blob: cafd06679f3db8e43a7aeef404d594d86e693657 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Regulators driver for Marvell 88PM800
*
* Copyright (C) 2012 Marvell International Ltd.
* Joseph(Yossi) Hanin <yhanin@marvell.com>
* Yi Zhang <yizhang@marvell.com>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/mfd/88pm80x.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/regulator/of_regulator.h>
/* LDO1 with DVC[0..3] */
#define PM800_LDO1_VOUT (0x08) /* VOUT1 */
#define PM800_LDO1_VOUT_2 (0x09)
#define PM800_LDO1_VOUT_3 (0x0A)
#define PM800_LDO2_VOUT (0x0B)
#define PM800_LDO3_VOUT (0x0C)
#define PM800_LDO4_VOUT (0x0D)
#define PM800_LDO5_VOUT (0x0E)
#define PM800_LDO6_VOUT (0x0F)
#define PM800_LDO7_VOUT (0x10)
#define PM800_LDO8_VOUT (0x11)
#define PM800_LDO9_VOUT (0x12)
#define PM800_LDO10_VOUT (0x13)
#define PM800_LDO11_VOUT (0x14)
#define PM800_LDO12_VOUT (0x15)
#define PM800_LDO13_VOUT (0x16)
#define PM800_LDO14_VOUT (0x17)
#define PM800_LDO15_VOUT (0x18)
#define PM800_LDO16_VOUT (0x19)
#define PM800_LDO17_VOUT (0x1A)
#define PM800_LDO18_VOUT (0x1B)
#define PM800_LDO19_VOUT (0x1C)
#define PM800_VOUTSW_VOUT (0xFF) /* fake register */
/*88ppm86x register*/
#define PM800_LDO20_VOUT (0x1D)
/* BUCK1 with DVC[0..3] */
#define PM800_BUCK1_SET_SLP (0x30)
#define PM800_BUCK2_SET_SLP (0x31)
#define PM800_BUCK3_SET_SLP (0x32)
#define PM800_BUCK4_SET_SLP (0x33)
#define PM800_BUCK5_SET_SLP (0x34)
#define PM800_BUCK6_SET_SLP (0x35)
#define PM800_BUCK1B_SET_SLP (0x36)
#define PM800_BUCK_SLP_MASK (0x7F)
#define PM800_LDO_SLP_MASK (0xF0)
#define PM800_BUCK1 (0x3C)
#define PM800_BUCK1_1 (0x3D)
#define PM800_BUCK1_2 (0x3E)
#define PM800_BUCK1_3 (0x3F)
#define PM800_BUCK2 (0x40)
#define PM800_BUCK3 (0x41)
#define PM800_BUCK4 (0x42)
#define PM800_BUCK4_1 (0x43)
#define PM800_BUCK4_2 (0x44)
#define PM800_BUCK4_3 (0x45)
#define PM800_BUCK5 (0x46)
#define PM800_BUCK_ENA (0x50)
#define PM800_LDO_ENA1_1 (0x51)
#define PM800_LDO_ENA1_2 (0x52)
#define PM800_LDO_ENA1_3 (0x53)
#define PM800_BUCK_ENA2 (0x55)
#define PM800_LDO_ENA2_1 (0x56)
#define PM800_LDO_ENA2_2 (0x57)
#define PM800_LDO_ENA2_3 (0x58)
#define PM800_BUCK1_AUD (0x38)
#define PM800_BUCK4_AUD (0x39)
#define PM800_LDO1_AUD (0x0A) /* correspond to PM800 */
#define PM800_LDO2_AUD (0x0A) /* correspond to PM822 */
#define PM800_BUCK_AUD_MASK (0x7F)
#define PM800_LDO_AUD_MASK (0xF0)
#define PM800_BUCK1_MISC1 (0x78)
#define PM800_BUCK3_MISC1 (0x7E)
#define PM800_BUCK4_MISC1 (0x81)
#define PM800_BUCK5_MISC1 (0x84)
#define PM800_DUMMY (0xFF)
#define MAX_SLEEP_CURRENT 5000
#define REGULATOR_SLEEP_MODE_DIS 0
#define REGULATOR_SLEEP_MODE_EN 1
struct pm800_regulator_volt_range {
int min_uv;
int max_uv;
int step_uv;
/* the register value for min_uv */
int min_val;
};
struct pm800_regulator_info {
struct regulator_desc desc;
int max_ua;
unsigned int sleep_enable_bit;
unsigned int sleep_enable_reg;
unsigned int sleep_vsel_reg;
unsigned int sleep_vsel_mask;
struct pm800_regulator_volt_range *volt;
unsigned int ranges;
int num_of_sets;
int audio_mode;
unsigned int vaudio_reg;
unsigned int vaudio_mask;
unsigned int enable2_reg;
};
struct pm800_regulators {
struct regulator_dev *regulators[PM800_ID_RG_MAX];
struct pm80x_chip *chip;
struct regmap *map;
};
struct pm80x_buckldo_print {
char name[15];
char enable[15];
char slp_mode[15];
char set_slp[10];
char sets[4][10];
char audio[10];
};
/*
* vreg - the buck regs string.
* ereg - the string for the enable register.
* e2reg - the string for the enable 2 register.
* ebit - the bit number in the enable register.
* amax - the current
* Buck has 2 kinds of voltage steps. It is easy to find voltage by ranges,
* not the constant voltage table.
* sebit - the sleep enable mode bit.
* sereg - the sleep enable mode register.
* setnum - the number of sets the regulator have
* amod - is there audio mode - true/false.
* areg - the audio set register.
*/
#define PM800_BUCK(chip, vreg, ereg, e2reg, ebit, amax, sebit, sereg, v_range, set, amod, areg) \
{ \
.desc = { \
.name = #vreg, \
.ops = &pm800_volt_range_ops, \
.type = REGULATOR_VOLTAGE, \
.id = PM800_ID_##vreg, \
.owner = THIS_MODULE, \
.vsel_reg = chip##_##vreg, \
.vsel_mask = 0x7f, \
.enable_reg = PM800_##ereg, \
.enable_mask = 1 << (ebit), \
}, \
.max_ua = (amax), \
.volt = (buck_volt_range##v_range), \
.ranges = ARRAY_SIZE(buck_volt_range##v_range), \
.sleep_enable_bit = sebit, \
.sleep_enable_reg = PM800_##sereg, \
.num_of_sets = set, \
.audio_mode = amod, \
.vaudio_mask = PM800_BUCK_AUD_MASK, \
.vaudio_reg = PM800_##areg, \
.sleep_vsel_reg = PM800_##vreg##_SET_SLP, \
.sleep_vsel_mask = PM800_BUCK_SLP_MASK, \
.enable2_reg = PM800_##e2reg \
}
/*
* vreg - the LDO regs string
* ereg - the string for the enable register.
* e2reg - the string for the enable 2 register.
* ebit - the bit number in the enable register.
* amax - the current
* volt_table - the LDO voltage table
* For all the LDOes, there are too many ranges. Using volt_table will be
* simpler and faster.
* sebit - the sleep enable mode bit.
* sereg - the sleep enable mode register.
* amod - is there audio mode - true/false.
* areg - the audio set register.
*/
#define PM800_LDO(vreg, ereg, e2reg, ebit, amax, sebit, sereg, ldo_table, amod, areg) \
{ \
.desc = { \
.name = #vreg, \
.ops = &pm800_volt_table_ops, \
.type = REGULATOR_VOLTAGE, \
.id = PM800_ID_##vreg, \
.owner = THIS_MODULE, \
.n_voltages = ARRAY_SIZE(ldo_volt_table##ldo_table), \
.vsel_reg = PM800_##vreg##_VOUT, \
.vsel_mask = 0xf, \
.enable_reg = PM800_##ereg, \
.enable_mask = 1 << (ebit), \
.volt_table = ldo_volt_table##ldo_table, \
}, \
.max_ua = (amax), \
.sleep_enable_bit = sebit, \
.sleep_enable_reg = PM800_##sereg, \
.audio_mode = amod, \
.num_of_sets = 1, \
.vaudio_mask = PM800_LDO_AUD_MASK, \
.vaudio_reg = PM800_##areg, \
.sleep_vsel_reg = PM800_##vreg##_VOUT, \
.sleep_vsel_mask = PM800_LDO_SLP_MASK, \
.enable2_reg = PM800_##e2reg \
}
/* 88pm800 buck1 and 88pm822 buck1*/
static struct pm800_regulator_volt_range buck_volt_range1[] = {
{600000, 1587500, 12500, 0x0},
{1600000, 1800000, 50000, 0x50},
};
/* 88pm800 buck 2 ~ 5 and 88pm822 buck 2 ~ 4 */
static struct pm800_regulator_volt_range buck_volt_range2[] = {
{600000, 1587500, 12500, 0x0},
{1600000, 3300000, 50000, 0x50},
};
#ifdef CONFIG_MFG_88PM822
/* 88pm822 buck5 */
static struct pm800_regulator_volt_range buck_volt_range3[] = {
{600000, 1587500, 12500, 0x0},
{1600000, 3950000, 50000, 0x50},
};
#endif
/* 88pm800 ldo1; 88pm86x ldo19 */
static const unsigned int ldo_volt_table1[] = {
600000, 650000, 700000, 750000, 800000, 850000, 900000, 950000,
1000000, 1050000, 1100000, 1150000, 1200000, 1300000, 1400000, 1500000,
};
/* 88pm800 ldo2; 88pm86x ldo20 */
static const unsigned int ldo_volt_table2[] = {
1700000, 1800000, 1900000, 2000000, 2100000, 2500000, 2700000, 2800000,
};
/* 88pm800 ldo 3 ~ 17*/
static const unsigned int ldo_volt_table3[] = {
1200000, 1250000, 1700000, 1800000, 1850000, 1900000, 2500000, 2600000,
2700000, 2750000, 2800000, 2850000, 2900000, 3000000, 3100000, 3300000,
};
/* 88pm800 18 ~ 19 */
static const unsigned int ldo_volt_table4[] = {
1700000, 1800000, 1900000, 2500000, 2800000, 2900000, 3100000, 3300000,
};
/* 88pm822 ldo1 and ldo2 ;88pm86x ldo1 ~ 3*/
static const unsigned int ldo_volt_table5[] = {
1700000, 1800000, 1900000, 2500000, 2800000, 2900000, 3100000, 3300000,
};
/* 88pm822 ldo 3~11; 88pm86x ldo4 ~ 18*/
static const unsigned int ldo_volt_table6[] = {
1200000, 1250000, 1700000, 1800000, 1850000, 1900000, 2500000, 2600000,
2700000, 2750000, 2800000, 2850000, 2900000, 3000000, 3100000, 3300000,
};
/* 88pm822 ldo12*/
static const unsigned int ldo_volt_table7[] = {
600000, 650000, 700000, 750000, 800000, 850000, 900000, 950000,
1000000, 1050000, 1100000, 1150000, 1200000, 1300000, 1400000, 1500000,
};
/* 88pm822 ldo13 */
static const unsigned int ldo_volt_table8[] = {
1700000, 1800000, 1900000, 2500000, 2800000, 2900000, 3100000, 3300000,
};
/* 88pm822 ldo14 */
static const unsigned int ldo_volt_table9[] = {
1700000, 1800000, 1900000, 2000000, 2100000, 2500000, 2700000, 2800000,
};
/* dummy table */
static const unsigned int ldo_volt_table_voutsw[] = {
};
int pm800_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct pm800_regulator_info *info = rdev_get_drvdata(rdev);
unsigned int val, sleep_bit, sleep_enable_mask, reg;
sleep_bit = info->sleep_enable_bit;
sleep_enable_mask = (0x3 << sleep_bit);
/*
* if mode is REGULATOR_SLEEP_MODE_EN, enable related LDO sleep mode
* else disable related LDO sleep mode.
*/
switch (mode) {
case REGULATOR_MODE_IDLE:
val = (0x2 << sleep_bit);
break;
case REGULATOR_MODE_NORMAL:
val = (0x3 << sleep_bit);
break;
default:
dev_err(rdev_get_dev(rdev), "No right mode to set!\n");
return -EINVAL;
}
reg = info->sleep_enable_reg;
return regmap_update_bits(rdev->regmap, reg, sleep_enable_mask, val);
}
static unsigned int pm800_get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV,
int output_uA)
{
struct pm800_regulator_info *info = rdev_get_drvdata(rdev);
if (info == NULL) {
dev_err(rdev_get_dev(rdev), "regulator info null pointer\n");
return REGULATOR_MODE_IDLE;
}
if (output_uA < 0) {
dev_err(rdev_get_dev(rdev), "wrong current input, current < 0!!!\n");
return REGULATOR_MODE_IDLE;
}
/*
* get_optimum_mode be called at enbale/disable_regulator function.
* If output_uA is not set it will be 0,
* set its defult value to be REGULATOR_MODE_IDLE.
*/
return (MAX_SLEEP_CURRENT > output_uA) ? REGULATOR_MODE_IDLE : REGULATOR_MODE_NORMAL;
}
static int pm800_get_current_limit(struct regulator_dev *rdev)
{
struct pm800_regulator_info *info = rdev_get_drvdata(rdev);
return info->max_ua;
}
static int pm800_set_voltage(struct regulator_dev *rdev,
int min_uv, int max_uv, unsigned *selector)
{
struct pm800_regulator_info *info = rdev_get_drvdata(rdev);
struct pm800_regulator_volt_range *range;
int i, best_index = -1;
if (info->volt == NULL)
return -EINVAL;
if (info->desc.id == PM800_ID_VOUTSW)
return 0;
/*
* Ranges are sorted in ascending order. So if we found a best_uv
* in this range, we can break out.
*/
for (i = 0; i < info->ranges; i++) {
range = &info->volt[i];
if (min_uv <= range->max_uv && max_uv >= range->min_uv) {
if (min_uv <= range->min_uv)
best_index = 0;
else
best_index = (min_uv - range->min_uv +
range->step_uv - 1) / range->step_uv;
break;
}
}
if (best_index == -1)
return -EINVAL;
*selector = best_index + range->min_val;
return regulator_set_voltage_sel_regmap(rdev, *selector);
}
/*
* The function convert the buck voltage register value
* to a real voltage value (in uV) according to the voltage table.
*/
static int pm800_get_vbuck_vol(unsigned int val, struct pm800_regulator_info *info)
{
struct pm800_regulator_volt_range *range;
int i, max_val, volt = -EINVAL;
/* get the voltage via the register value */
for (i = 0; i < info->ranges; i++) {
range = &info->volt[i];
if (!range)
return -EINVAL;
max_val = (range->max_uv - range->min_uv) / range->step_uv
+ range->min_val;
if (val >= range->min_val && val <= max_val) {
volt = (val - range->min_val) * range->step_uv
+ range->min_uv;
break;
}
}
return volt;
}
static int pm800_get_voltage(struct regulator_dev *rdev)
{
struct pm800_regulator_info *info = rdev_get_drvdata(rdev);
int val;
if (info->volt == NULL)
return -EINVAL;
val = regulator_get_voltage_sel_regmap(rdev);
if (val < 0)
return val;
if (info->desc.id == PM800_ID_VOUTSW)
return 0;
return pm800_get_vbuck_vol(val, info);
}
static struct regulator_ops pm800_volt_range_ops = {
.set_voltage = pm800_set_voltage,
.get_voltage = pm800_get_voltage,
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.get_current_limit = pm800_get_current_limit,
.get_optimum_mode = pm800_get_optimum_mode,
.set_mode = pm800_set_mode,
};
static struct regulator_ops pm800_volt_table_ops = {
.list_voltage = regulator_list_voltage_table,
.map_voltage = regulator_map_voltage_iterate,
.set_voltage_sel = regulator_set_voltage_sel_regmap,
.get_voltage_sel = regulator_get_voltage_sel_regmap,
.enable = regulator_enable_regmap,
.disable = regulator_disable_regmap,
.is_enabled = regulator_is_enabled_regmap,
.get_current_limit = pm800_get_current_limit,
.get_optimum_mode = pm800_get_optimum_mode,
.set_mode = pm800_set_mode,
};
/* The array is indexed by id(PM800_ID_XXX) */
static struct pm800_regulator_info pm800_regulator_info[] = {
/*PM800_BUCK(chip, vreg, ereg, e2reg, ebit, amax, sebit, sereg, v_range, set, amod, areg)*/
PM800_BUCK(PM800, BUCK1, BUCK_ENA, BUCK_ENA2, 0, 3000000, 0, BUCK_SLP1, 1, 4, 1, BUCK1_AUD),
PM800_BUCK(PM800, BUCK2, BUCK_ENA, BUCK_ENA2, 1, 1200000, 2, BUCK_SLP1, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK3, BUCK_ENA, BUCK_ENA2, 2, 1200000, 4, BUCK_SLP1, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK4, BUCK_ENA, BUCK_ENA2, 3, 1200000, 6, BUCK_SLP1, 2, 4, 1, BUCK4_AUD),
PM800_BUCK(PM800, BUCK5, BUCK_ENA, BUCK_ENA2, 4, 1200000, 0, BUCK_SLP2, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK6, BUCK_ENA, BUCK_ENA2, 5, 1500000, 2, BUCK_SLP2, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK1B, BUCK_ENA, BUCK_ENA2, 6, 3500000, 4, BUCK_SLP2, 2, 1, 0, DUMMY),
/* PM800_LDO(vreg, ereg, e2reg, ebit, amax, sebit, sereg, ldo_table, amod, areg) */
PM800_LDO(LDO1, LDO_ENA1_1, LDO_ENA2_1, 0, 200000, 0, LDO_SLP1, 1, 1, LDO1_AUD),
PM800_LDO(LDO2, LDO_ENA1_1, LDO_ENA2_1, 1, 10000, 2, LDO_SLP1, 2, 0, DUMMY),
PM800_LDO(LDO3, LDO_ENA1_1, LDO_ENA2_1, 2, 300000, 4, LDO_SLP1, 3, 0, DUMMY),
PM800_LDO(LDO4, LDO_ENA1_1, LDO_ENA2_1, 3, 300000, 6, LDO_SLP1, 3, 0, DUMMY),
PM800_LDO(LDO5, LDO_ENA1_1, LDO_ENA2_1, 4, 300000, 0, LDO_SLP2, 3, 0, DUMMY),
PM800_LDO(LDO6, LDO_ENA1_1, LDO_ENA2_1, 5, 300000, 2, LDO_SLP2, 3, 0, DUMMY),
PM800_LDO(LDO7, LDO_ENA1_1, LDO_ENA2_1, 6, 300000, 4, LDO_SLP2, 3, 0, DUMMY),
PM800_LDO(LDO8, LDO_ENA1_1, LDO_ENA2_1, 7, 300000, 6, LDO_SLP2, 3, 0, DUMMY),
PM800_LDO(LDO9, LDO_ENA1_2, LDO_ENA2_2, 0, 300000, 0, LDO_SLP3, 3, 0, DUMMY),
PM800_LDO(LDO10, LDO_ENA1_2, LDO_ENA2_2, 1, 300000, 2, LDO_SLP3, 3, 0, DUMMY),
PM800_LDO(LDO11, LDO_ENA1_2, LDO_ENA2_2, 2, 300000, 4, LDO_SLP3, 3, 0, DUMMY),
PM800_LDO(LDO12, LDO_ENA1_2, LDO_ENA2_2, 3, 300000, 6, LDO_SLP3, 3, 0, DUMMY),
PM800_LDO(LDO13, LDO_ENA1_2, LDO_ENA2_2, 4, 300000, 0, LDO_SLP4, 3, 0, DUMMY),
PM800_LDO(LDO14, LDO_ENA1_2, LDO_ENA2_2, 5, 300000, 2, LDO_SLP4, 3, 0, DUMMY),
PM800_LDO(LDO15, LDO_ENA1_2, LDO_ENA2_2, 6, 300000, 4, LDO_SLP4, 3, 0, DUMMY),
PM800_LDO(LDO16, LDO_ENA1_2, LDO_ENA2_2, 7, 300000, 6, LDO_SLP4, 3, 0, DUMMY),
PM800_LDO(LDO17, LDO_ENA1_3, LDO_ENA2_3, 0, 300000, 0, LDO_SLP5, 3, 0, DUMMY),
PM800_LDO(LDO18, LDO_ENA1_3, LDO_ENA2_3, 1, 200000, 2, LDO_SLP5, 4, 0, DUMMY),
PM800_LDO(LDO19, LDO_ENA1_3, LDO_ENA2_3, 2, 200000, 4, LDO_SLP5, 4, 0, DUMMY),
};
#ifdef CONFIG_MFD_88PM822
static struct pm800_regulator_info pm822_regulator_info[] = {
/*PM800_BUCK(chip, vreg, ereg, e2reg, ebit, amax, sebit, sereg, v_range, set, amod, areg)*/
PM800_BUCK(PM800, BUCK1, BUCK_ENA, BUCK_ENA2, 0, 3500000, 0, BUCK_SLP1, 1, 4, 1, BUCK1_AUD),
PM800_BUCK(PM800, BUCK2, BUCK_ENA, BUCK_ENA2, 1, 750000, 2, BUCK_SLP1, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK3, BUCK_ENA, BUCK_ENA2, 2, 1500000, 4, BUCK_SLP1, 2, 4, 0, DUMMY),
PM800_BUCK(PM800, BUCK4, BUCK_ENA, BUCK_ENA2, 3, 750000, 6, BUCK_SLP1, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK5, BUCK_ENA, BUCK_ENA2, 4, 1500000, 0, BUCK_SLP2, 3, 4, 0, DUMMY),
PM800_BUCK(PM800, BUCK6, BUCK_ENA, BUCK_ENA2, 5, 1500000, 2, BUCK_SLP2, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK1B, BUCK_ENA, BUCK_ENA2, 6, 3500000, 4, BUCK_SLP2, 2, 1, 0, DUMMY),
/* PM800_LDO(vreg, ereg, e2reg, ebit, amax, sebit, sereg, ldo_table, amod, areg) */
PM800_LDO(LDO1, LDO_ENA1_1, LDO_ENA2_1, 0, 100000, 0, LDO_SLP1, 5, 0, DUMMY),
PM800_LDO(LDO2, LDO_ENA1_1, LDO_ENA2_1, 1, 100000, 2, LDO_SLP1, 5, 1, LDO2_AUD),
PM800_LDO(LDO3, LDO_ENA1_1, LDO_ENA2_1, 2, 400000, 4, LDO_SLP1, 6, 0, DUMMY),
PM800_LDO(LDO4, LDO_ENA1_1, LDO_ENA2_1, 3, 400000, 6, LDO_SLP1, 6, 0, DUMMY),
PM800_LDO(LDO5, LDO_ENA1_1, LDO_ENA2_1, 4, 200000, 0, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO6, LDO_ENA1_1, LDO_ENA2_1, 5, 200000, 2, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO7, LDO_ENA1_1, LDO_ENA2_1, 6, 100000, 4, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO8, LDO_ENA1_1, LDO_ENA2_1, 7, 100000, 6, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO9, LDO_ENA1_2, LDO_ENA2_2, 0, 200000, 0, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO10, LDO_ENA1_2, LDO_ENA2_2, 1, 400000, 2, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO11, LDO_ENA1_2, LDO_ENA2_2, 2, 200000, 4, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO12, LDO_ENA1_2, LDO_ENA2_2, 3, 400000, 6, LDO_SLP3, 7, 0, DUMMY),
PM800_LDO(LDO13, LDO_ENA1_2, LDO_ENA2_2, 4, 180000, 0, LDO_SLP4, 8, 0, DUMMY),
PM800_LDO(LDO14, LDO_ENA1_2, LDO_ENA2_2, 5, 8000, 2, LDO_SLP4, 9, 0, DUMMY),
PM800_LDO(VOUTSW, MISC_EN1, MISC_EN2, 4, 0, 0, LDO_SLP4, _voutsw, 0, DUMMY),
};
#endif
#ifdef CONFIG_MFD_88PM860
static struct pm800_regulator_info pm86x_regulator_info[] = {
/*PM800_BUCK(chip, vreg, ereg, e2reg, ebit, amax, sebit, sereg, v_range, set, amod, areg)*/
PM800_BUCK(PM800, BUCK1, BUCK_ENA, BUCK_ENA2, 0, 3000000, 0, BUCK_SLP1, 1, 4, 1, BUCK1_AUD),
PM800_BUCK(PM800, BUCK2, BUCK_ENA, BUCK_ENA2, 1, 750000, 2, BUCK_SLP1, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK3, BUCK_ENA, BUCK_ENA2, 2, 1500000, 4, BUCK_SLP1, 2, 4, 0, DUMMY),
PM800_BUCK(PM860, BUCK4, BUCK_ENA, BUCK_ENA2, 3, 750000, 6, BUCK_SLP1, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK5, BUCK_ENA, BUCK_ENA2, 4, 1500000, 0, BUCK_SLP2, 3, 4, 0, DUMMY),
PM800_BUCK(PM800, BUCK6, BUCK_ENA, BUCK_ENA2, 5, 800000, 2, BUCK_SLP2, 2, 1, 0, DUMMY),
PM800_BUCK(PM800, BUCK1B, BUCK_ENA, BUCK_ENA2, 6, 3000000, 4, BUCK_SLP2, 2, 4, 0, DUMMY),
/* PM800_LDO(vreg, ereg, e2reg, ebit, amax, sebit, sereg, ldo_table, amod, areg) */
PM800_LDO(LDO1, LDO_ENA1_1, LDO_ENA2_1, 0, 100000, 0, LDO_SLP1, 5, 0, DUMMY),
PM800_LDO(LDO2, LDO_ENA1_1, LDO_ENA2_1, 1, 100000, 2, LDO_SLP1, 5, 1, LDO2_AUD),
PM800_LDO(LDO3, LDO_ENA1_1, LDO_ENA2_1, 2, 100000, 4, LDO_SLP1, 5, 0, DUMMY),
PM800_LDO(LDO4, LDO_ENA1_1, LDO_ENA2_1, 3, 400000, 6, LDO_SLP1, 6, 0, DUMMY),
PM800_LDO(LDO5, LDO_ENA1_1, LDO_ENA2_1, 4, 400000, 0, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO6, LDO_ENA1_1, LDO_ENA2_1, 5, 400000, 2, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO7, LDO_ENA1_1, LDO_ENA2_1, 6, 400000, 4, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO8, LDO_ENA1_1, LDO_ENA2_1, 7, 400000, 6, LDO_SLP2, 6, 0, DUMMY),
PM800_LDO(LDO9, LDO_ENA1_2, LDO_ENA2_2, 0, 400000, 0, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO10, LDO_ENA1_2, LDO_ENA2_2, 1, 200000, 2, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO11, LDO_ENA1_2, LDO_ENA2_2, 2, 200000, 4, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO12, LDO_ENA1_2, LDO_ENA2_2, 3, 200000, 6, LDO_SLP3, 6, 0, DUMMY),
PM800_LDO(LDO13, LDO_ENA1_2, LDO_ENA2_2, 4, 200000, 0, LDO_SLP4, 6, 0, DUMMY),
PM800_LDO(LDO14, LDO_ENA1_2, LDO_ENA2_2, 5, 200000, 2, LDO_SLP4, 6, 0, DUMMY),
PM800_LDO(LDO15, LDO_ENA1_2, LDO_ENA2_2, 6, 200000, 4, LDO_SLP4, 6, 0, DUMMY),
PM800_LDO(LDO16, LDO_ENA1_2, LDO_ENA2_2, 7, 200000, 6, LDO_SLP4, 6, 0, DUMMY),
PM800_LDO(LDO17, LDO_ENA1_3, LDO_ENA2_3, 0, 200000, 0, LDO_SLP5, 6, 0, DUMMY),
PM800_LDO(LDO18, LDO_ENA1_3, LDO_ENA2_3, 1, 200000, 2, LDO_SLP5, 6, 0, DUMMY),
PM800_LDO(LDO19, LDO_ENA1_3, LDO_ENA2_3, 2, 400000, 4, LDO_SLP5, 1, 0, DUMMY),
PM800_LDO(LDO20, LDO_ENA1_3, LDO_ENA2_3, 3, 10000, 6, LDO_SLP5, 2, 0, DUMMY),
};
#endif
#define PM800_REGULATOR_OF_MATCH(id) \
{ \
.name = "88PM800-" #id, \
.driver_data = &pm800_regulator_info[PM800_ID_##id], \
}
#ifdef CONFIG_MFD_88PM822
#define PM822_REGULATOR_OF_MATCH(id) \
{ \
.name = "88PM800-" #id, \
.driver_data = &pm822_regulator_info[PM800_ID_##id], \
}
#endif
#ifdef CONFIG_MFD_88PM860
#define PM86X_REGULATOR_OF_MATCH(id) \
{ \
.name = "88PM800-" #id, \
.driver_data = &pm86x_regulator_info[PM800_ID_##id], \
}
#endif
static struct of_regulator_match pm800_regulator_matches[] = {
PM800_REGULATOR_OF_MATCH(BUCK1),
PM800_REGULATOR_OF_MATCH(BUCK2),
PM800_REGULATOR_OF_MATCH(BUCK3),
PM800_REGULATOR_OF_MATCH(BUCK4),
PM800_REGULATOR_OF_MATCH(BUCK5),
PM800_REGULATOR_OF_MATCH(LDO1),
PM800_REGULATOR_OF_MATCH(LDO2),
PM800_REGULATOR_OF_MATCH(LDO3),
PM800_REGULATOR_OF_MATCH(LDO4),
PM800_REGULATOR_OF_MATCH(LDO5),
PM800_REGULATOR_OF_MATCH(LDO6),
PM800_REGULATOR_OF_MATCH(LDO7),
PM800_REGULATOR_OF_MATCH(LDO8),
PM800_REGULATOR_OF_MATCH(LDO9),
PM800_REGULATOR_OF_MATCH(LDO10),
PM800_REGULATOR_OF_MATCH(LDO11),
PM800_REGULATOR_OF_MATCH(LDO12),
PM800_REGULATOR_OF_MATCH(LDO13),
PM800_REGULATOR_OF_MATCH(LDO14),
PM800_REGULATOR_OF_MATCH(LDO15),
PM800_REGULATOR_OF_MATCH(LDO16),
PM800_REGULATOR_OF_MATCH(LDO17),
PM800_REGULATOR_OF_MATCH(LDO18),
PM800_REGULATOR_OF_MATCH(LDO19),
};
#ifdef CONFIG_MFD_88PM822
static struct of_regulator_match pm822_regulator_matches[] = {
PM822_REGULATOR_OF_MATCH(BUCK1),
PM822_REGULATOR_OF_MATCH(BUCK2),
PM822_REGULATOR_OF_MATCH(BUCK3),
PM822_REGULATOR_OF_MATCH(BUCK4),
PM822_REGULATOR_OF_MATCH(BUCK5),
PM822_REGULATOR_OF_MATCH(LDO1),
PM822_REGULATOR_OF_MATCH(LDO2),
PM822_REGULATOR_OF_MATCH(LDO3),
PM822_REGULATOR_OF_MATCH(LDO4),
PM822_REGULATOR_OF_MATCH(LDO5),
PM822_REGULATOR_OF_MATCH(LDO6),
PM822_REGULATOR_OF_MATCH(LDO7),
PM822_REGULATOR_OF_MATCH(LDO8),
PM822_REGULATOR_OF_MATCH(LDO9),
PM822_REGULATOR_OF_MATCH(LDO10),
PM822_REGULATOR_OF_MATCH(LDO11),
PM822_REGULATOR_OF_MATCH(LDO12),
PM822_REGULATOR_OF_MATCH(LDO13),
PM822_REGULATOR_OF_MATCH(LDO14),
PM822_REGULATOR_OF_MATCH(VOUTSW),
};
#endif
#ifdef CONFIG_MFD_88PM860
static struct of_regulator_match pm86x_regulator_matches[] = {
PM86X_REGULATOR_OF_MATCH(BUCK1A),
PM86X_REGULATOR_OF_MATCH(BUCK2),
PM86X_REGULATOR_OF_MATCH(BUCK3),
PM86X_REGULATOR_OF_MATCH(BUCK4),
PM86X_REGULATOR_OF_MATCH(BUCK5),
PM86X_REGULATOR_OF_MATCH(BUCK6),
PM86X_REGULATOR_OF_MATCH(BUCK1B),
PM86X_REGULATOR_OF_MATCH(LDO1),
PM86X_REGULATOR_OF_MATCH(LDO2),
PM86X_REGULATOR_OF_MATCH(LDO3),
PM86X_REGULATOR_OF_MATCH(LDO4),
PM86X_REGULATOR_OF_MATCH(LDO5),
PM86X_REGULATOR_OF_MATCH(LDO6),
PM86X_REGULATOR_OF_MATCH(LDO7),
PM86X_REGULATOR_OF_MATCH(LDO8),
PM86X_REGULATOR_OF_MATCH(LDO9),
PM86X_REGULATOR_OF_MATCH(LDO10),
PM86X_REGULATOR_OF_MATCH(LDO11),
PM86X_REGULATOR_OF_MATCH(LDO12),
PM86X_REGULATOR_OF_MATCH(LDO13),
PM86X_REGULATOR_OF_MATCH(LDO14),
PM86X_REGULATOR_OF_MATCH(LDO15),
PM86X_REGULATOR_OF_MATCH(LDO16),
PM86X_REGULATOR_OF_MATCH(LDO17),
PM86X_REGULATOR_OF_MATCH(LDO18),
PM86X_REGULATOR_OF_MATCH(LDO19),
PM86X_REGULATOR_OF_MATCH(LDO20),
};
#endif
/*
* The function convert the ldo voltage register value
* to a real voltage value (in uV) according to the voltage table.
*/
static int pm800_get_ldo_vol(unsigned int val, struct pm800_regulator_info *info)
{
/* In the case of voutsw */
if (info->desc.n_voltages == 0)
return 0;
else if (!info->desc.volt_table[val])
return -EINVAL;
else
return info->desc.volt_table[val];
}
/* The function return the value in the regulator voltage register */
static unsigned int pm800_check_vol(struct regmap *map, unsigned int reg, unsigned int mask)
{
int ret;
unsigned int vol_val;
ret = regmap_bulk_read(map, reg, &vol_val, 1);
if (ret < 0)
return ret;
/* mask and shift the relevant value from the register */
vol_val = (vol_val & mask) >> (ffs(mask) - 1);
return vol_val;
}
static int pm800_check_hsdet_en(struct pm80x_chip *chip)
{
struct regmap *map = chip->regmap;
int ret, value;
unsigned int en1, en2;
switch (chip->type) {
case CHIP_PM800:
ret = regmap_read(map, PM800_HEADSET_CNTRL, &en1);
if (ret < 0)
return ret;
ret = regmap_read(map, PM800_GPIO_2_3_CNTRL, &en2);
if (ret < 0)
return ret;
value = (en1 & PM800_HSDET_AUTO) && (en2 & PM800_GPIO3_VAL);
break;
#if defined(CONFIG_MFD_88PM822) || defined(CONFIG_MFD_88PM860)
case CHIP_PM822:
case CHIP_PM86X:
ret = regmap_read(map, PM800_HEADSET_CNTRL, &en1);
if (ret < 0)
return ret;
ret = regmap_read(map, PM800_HEADSET_CNTRL2, &en2);
if (ret < 0)
return ret;
/*
* check that auto mode is on (PM800_HSDET_AUTO bit is 0)
* and the status bit is the same as polarity bit
*
*/
value = !(en1 & PM800_HSDET_AUTO) &&
(!(en2 & PM800_HEADSET_STATUS) == !(en2 & PM800_HEADSET_POL));
break;
#endif
default:
pr_err("Cannot find chip type\n");
return -ENODEV;
}
return value;
}
/* The function check if the regulator register is configured to enable/disable */
static int pm800_check_en(struct pm80x_chip *chip, unsigned int reg, unsigned int mask,
unsigned int reg2, int hs_check)
{
struct regmap *map = chip->subchip->regmap_power;
int ret, value;
unsigned int enable1, enable2;
ret = regmap_read(map, reg, &enable1);
if (ret < 0)
return ret;
ret = regmap_read(map, reg2, &enable2);
if (ret < 0)
return ret;
value = (enable1 | enable2) & mask;
if ((!value) && (hs_check))
value = pm800_check_hsdet_en(chip);
return value;
}
/* The function check the regulator sleep mode as configured in his register */
static int pm800_check_slp_mode(struct regmap *map, unsigned int reg, int off)
{
int ret;
unsigned int slp_mode;
ret = regmap_read(map, reg, &slp_mode);
if (ret < 0)
return ret;
slp_mode = (slp_mode >> off) & 0x3;
return slp_mode;
}
/* The function update the values in the print template struct */
static int pm800_update_print(struct pm80x_chip *chip, struct pm800_regulator_info *info,
struct pm80x_buckldo_print *print_temp, int index, int buck_num, int hs_index)
{
int ret, i, set_num, volt;
struct regmap *map = chip->subchip->regmap_power;
int max_set_num = sizeof(print_temp->sets)/sizeof(print_temp->sets[0]);
int (*get_volt)(unsigned int, struct pm800_regulator_info*);
char *slp_mode_str[] = {"off", "active_slp", "sleep", "active"};
int slp_mode_num = sizeof(slp_mode_str)/sizeof(slp_mode_str[0]);
set_num = info[index].num_of_sets;
if (index < buck_num)
get_volt = &pm800_get_vbuck_vol;
else
get_volt = &pm800_get_ldo_vol;
if (info[index].desc.id == hs_index)
sprintf(print_temp->name, "%s", "MIC_BIAS");
else
sprintf(print_temp->name, "%s", info[index].desc.name);
/* check enable/disable */
ret = pm800_check_en(chip, info[index].desc.enable_reg, info[index].desc.enable_mask,
info[index].enable2_reg, info[index].desc.id == hs_index);
if (ret < 0)
return ret;
else if (ret)
strcpy(print_temp->enable, "enable");
else
strcpy(print_temp->enable, "disable");
/* check sleep mode */
ret = pm800_check_slp_mode(map, info[index].sleep_enable_reg, info[index].sleep_enable_bit);
if (ret < 0)
return ret;
if (ret < slp_mode_num)
strcpy(print_temp->slp_mode, slp_mode_str[ret]);
else
strcpy(print_temp->slp_mode, "unknown");
/* print active voltage(s) */
for (i = 0; i < max_set_num; i++) {
if (i < set_num) {
ret = pm800_check_vol(map, info[index].desc.vsel_reg+i,
info[index].desc.vsel_mask);
if (ret < 0)
return ret;
volt = (*get_volt)(ret, &info[index]);
if (volt < 0)
return volt;
else
sprintf(print_temp->sets[i], "%4d", volt/1000);
} else
sprintf(print_temp->sets[i], " -");
}
/* print sleep voltage */
ret = pm800_check_vol(map, info[index].sleep_vsel_reg, info[index].sleep_vsel_mask);
if (ret < 0)
return ret;
volt = (*get_volt)(ret, &info[index]);
if (volt < 0)
return volt;
else
sprintf(print_temp->set_slp, "%4d", volt/1000);
/* print audio voltage */
if (info[index].audio_mode) {
ret = pm800_check_vol(map, info[index].vaudio_reg, info[index].vaudio_mask);
if (ret < 0)
return ret;
volt = (*get_volt)(ret, &info[index]);
if (volt < 0)
return volt;
else
sprintf(print_temp->audio, "%4d", volt/1000);
} else
sprintf(print_temp->audio, " -");
return 0;
}
int pm800_display_regulator(struct pm80x_chip *chip, char *buf)
{
struct pm80x_buckldo_print *print_temp;
struct pm800_regulator_info *info;
int hs_index, buck_num, ldo_num, i, len = 0;
ssize_t ret;
switch (chip->type) {
case CHIP_PM800:
info = pm800_regulator_info;
buck_num = PM800_NUM_BUCK;
ldo_num = PM800_NUM_LDO;
hs_index = PM800_ID_LDO2;
break;
#ifdef CONFIG_MFD_88PM822
case CHIP_PM822:
info = pm822_regulator_info;
buck_num = PM822_NUM_BUCK;
ldo_num = PM860_NUM_LDO;
hs_index = PM800_ID_LDO14;
break;
#endif
#ifdef CONFIG_MFD_88PM860
case CHIP_PM86X:
info = pm86x_regulator_info;
buck_num = PM860_NUM_BUCK;
ldo_num = PM860_NUM_LDO;
hs_index = PM800_ID_LDO20;
break;
#endif
default:
pr_err("Cannot find chip type\n");
return -ENODEV;
}
print_temp = kmalloc(sizeof(struct pm80x_buckldo_print), GFP_KERNEL);
if (!print_temp) {
pr_err("Cannot allocate print template!\n");
return -ENOMEM;
}
len += sprintf(buf + len, "\nBUCK & LDO");
len += sprintf(buf + len, "\n------------------------------------------");
len += sprintf(buf + len, "-----------------------------------------------\n");
len += sprintf(buf + len, "| name | status | slp_mode |set_slp ");
len += sprintf(buf + len, "| set0 | set1 | set2 | set3 | audio |\n");
len += sprintf(buf + len, "------------------------------------------");
len += sprintf(buf + len, "-----------------------------------------------\n");
for (i = 0; i < (buck_num + ldo_num); i++) {
if (i == buck_num) {
len += sprintf(buf+len, "--------------------------------------------");
len += sprintf(buf+len, "---------------------------------------------\n");
}
ret = pm800_update_print(chip, info, print_temp, i, buck_num, hs_index);
if (ret < 0) {
pr_err("Print of regulator %s failed\n", print_temp->name);
goto out_print;
}
len += sprintf(buf + len, "| %-8s |", print_temp->name);
len += sprintf(buf + len, " %-7s |", print_temp->enable);
len += sprintf(buf + len, " %-10s|", print_temp->slp_mode);
len += sprintf(buf + len, " %-5s |", print_temp->set_slp);
len += sprintf(buf + len, " %-5s |", print_temp->sets[0]);
len += sprintf(buf + len, " %-5s |", print_temp->sets[1]);
len += sprintf(buf + len, " %-5s |", print_temp->sets[2]);
len += sprintf(buf + len, " %-5s |", print_temp->sets[3]);
len += sprintf(buf + len, " %-5s |\n", print_temp->audio);
}
len += sprintf(buf + len, "------------------------------------------");
len += sprintf(buf + len, "-----------------------------------------------\n");
ret = len;
out_print:
kfree(print_temp);
return ret;
}
static int pm800_regulator_dt_init(struct platform_device *pdev,
struct of_regulator_match **regulator_matches, int *range)
{
struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent);
struct device_node *np = pdev->dev.of_node;
switch (chip->type) {
case CHIP_PM800:
*regulator_matches = pm800_regulator_matches;
*range = ARRAY_SIZE(pm800_regulator_matches);
break;
#ifdef CONFIG_MFD_88PM822
case CHIP_PM822:
*regulator_matches = pm822_regulator_matches;
*range = ARRAY_SIZE(pm822_regulator_matches);
break;
#endif
#ifdef CONFIG_MFD_88PM860
case CHIP_PM86X:
*regulator_matches = pm86x_regulator_matches;
*range = ARRAY_SIZE(pm86x_regulator_matches);
break;
#endif
default:
return -ENODEV;
}
return of_regulator_match(&pdev->dev, np, *regulator_matches, *range);
}
static int pm800_regulator_probe(struct platform_device *pdev)
{
struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent);
struct pm80x_platform_data *pdata = pdev->dev.parent->platform_data;
struct pm800_regulators *pm800_data;
struct pm800_regulator_info *info;
struct regulator_config config = { };
struct regulator_init_data *init_data;
int i, ret, range = 0;
struct of_regulator_match *regulator_matches = NULL;
if (!pdata || pdata->num_regulators == 0) {
if (IS_ENABLED(CONFIG_OF)) {
ret = pm800_regulator_dt_init(pdev, &regulator_matches,
&range);
if (ret < 0)
return ret;
} else {
return -ENODEV;
}
} else if (pdata->num_regulators) {
/* Check whether num_regulator is valid. */
unsigned int count = 0;
for (i = 0; pdata->regulators[i]; i++)
count++;
if (count != pdata->num_regulators)
return -EINVAL;
} else {
return -EINVAL;
}
pm800_data = devm_kzalloc(&pdev->dev, sizeof(*pm800_data),
GFP_KERNEL);
if (!pm800_data) {
dev_err(&pdev->dev, "Failed to allocate pm800_regualtors");
return -ENOMEM;
}
pm800_data->map = chip->subchip->regmap_power;
pm800_data->chip = chip;
platform_set_drvdata(pdev, pm800_data);
for (i = 0; i < range; i++) {
if (!pdata || pdata->num_regulators == 0)
init_data = regulator_matches->init_data;
else
init_data = pdata->regulators[i];
if (!init_data) {
dev_err(&pdev->dev, "%s not matched!\n",
regulator_matches->name);
regulator_matches++;
continue;
}
info = regulator_matches->driver_data;
config.dev = &pdev->dev;
config.init_data = init_data;
config.driver_data = info;
config.regmap = pm800_data->map;
config.of_node = regulator_matches->of_node;
pm800_data->regulators[i] =
regulator_register(&info->desc, &config);
if (IS_ERR(pm800_data->regulators[i])) {
ret = PTR_ERR(pm800_data->regulators[i]);
dev_err(&pdev->dev, "Failed to register %s\n",
info->desc.name);
while (--i >= 0 && pm800_data->regulators[i])
regulator_unregister(pm800_data->regulators[i]);
return ret;
}
pm800_data->regulators[i]->constraints->valid_ops_mask |=
(REGULATOR_CHANGE_DRMS | REGULATOR_CHANGE_MODE);
pm800_data->regulators[i]->constraints->valid_modes_mask |=
(REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE);
pm800_data->regulators[i]->constraints->input_uV = 1000;
regulator_matches++;
}
return 0;
}
static int pm800_regulator_remove(struct platform_device *pdev)
{
struct pm800_regulators *pm800_data = platform_get_drvdata(pdev);
int i;
for (i = 0; i < PM800_ID_RG_MAX && pm800_data->regulators[i]; i++)
regulator_unregister(pm800_data->regulators[i]);
return 0;
}
static struct platform_driver pm800_regulator_driver = {
.driver = {
.name = "88pm800-regulator",
.owner = THIS_MODULE,
},
.probe = pm800_regulator_probe,
.remove = pm800_regulator_remove,
};
static int __init pm800_regulator_init(void)
{
return platform_driver_register(&pm800_regulator_driver);
}
subsys_initcall(pm800_regulator_init);
static void __exit pm800_regulator_exit(void)
{
platform_driver_unregister(&pm800_regulator_driver);
}
module_exit(pm800_regulator_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Joseph(Yossi) Hanin <yhanin@marvell.com>");
MODULE_DESCRIPTION("Regulator Driver for Marvell 88PM800 PMIC");
MODULE_ALIAS("platform:88pm800-regulator");