
}
static int reboot_notifier_func(struct notifier_block *this,
unsigned long code, void *cmd)
{
int data;
struct pm80x_chip *chip;
pr_info("reboot notifier...\n");
chip = container_of(this, struct pm80x_chip, reboot_notifier);
if (cmd && (0 == strcmp(cmd, "recovery"))) {
pr_info("Enter recovery mode\n");
regmap_read(chip->regmap, 0xef, &data);
regmap_write(chip->regmap, 0xef, data | 0x1);
} else {
regmap_read(chip->regmap, 0xef, &data);
regmap_write(chip->regmap, 0xef, data & 0xfe);
}
if (code != SYS_POWER_OFF) {
regmap_read(chip->regmap, 0xef, &data);
/* this bit is for charger server */
regmap_write(chip->regmap, 0xef, data | 0x2);
}
return 0;
}
static int pm800_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret = 0;
struct pm80x_chip *chip;
struct pm80x_platform_data *pdata = client->dev.platform_data;
struct device_node *node = client->dev.of_node;
struct pm80x_subchip *subchip;
if (IS_ENABLED(CONFIG_OF)) {
if (!pdata) {
pdata = devm_kzalloc(&client->dev,
sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
}
ret = pm800_dt_init(node, &client->dev, pdata);
if (ret)
return ret;
} else if (!pdata) {
return -EINVAL;
}
/*
* RTC in pmic can run even the core is powered off, and user can set
* alarm in RTC. When the alarm is time out, the PMIC will power up
* the core, and the whole system will boot up. When PMIC driver is
* probed, it will read out some register to find out whether this
* boot is caused by RTC timeout or not, and it need pass this
* information to RTC driver.
* So we need rtc platform data to be existed to pass this information.
*/
if (!pdata->rtc) {
pdata->rtc = devm_kzalloc(&client->dev,
sizeof(*(pdata->rtc)), GFP_KERNEL);
if (!pdata->rtc)
return -ENOMEM;
}
ret = pm80x_init(client);
if (ret) {
dev_err(&client->dev, "pm800_init fail\n");
goto out_init;
}
chip = i2c_get_clientdata(client);
#if defined(CONFIG_CPU_ASR18XX) || defined(CONFIG_CPU_ASR1901)
if (chip->type != CHIP_PM800) {
dev_err(&client->dev, "PM800 not present\n");
ret = -ENODEV;
goto out_init;
}
#endif
/* init subchip for PM800 */
subchip =
devm_kzalloc(&client->dev, sizeof(struct pm80x_subchip),
GFP_KERNEL);
if (!subchip) {
ret = -ENOMEM;
goto err_subchip_alloc;
}
/* pm800 has 2 addtional pages to support power and gpadc. */
subchip->power_page_addr = client->addr + 1;
subchip->gpadc_page_addr = client->addr + 2;
subchip->test_page_addr = client->addr + 7;
chip->subchip = subchip;
ret = pm800_pages_init(chip);
if (ret) {
dev_err(&client->dev, "pm800_pages_init failed!\n");
goto err_page_init;
}
ret = device_800_init(chip, pdata);
if (ret) {
dev_err(chip->dev, "Failed to initialize 88pm800 devices\n");
goto err_device_init;
}
if (pdata && pdata->plat_config)
pdata->plat_config(chip, pdata);
/*
* config registers for pmic.
* common registers is configed in pm800_init_config directly,
* board specfic registers and configuration is passed
* from board specific dts file.
*/
if (IS_ENABLED(CONFIG_OF))
pm800_init_config(chip, node);
else
pm800_init_config(chip, NULL);
chip->reboot_notifier.notifier_call = reboot_notifier_func;
pm80x_chip_g = chip;
pm_power_off = sw_poweroff;
register_reboot_notifier(&(chip->reboot_notifier));
return 0;
err_device_init:
pm800_pages_exit(chip);
err_page_init:
err_subchip_alloc:
pm80x_deinit();
out_init:
return ret;
}
static int pm800_remove(struct i2c_client *client)
{
struct pm80x_chip *chip = i2c_get_clientdata(client);
mfd_remove_devices(chip->dev);
device_irq_exit_800(chip);
pm800_pages_exit(chip);
pm80x_deinit();
return 0;
}
void pm800_shutdown(struct i2c_client *client)
{
struct pm80x_chip *chip = i2c_get_clientdata(client);
disable_irq(chip->irq);
}
#if 0
void buck1_audio_mode_ctrl(int on)
{
int data;
static int refcount;
mutex_lock(&audio_mode_mutex);
if (on) {
if (refcount == 0) {
regmap_read(pm80x_chip_g->regmap,
PM800_LOW_POWER_CONFIG5,
&data);
data |= PM800_AUDIO_MODE_ENA;
regmap_write(pm80x_chip_g->regmap,
PM800_LOW_POWER_CONFIG5,
data);
}
refcount++;
} else {
if (refcount == 1) {
regmap_read(pm80x_chip_g->regmap,
PM800_LOW_POWER_CONFIG5,
&data);
data &= ~PM800_AUDIO_MODE_ENA;
regmap_write(pm80x_chip_g->regmap,
PM800_LOW_POWER_CONFIG5,
data);
}
refcount--;
}
mutex_unlock(&audio_mode_mutex);
}
EXPORT_SYMBOL(buck1_audio_mode_ctrl);
/* set buck1 audio mode voltage as 0.8v*/
void set_buck1_audio_mode_vol(u32 vol)
{
int data;
/* the proper range is 0~0x54, corresponding voltage is 0.6v~1.8v */
if (vol >= 0x55)
return;
regmap_read(pm80x_chip_g->subchip->regmap_power,
PM800_AUDIO_MODE_CONFIG1,
&data);
data &= ~(0x7f);
data |= ((vol & 0x7f) | (0x1 << 7));
regmap_write(pm80x_chip_g->subchip->regmap_power,
PM800_AUDIO_MODE_CONFIG1,
data);
}
EXPORT_SYMBOL(set_buck1_audio_mode_vol);
void buck1_sleepvol_control_for_gps(int on)
{
int data;
static int data_old;
static bool get_data_old;
/*
* Helan2 need to set buck1 sleep voltage tobe 0.95v when power on gps,
* and set back to the old sleep voltage when power off gps.
* This function provide such an interface to satisfy it.
*/
if (!get_data_old) {
regmap_read(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK1_SLEEP,
&data_old);
get_data_old = true;
}
if (on) {
/*
* this means gps power on
* buck1 sleep voltage is set to be 0.95v
*/
data = data_old;
data &= ~(0x7f);
data |= 0x1c;
regmap_write(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK1_SLEEP,
data);
} else {
data = data_old;
regmap_write(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK1_SLEEP,
data);
}
}
EXPORT_SYMBOL(buck1_sleepvol_control_for_gps);
void buck2_sleepmode_control_for_wifi(int on)
{
int data;
if (on) {
/*
* Disable VBUCK2's sleep mode, allow big current output
* even system enter to suspend
* As SD8787 use it as 1.8V supply, it would still work
* druing suspend and need much current
*
*/
regmap_read(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK_SLP1, &data);
data = (data & ~PM800_BUCK2_SLP1_MASK) |
(PM800_BUCK_SLP_PWR_ACT2 << PM800_BUCK2_SLP1_SHIFT);
regmap_write(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK_SLP1,
data);
} else {
/*
* Enable VBUCK2's sleep mode again (Only 5mA ability)
* If SD8787 is power off, VBUCK2 sleep mode has not side
* impact to Sd8787, but has benifit to whole power consumption
*/
regmap_read(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK_SLP1, &data);
data = (data & ~PM800_BUCK2_SLP1_MASK) |
(PM800_BUCK_SLP_PWR_LOW << PM800_BUCK2_SLP1_SHIFT);
regmap_write(pm80x_chip_g->subchip->regmap_power,
PM800_BUCK_SLP1,
data);
}
}
EXPORT_SYMBOL(buck2_sleepmode_control_for_wifi);
/* return gpadc voltage */
int get_gpadc_volt(struct pm80x_chip *chip, int gpadc_id)
{
int ret, volt;
unsigned char buf[2];
int gp_meas;
switch (gpadc_id) {
case PM800_GPADC0:
gp_meas = PM800_GPADC0_MEAS1;
break;
case PM800_GPADC1:
gp_meas = PM800_GPADC1_MEAS1;
break;
case PM800_GPADC2:
gp_meas = PM800_GPADC2_MEAS1;
break;
case PM800_GPADC3:
gp_meas = PM800_GPADC3_MEAS1;
break;
default:
dev_err(chip->dev, "get GPADC failed!\n");
return -EINVAL;
}
ret = regmap_bulk_read(chip->subchip->regmap_gpadc,
gp_meas, buf, 2);
if (ret < 0) {
dev_err(chip->dev, "Attention: failed to get volt!\n");
return -EINVAL;
}
volt = ((buf[0] & 0xff) << 4) | (buf[1] & 0x0f);
dev_dbg(chip->dev, "%s: volt value = 0x%x\n", __func__, volt);
/* volt = value * 1.4 * 1000 / (2^12) */
volt = ((volt & 0xfff) * 7 * 100) >> 11;
dev_dbg(chip->dev, "%s: voltage = %dmV\n", __func__, volt);
return volt;
}
/* return voltage via bias current from GPADC */
int get_gpadc_bias_volt(struct pm80x_chip *chip, int gpadc_id, int bias)
{
int volt, data, gp_bias;
switch (gpadc_id) {
case PM800_GPADC0:
gp_bias = PM800_GPADC_BIAS1;
break;
case PM800_GPADC1:
gp_bias = PM800_GPADC_BIAS2;
break;
case PM800_GPADC2:
gp_bias = PM800_GPADC_BIAS3;
break;
case PM800_GPADC3:
gp_bias = PM800_GPADC_BIAS4;
break;
default:
dev_err(chip->dev, "get GPADC failed!\n");
return -EINVAL;
}
/* get the register value */
if (bias > 76)
bias = 76;
if (bias < 1)
bias = 1;
bias = (bias - 1) / 5;
regmap_read(chip->subchip->regmap_gpadc, gp_bias, &data);
data &= 0xf0;
data |= bias;
regmap_write(chip->subchip->regmap_gpadc, gp_bias, data);
volt = get_gpadc_volt(chip, gpadc_id);
if ((volt < 0) || (volt > 1400)) {
dev_err(chip->dev, "%s return %dmV\n", __func__, volt);
return -EINVAL;
}
return volt;
}
/*
* used by non-pmic driver
* TODO: remove later
*/
int extern_get_gpadc_bias_volt(int gpadc_id, int bias)
{
return get_gpadc_bias_volt(pm80x_chip_g, gpadc_id, bias);
}
EXPORT_SYMBOL(extern_get_gpadc_bias_volt);
#endif
static struct i2c_driver pm800_driver = {
.driver = {
.name = "88PM800",
.owner = THIS_MODULE,
.pm = &pm80x_pm_ops,
.of_match_table = of_match_ptr(pm80x_dt_ids),
},
.probe = pm800_probe,
.remove = pm800_remove,
.shutdown = pm800_shutdown,
.id_table = pm80x_id_table,
};
static int __init pm800_i2c_init(void)
{
return i2c_add_driver(&pm800_driver);
}
subsys_initcall(pm800_i2c_init);
static void __exit pm800_i2c_exit(void)
{
i2c_del_driver(&pm800_driver);
}
module_exit(pm800_i2c_exit);
MODULE_DESCRIPTION("PMIC Driver for Marvell 88PM800");
MODULE_AUTHOR("Qiao Zhou <zhouqiao@marvell.com>");
MODULE_LICENSE("GPL");