| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * SuperH MSIOF SPI Controller Interface | 
 |  * | 
 |  * Copyright (c) 2009 Magnus Damm | 
 |  * Copyright (C) 2014 Renesas Electronics Corporation | 
 |  * Copyright (C) 2014-2017 Glider bvba | 
 |  */ | 
 |  | 
 | #include <linux/bitmap.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/err.h> | 
 | #include <linux/gpio.h> | 
 | #include <linux/gpio/consumer.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/iopoll.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/sh_dma.h> | 
 |  | 
 | #include <linux/spi/sh_msiof.h> | 
 | #include <linux/spi/spi.h> | 
 |  | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #define SH_MSIOF_FLAG_FIXED_DTDL_200	BIT(0) | 
 |  | 
 | struct sh_msiof_chipdata { | 
 | 	u32 bits_per_word_mask; | 
 | 	u16 tx_fifo_size; | 
 | 	u16 rx_fifo_size; | 
 | 	u16 ctlr_flags; | 
 | 	u16 min_div_pow; | 
 | 	u32 flags; | 
 | }; | 
 |  | 
 | struct sh_msiof_spi_priv { | 
 | 	struct spi_controller *ctlr; | 
 | 	void __iomem *mapbase; | 
 | 	struct clk *clk; | 
 | 	struct platform_device *pdev; | 
 | 	struct sh_msiof_spi_info *info; | 
 | 	struct completion done; | 
 | 	struct completion done_txdma; | 
 | 	unsigned int tx_fifo_size; | 
 | 	unsigned int rx_fifo_size; | 
 | 	unsigned int min_div_pow; | 
 | 	void *tx_dma_page; | 
 | 	void *rx_dma_page; | 
 | 	dma_addr_t tx_dma_addr; | 
 | 	dma_addr_t rx_dma_addr; | 
 | 	unsigned short unused_ss; | 
 | 	bool native_cs_inited; | 
 | 	bool native_cs_high; | 
 | 	bool slave_aborted; | 
 | }; | 
 |  | 
 | #define MAX_SS	3	/* Maximum number of native chip selects */ | 
 |  | 
 | #define TMDR1	0x00	/* Transmit Mode Register 1 */ | 
 | #define TMDR2	0x04	/* Transmit Mode Register 2 */ | 
 | #define TMDR3	0x08	/* Transmit Mode Register 3 */ | 
 | #define RMDR1	0x10	/* Receive Mode Register 1 */ | 
 | #define RMDR2	0x14	/* Receive Mode Register 2 */ | 
 | #define RMDR3	0x18	/* Receive Mode Register 3 */ | 
 | #define TSCR	0x20	/* Transmit Clock Select Register */ | 
 | #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */ | 
 | #define CTR	0x28	/* Control Register */ | 
 | #define FCTR	0x30	/* FIFO Control Register */ | 
 | #define STR	0x40	/* Status Register */ | 
 | #define IER	0x44	/* Interrupt Enable Register */ | 
 | #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */ | 
 | #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */ | 
 | #define TFDR	0x50	/* Transmit FIFO Data Register */ | 
 | #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */ | 
 | #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */ | 
 | #define RFDR	0x60	/* Receive FIFO Data Register */ | 
 |  | 
 | /* TMDR1 and RMDR1 */ | 
 | #define MDR1_TRMD	   BIT(31)  /* Transfer Mode (1 = Master mode) */ | 
 | #define MDR1_SYNCMD_MASK   GENMASK(29, 28) /* SYNC Mode */ | 
 | #define MDR1_SYNCMD_SPI	   (2 << 28)/*   Level mode/SPI */ | 
 | #define MDR1_SYNCMD_LR	   (3 << 28)/*   L/R mode */ | 
 | #define MDR1_SYNCAC_SHIFT  25       /* Sync Polarity (1 = Active-low) */ | 
 | #define MDR1_BITLSB_SHIFT  24       /* MSB/LSB First (1 = LSB first) */ | 
 | #define MDR1_DTDL_SHIFT	   20       /* Data Pin Bit Delay for MSIOF_SYNC */ | 
 | #define MDR1_SYNCDL_SHIFT  16       /* Frame Sync Signal Timing Delay */ | 
 | #define MDR1_FLD_MASK	   GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */ | 
 | #define MDR1_FLD_SHIFT	   2 | 
 | #define MDR1_XXSTP	   BIT(0)   /* Transmission/Reception Stop on FIFO */ | 
 | /* TMDR1 */ | 
 | #define TMDR1_PCON	   BIT(30)  /* Transfer Signal Connection */ | 
 | #define TMDR1_SYNCCH_MASK  GENMASK(27, 26) /* Sync Signal Channel Select */ | 
 | #define TMDR1_SYNCCH_SHIFT 26       /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ | 
 |  | 
 | /* TMDR2 and RMDR2 */ | 
 | #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */ | 
 | #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ | 
 | #define MDR2_GRPMASK1	BIT(0)      /* Group Output Mask 1 (SH, A1) */ | 
 |  | 
 | /* TSCR and RSCR */ | 
 | #define SCR_BRPS_MASK	GENMASK(12, 8) /* Prescaler Setting (1-32) */ | 
 | #define SCR_BRPS(i)	(((i) - 1) << 8) | 
 | #define SCR_BRDV_MASK	GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */ | 
 | #define SCR_BRDV_DIV_2	0 | 
 | #define SCR_BRDV_DIV_4	1 | 
 | #define SCR_BRDV_DIV_8	2 | 
 | #define SCR_BRDV_DIV_16	3 | 
 | #define SCR_BRDV_DIV_32	4 | 
 | #define SCR_BRDV_DIV_1	7 | 
 |  | 
 | /* CTR */ | 
 | #define CTR_TSCKIZ_MASK	GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */ | 
 | #define CTR_TSCKIZ_SCK	BIT(31)   /*   Disable SCK when TX disabled */ | 
 | #define CTR_TSCKIZ_POL_SHIFT 30   /*   Transmit Clock Polarity */ | 
 | #define CTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */ | 
 | #define CTR_RSCKIZ_SCK	BIT(29)   /*   Must match CTR_TSCKIZ_SCK */ | 
 | #define CTR_RSCKIZ_POL_SHIFT 28   /*   Receive Clock Polarity */ | 
 | #define CTR_TEDG_SHIFT	     27   /* Transmit Timing (1 = falling edge) */ | 
 | #define CTR_REDG_SHIFT	     26   /* Receive Timing (1 = falling edge) */ | 
 | #define CTR_TXDIZ_MASK	GENMASK(23, 22) /* Pin Output When TX is Disabled */ | 
 | #define CTR_TXDIZ_LOW	(0 << 22) /*   0 */ | 
 | #define CTR_TXDIZ_HIGH	(1 << 22) /*   1 */ | 
 | #define CTR_TXDIZ_HIZ	(2 << 22) /*   High-impedance */ | 
 | #define CTR_TSCKE	BIT(15)   /* Transmit Serial Clock Output Enable */ | 
 | #define CTR_TFSE	BIT(14)   /* Transmit Frame Sync Signal Output Enable */ | 
 | #define CTR_TXE		BIT(9)    /* Transmit Enable */ | 
 | #define CTR_RXE		BIT(8)    /* Receive Enable */ | 
 | #define CTR_TXRST	BIT(1)    /* Transmit Reset */ | 
 | #define CTR_RXRST	BIT(0)    /* Receive Reset */ | 
 |  | 
 | /* FCTR */ | 
 | #define FCTR_TFWM_MASK	GENMASK(31, 29) /* Transmit FIFO Watermark */ | 
 | #define FCTR_TFWM_64	(0 << 29) /*  Transfer Request when 64 empty stages */ | 
 | #define FCTR_TFWM_32	(1 << 29) /*  Transfer Request when 32 empty stages */ | 
 | #define FCTR_TFWM_24	(2 << 29) /*  Transfer Request when 24 empty stages */ | 
 | #define FCTR_TFWM_16	(3 << 29) /*  Transfer Request when 16 empty stages */ | 
 | #define FCTR_TFWM_12	(4 << 29) /*  Transfer Request when 12 empty stages */ | 
 | #define FCTR_TFWM_8	(5 << 29) /*  Transfer Request when 8 empty stages */ | 
 | #define FCTR_TFWM_4	(6 << 29) /*  Transfer Request when 4 empty stages */ | 
 | #define FCTR_TFWM_1	(7 << 29) /*  Transfer Request when 1 empty stage */ | 
 | #define FCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */ | 
 | #define FCTR_TFUA_SHIFT	20 | 
 | #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT) | 
 | #define FCTR_RFWM_MASK	GENMASK(15, 13) /* Receive FIFO Watermark */ | 
 | #define FCTR_RFWM_1	(0 << 13) /*  Transfer Request when 1 valid stages */ | 
 | #define FCTR_RFWM_4	(1 << 13) /*  Transfer Request when 4 valid stages */ | 
 | #define FCTR_RFWM_8	(2 << 13) /*  Transfer Request when 8 valid stages */ | 
 | #define FCTR_RFWM_16	(3 << 13) /*  Transfer Request when 16 valid stages */ | 
 | #define FCTR_RFWM_32	(4 << 13) /*  Transfer Request when 32 valid stages */ | 
 | #define FCTR_RFWM_64	(5 << 13) /*  Transfer Request when 64 valid stages */ | 
 | #define FCTR_RFWM_128	(6 << 13) /*  Transfer Request when 128 valid stages */ | 
 | #define FCTR_RFWM_256	(7 << 13) /*  Transfer Request when 256 valid stages */ | 
 | #define FCTR_RFUA_MASK	GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */ | 
 | #define FCTR_RFUA_SHIFT	4 | 
 | #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT) | 
 |  | 
 | /* STR */ | 
 | #define STR_TFEMP	BIT(29) /* Transmit FIFO Empty */ | 
 | #define STR_TDREQ	BIT(28) /* Transmit Data Transfer Request */ | 
 | #define STR_TEOF	BIT(23) /* Frame Transmission End */ | 
 | #define STR_TFSERR	BIT(21) /* Transmit Frame Synchronization Error */ | 
 | #define STR_TFOVF	BIT(20) /* Transmit FIFO Overflow */ | 
 | #define STR_TFUDF	BIT(19) /* Transmit FIFO Underflow */ | 
 | #define STR_RFFUL	BIT(13) /* Receive FIFO Full */ | 
 | #define STR_RDREQ	BIT(12) /* Receive Data Transfer Request */ | 
 | #define STR_REOF	BIT(7)  /* Frame Reception End */ | 
 | #define STR_RFSERR	BIT(5)  /* Receive Frame Synchronization Error */ | 
 | #define STR_RFUDF	BIT(4)  /* Receive FIFO Underflow */ | 
 | #define STR_RFOVF	BIT(3)  /* Receive FIFO Overflow */ | 
 |  | 
 | /* IER */ | 
 | #define IER_TDMAE	BIT(31) /* Transmit Data DMA Transfer Req. Enable */ | 
 | #define IER_TFEMPE	BIT(29) /* Transmit FIFO Empty Enable */ | 
 | #define IER_TDREQE	BIT(28) /* Transmit Data Transfer Request Enable */ | 
 | #define IER_TEOFE	BIT(23) /* Frame Transmission End Enable */ | 
 | #define IER_TFSERRE	BIT(21) /* Transmit Frame Sync Error Enable */ | 
 | #define IER_TFOVFE	BIT(20) /* Transmit FIFO Overflow Enable */ | 
 | #define IER_TFUDFE	BIT(19) /* Transmit FIFO Underflow Enable */ | 
 | #define IER_RDMAE	BIT(15) /* Receive Data DMA Transfer Req. Enable */ | 
 | #define IER_RFFULE	BIT(13) /* Receive FIFO Full Enable */ | 
 | #define IER_RDREQE	BIT(12) /* Receive Data Transfer Request Enable */ | 
 | #define IER_REOFE	BIT(7)  /* Frame Reception End Enable */ | 
 | #define IER_RFSERRE	BIT(5)  /* Receive Frame Sync Error Enable */ | 
 | #define IER_RFUDFE	BIT(4)  /* Receive FIFO Underflow Enable */ | 
 | #define IER_RFOVFE	BIT(3)  /* Receive FIFO Overflow Enable */ | 
 |  | 
 |  | 
 | static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) | 
 | { | 
 | 	switch (reg_offs) { | 
 | 	case TSCR: | 
 | 	case RSCR: | 
 | 		return ioread16(p->mapbase + reg_offs); | 
 | 	default: | 
 | 		return ioread32(p->mapbase + reg_offs); | 
 | 	} | 
 | } | 
 |  | 
 | static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, | 
 | 			   u32 value) | 
 | { | 
 | 	switch (reg_offs) { | 
 | 	case TSCR: | 
 | 	case RSCR: | 
 | 		iowrite16(value, p->mapbase + reg_offs); | 
 | 		break; | 
 | 	default: | 
 | 		iowrite32(value, p->mapbase + reg_offs); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, | 
 | 				    u32 clr, u32 set) | 
 | { | 
 | 	u32 mask = clr | set; | 
 | 	u32 data; | 
 |  | 
 | 	data = sh_msiof_read(p, CTR); | 
 | 	data &= ~clr; | 
 | 	data |= set; | 
 | 	sh_msiof_write(p, CTR, data); | 
 |  | 
 | 	return readl_poll_timeout_atomic(p->mapbase + CTR, data, | 
 | 					 (data & mask) == set, 1, 100); | 
 | } | 
 |  | 
 | static irqreturn_t sh_msiof_spi_irq(int irq, void *data) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = data; | 
 |  | 
 | 	/* just disable the interrupt and wake up */ | 
 | 	sh_msiof_write(p, IER, 0); | 
 | 	complete(&p->done); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p) | 
 | { | 
 | 	u32 mask = CTR_TXRST | CTR_RXRST; | 
 | 	u32 data; | 
 |  | 
 | 	data = sh_msiof_read(p, CTR); | 
 | 	data |= mask; | 
 | 	sh_msiof_write(p, CTR, data); | 
 |  | 
 | 	readl_poll_timeout_atomic(p->mapbase + CTR, data, !(data & mask), 1, | 
 | 				  100); | 
 | } | 
 |  | 
 | static const u32 sh_msiof_spi_div_array[] = { | 
 | 	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4, | 
 | 	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32, | 
 | }; | 
 |  | 
 | static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, | 
 | 				      unsigned long parent_rate, u32 spi_hz) | 
 | { | 
 | 	unsigned long div; | 
 | 	u32 brps, scr; | 
 | 	unsigned int div_pow = p->min_div_pow; | 
 |  | 
 | 	if (!spi_hz || !parent_rate) { | 
 | 		WARN(1, "Invalid clock rate parameters %lu and %u\n", | 
 | 		     parent_rate, spi_hz); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	div = DIV_ROUND_UP(parent_rate, spi_hz); | 
 | 	if (div <= 1024) { | 
 | 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ | 
 | 		if (!div_pow && div <= 32 && div > 2) | 
 | 			div_pow = 1; | 
 |  | 
 | 		if (div_pow) | 
 | 			brps = (div + 1) >> div_pow; | 
 | 		else | 
 | 			brps = div; | 
 |  | 
 | 		for (; brps > 32; div_pow++) | 
 | 			brps = (brps + 1) >> 1; | 
 | 	} else { | 
 | 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ | 
 | 		dev_err(&p->pdev->dev, | 
 | 			"Requested SPI transfer rate %d is too low\n", spi_hz); | 
 | 		div_pow = 5; | 
 | 		brps = 32; | 
 | 	} | 
 |  | 
 | 	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps); | 
 | 	sh_msiof_write(p, TSCR, scr); | 
 | 	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) | 
 | 		sh_msiof_write(p, RSCR, scr); | 
 | } | 
 |  | 
 | static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) | 
 | { | 
 | 	/* | 
 | 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl | 
 | 	 * b'000		: 0 | 
 | 	 * b'001		: 100 | 
 | 	 * b'010		: 200 | 
 | 	 * b'011 (SYNCDL only)	: 300 | 
 | 	 * b'101		: 50 | 
 | 	 * b'110		: 150 | 
 | 	 */ | 
 | 	if (dtdl_or_syncdl % 100) | 
 | 		return dtdl_or_syncdl / 100 + 5; | 
 | 	else | 
 | 		return dtdl_or_syncdl / 100; | 
 | } | 
 |  | 
 | static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (!p->info) | 
 | 		return 0; | 
 |  | 
 | 	/* check if DTDL and SYNCDL is allowed value */ | 
 | 	if (p->info->dtdl > 200 || p->info->syncdl > 300) { | 
 | 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */ | 
 | 	if ((p->info->dtdl + p->info->syncdl) % 100) { | 
 | 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT; | 
 | 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT; | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, | 
 | 				      u32 cpol, u32 cpha, | 
 | 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high) | 
 | { | 
 | 	u32 tmp; | 
 | 	int edge; | 
 |  | 
 | 	/* | 
 | 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG | 
 | 	 *    0    0         10     10    1    1 | 
 | 	 *    0    1         10     10    0    0 | 
 | 	 *    1    0         11     11    0    0 | 
 | 	 *    1    1         11     11    1    1 | 
 | 	 */ | 
 | 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP; | 
 | 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT; | 
 | 	tmp |= lsb_first << MDR1_BITLSB_SHIFT; | 
 | 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); | 
 | 	if (spi_controller_is_slave(p->ctlr)) { | 
 | 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON); | 
 | 	} else { | 
 | 		sh_msiof_write(p, TMDR1, | 
 | 			       tmp | MDR1_TRMD | TMDR1_PCON | | 
 | 			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT); | 
 | 	} | 
 | 	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) { | 
 | 		/* These bits are reserved if RX needs TX */ | 
 | 		tmp &= ~0x0000ffff; | 
 | 	} | 
 | 	sh_msiof_write(p, RMDR1, tmp); | 
 |  | 
 | 	tmp = 0; | 
 | 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT; | 
 | 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT; | 
 |  | 
 | 	edge = cpol ^ !cpha; | 
 |  | 
 | 	tmp |= edge << CTR_TEDG_SHIFT; | 
 | 	tmp |= edge << CTR_REDG_SHIFT; | 
 | 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW; | 
 | 	sh_msiof_write(p, CTR, tmp); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, | 
 | 				       const void *tx_buf, void *rx_buf, | 
 | 				       u32 bits, u32 words) | 
 | { | 
 | 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words); | 
 |  | 
 | 	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) | 
 | 		sh_msiof_write(p, TMDR2, dr2); | 
 | 	else | 
 | 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1); | 
 |  | 
 | 	if (rx_buf) | 
 | 		sh_msiof_write(p, RMDR2, dr2); | 
 | } | 
 |  | 
 | static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) | 
 | { | 
 | 	sh_msiof_write(p, STR, | 
 | 		       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ)); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, | 
 | 				      const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u8 *buf_8 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, buf_8[k] << fs); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, | 
 | 				       const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u16 *buf_16 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, buf_16[k] << fs); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, | 
 | 					const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u16 *buf_16 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, | 
 | 				       const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u32 *buf_32 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, buf_32[k] << fs); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, | 
 | 					const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u32 *buf_32 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, | 
 | 					const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u32 *buf_32 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs)); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, | 
 | 					 const void *tx_buf, int words, int fs) | 
 | { | 
 | 	const u32 *buf_32 = tx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs)); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, | 
 | 				     void *rx_buf, int words, int fs) | 
 | { | 
 | 	u8 *buf_8 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs; | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, | 
 | 				      void *rx_buf, int words, int fs) | 
 | { | 
 | 	u16 *buf_16 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs; | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, | 
 | 				       void *rx_buf, int words, int fs) | 
 | { | 
 | 	u16 *buf_16 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, | 
 | 				      void *rx_buf, int words, int fs) | 
 | { | 
 | 	u32 *buf_32 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs; | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, | 
 | 				       void *rx_buf, int words, int fs) | 
 | { | 
 | 	u32 *buf_32 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, | 
 | 				       void *rx_buf, int words, int fs) | 
 | { | 
 | 	u32 *buf_32 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs); | 
 | } | 
 |  | 
 | static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, | 
 | 				       void *rx_buf, int words, int fs) | 
 | { | 
 | 	u32 *buf_32 = rx_buf; | 
 | 	int k; | 
 |  | 
 | 	for (k = 0; k < words; k++) | 
 | 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]); | 
 | } | 
 |  | 
 | static int sh_msiof_spi_setup(struct spi_device *spi) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = | 
 | 		spi_controller_get_devdata(spi->controller); | 
 | 	u32 clr, set, tmp; | 
 |  | 
 | 	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr)) | 
 | 		return 0; | 
 |  | 
 | 	if (p->native_cs_inited && | 
 | 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) | 
 | 		return 0; | 
 |  | 
 | 	/* Configure native chip select mode/polarity early */ | 
 | 	clr = MDR1_SYNCMD_MASK; | 
 | 	set = MDR1_SYNCMD_SPI; | 
 | 	if (spi->mode & SPI_CS_HIGH) | 
 | 		clr |= BIT(MDR1_SYNCAC_SHIFT); | 
 | 	else | 
 | 		set |= BIT(MDR1_SYNCAC_SHIFT); | 
 | 	pm_runtime_get_sync(&p->pdev->dev); | 
 | 	tmp = sh_msiof_read(p, TMDR1) & ~clr; | 
 | 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON); | 
 | 	tmp = sh_msiof_read(p, RMDR1) & ~clr; | 
 | 	sh_msiof_write(p, RMDR1, tmp | set); | 
 | 	pm_runtime_put(&p->pdev->dev); | 
 | 	p->native_cs_high = spi->mode & SPI_CS_HIGH; | 
 | 	p->native_cs_inited = true; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sh_msiof_prepare_message(struct spi_controller *ctlr, | 
 | 				    struct spi_message *msg) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); | 
 | 	const struct spi_device *spi = msg->spi; | 
 | 	u32 ss, cs_high; | 
 |  | 
 | 	/* Configure pins before asserting CS */ | 
 | 	if (spi->cs_gpiod) { | 
 | 		ss = p->unused_ss; | 
 | 		cs_high = p->native_cs_high; | 
 | 	} else { | 
 | 		ss = spi->chip_select; | 
 | 		cs_high = !!(spi->mode & SPI_CS_HIGH); | 
 | 	} | 
 | 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), | 
 | 				  !!(spi->mode & SPI_CPHA), | 
 | 				  !!(spi->mode & SPI_3WIRE), | 
 | 				  !!(spi->mode & SPI_LSB_FIRST), cs_high); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) | 
 | { | 
 | 	bool slave = spi_controller_is_slave(p->ctlr); | 
 | 	int ret = 0; | 
 |  | 
 | 	/* setup clock and rx/tx signals */ | 
 | 	if (!slave) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE); | 
 | 	if (rx_buf && !ret) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE); | 
 | 	if (!ret) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE); | 
 |  | 
 | 	/* start by setting frame bit */ | 
 | 	if (!ret && !slave) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) | 
 | { | 
 | 	bool slave = spi_controller_is_slave(p->ctlr); | 
 | 	int ret = 0; | 
 |  | 
 | 	/* shut down frame, rx/tx and clock signals */ | 
 | 	if (!slave) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0); | 
 | 	if (!ret) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0); | 
 | 	if (rx_buf && !ret) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0); | 
 | 	if (!ret && !slave) | 
 | 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sh_msiof_slave_abort(struct spi_controller *ctlr) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); | 
 |  | 
 | 	p->slave_aborted = true; | 
 | 	complete(&p->done); | 
 | 	complete(&p->done_txdma); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, | 
 | 					struct completion *x) | 
 | { | 
 | 	if (spi_controller_is_slave(p->ctlr)) { | 
 | 		if (wait_for_completion_interruptible(x) || | 
 | 		    p->slave_aborted) { | 
 | 			dev_dbg(&p->pdev->dev, "interrupted\n"); | 
 | 			return -EINTR; | 
 | 		} | 
 | 	} else { | 
 | 		if (!wait_for_completion_timeout(x, HZ)) { | 
 | 			dev_err(&p->pdev->dev, "timeout\n"); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, | 
 | 				  void (*tx_fifo)(struct sh_msiof_spi_priv *, | 
 | 						  const void *, int, int), | 
 | 				  void (*rx_fifo)(struct sh_msiof_spi_priv *, | 
 | 						  void *, int, int), | 
 | 				  const void *tx_buf, void *rx_buf, | 
 | 				  int words, int bits) | 
 | { | 
 | 	int fifo_shift; | 
 | 	int ret; | 
 |  | 
 | 	/* limit maximum word transfer to rx/tx fifo size */ | 
 | 	if (tx_buf) | 
 | 		words = min_t(int, words, p->tx_fifo_size); | 
 | 	if (rx_buf) | 
 | 		words = min_t(int, words, p->rx_fifo_size); | 
 |  | 
 | 	/* the fifo contents need shifting */ | 
 | 	fifo_shift = 32 - bits; | 
 |  | 
 | 	/* default FIFO watermarks for PIO */ | 
 | 	sh_msiof_write(p, FCTR, 0); | 
 |  | 
 | 	/* setup msiof transfer mode registers */ | 
 | 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); | 
 | 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE); | 
 |  | 
 | 	/* write tx fifo */ | 
 | 	if (tx_buf) | 
 | 		tx_fifo(p, tx_buf, words, fifo_shift); | 
 |  | 
 | 	reinit_completion(&p->done); | 
 | 	p->slave_aborted = false; | 
 |  | 
 | 	ret = sh_msiof_spi_start(p, rx_buf); | 
 | 	if (ret) { | 
 | 		dev_err(&p->pdev->dev, "failed to start hardware\n"); | 
 | 		goto stop_ier; | 
 | 	} | 
 |  | 
 | 	/* wait for tx fifo to be emptied / rx fifo to be filled */ | 
 | 	ret = sh_msiof_wait_for_completion(p, &p->done); | 
 | 	if (ret) | 
 | 		goto stop_reset; | 
 |  | 
 | 	/* read rx fifo */ | 
 | 	if (rx_buf) | 
 | 		rx_fifo(p, rx_buf, words, fifo_shift); | 
 |  | 
 | 	/* clear status bits */ | 
 | 	sh_msiof_reset_str(p); | 
 |  | 
 | 	ret = sh_msiof_spi_stop(p, rx_buf); | 
 | 	if (ret) { | 
 | 		dev_err(&p->pdev->dev, "failed to shut down hardware\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return words; | 
 |  | 
 | stop_reset: | 
 | 	sh_msiof_reset_str(p); | 
 | 	sh_msiof_spi_stop(p, rx_buf); | 
 | stop_ier: | 
 | 	sh_msiof_write(p, IER, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void sh_msiof_dma_complete(void *arg) | 
 | { | 
 | 	complete(arg); | 
 | } | 
 |  | 
 | static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, | 
 | 			     void *rx, unsigned int len) | 
 | { | 
 | 	u32 ier_bits = 0; | 
 | 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; | 
 | 	dma_cookie_t cookie; | 
 | 	int ret; | 
 |  | 
 | 	/* First prepare and submit the DMA request(s), as this may fail */ | 
 | 	if (rx) { | 
 | 		ier_bits |= IER_RDREQE | IER_RDMAE; | 
 | 		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx, | 
 | 					p->rx_dma_addr, len, DMA_DEV_TO_MEM, | 
 | 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | 		if (!desc_rx) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		desc_rx->callback = sh_msiof_dma_complete; | 
 | 		desc_rx->callback_param = &p->done; | 
 | 		cookie = dmaengine_submit(desc_rx); | 
 | 		if (dma_submit_error(cookie)) | 
 | 			return cookie; | 
 | 	} | 
 |  | 
 | 	if (tx) { | 
 | 		ier_bits |= IER_TDREQE | IER_TDMAE; | 
 | 		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev, | 
 | 					   p->tx_dma_addr, len, DMA_TO_DEVICE); | 
 | 		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx, | 
 | 					p->tx_dma_addr, len, DMA_MEM_TO_DEV, | 
 | 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | 		if (!desc_tx) { | 
 | 			ret = -EAGAIN; | 
 | 			goto no_dma_tx; | 
 | 		} | 
 |  | 
 | 		desc_tx->callback = sh_msiof_dma_complete; | 
 | 		desc_tx->callback_param = &p->done_txdma; | 
 | 		cookie = dmaengine_submit(desc_tx); | 
 | 		if (dma_submit_error(cookie)) { | 
 | 			ret = cookie; | 
 | 			goto no_dma_tx; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* 1 stage FIFO watermarks for DMA */ | 
 | 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1); | 
 |  | 
 | 	/* setup msiof transfer mode registers (32-bit words) */ | 
 | 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); | 
 |  | 
 | 	sh_msiof_write(p, IER, ier_bits); | 
 |  | 
 | 	reinit_completion(&p->done); | 
 | 	if (tx) | 
 | 		reinit_completion(&p->done_txdma); | 
 | 	p->slave_aborted = false; | 
 |  | 
 | 	/* Now start DMA */ | 
 | 	if (rx) | 
 | 		dma_async_issue_pending(p->ctlr->dma_rx); | 
 | 	if (tx) | 
 | 		dma_async_issue_pending(p->ctlr->dma_tx); | 
 |  | 
 | 	ret = sh_msiof_spi_start(p, rx); | 
 | 	if (ret) { | 
 | 		dev_err(&p->pdev->dev, "failed to start hardware\n"); | 
 | 		goto stop_dma; | 
 | 	} | 
 |  | 
 | 	if (tx) { | 
 | 		/* wait for tx DMA completion */ | 
 | 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma); | 
 | 		if (ret) | 
 | 			goto stop_reset; | 
 | 	} | 
 |  | 
 | 	if (rx) { | 
 | 		/* wait for rx DMA completion */ | 
 | 		ret = sh_msiof_wait_for_completion(p, &p->done); | 
 | 		if (ret) | 
 | 			goto stop_reset; | 
 |  | 
 | 		sh_msiof_write(p, IER, 0); | 
 | 	} else { | 
 | 		/* wait for tx fifo to be emptied */ | 
 | 		sh_msiof_write(p, IER, IER_TEOFE); | 
 | 		ret = sh_msiof_wait_for_completion(p, &p->done); | 
 | 		if (ret) | 
 | 			goto stop_reset; | 
 | 	} | 
 |  | 
 | 	/* clear status bits */ | 
 | 	sh_msiof_reset_str(p); | 
 |  | 
 | 	ret = sh_msiof_spi_stop(p, rx); | 
 | 	if (ret) { | 
 | 		dev_err(&p->pdev->dev, "failed to shut down hardware\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (rx) | 
 | 		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev, | 
 | 					p->rx_dma_addr, len, DMA_FROM_DEVICE); | 
 |  | 
 | 	return 0; | 
 |  | 
 | stop_reset: | 
 | 	sh_msiof_reset_str(p); | 
 | 	sh_msiof_spi_stop(p, rx); | 
 | stop_dma: | 
 | 	if (tx) | 
 | 		dmaengine_terminate_all(p->ctlr->dma_tx); | 
 | no_dma_tx: | 
 | 	if (rx) | 
 | 		dmaengine_terminate_all(p->ctlr->dma_rx); | 
 | 	sh_msiof_write(p, IER, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) | 
 | { | 
 | 	/* src or dst can be unaligned, but not both */ | 
 | 	if ((unsigned long)src & 3) { | 
 | 		while (words--) { | 
 | 			*dst++ = swab32(get_unaligned(src)); | 
 | 			src++; | 
 | 		} | 
 | 	} else if ((unsigned long)dst & 3) { | 
 | 		while (words--) { | 
 | 			put_unaligned(swab32(*src++), dst); | 
 | 			dst++; | 
 | 		} | 
 | 	} else { | 
 | 		while (words--) | 
 | 			*dst++ = swab32(*src++); | 
 | 	} | 
 | } | 
 |  | 
 | static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) | 
 | { | 
 | 	/* src or dst can be unaligned, but not both */ | 
 | 	if ((unsigned long)src & 3) { | 
 | 		while (words--) { | 
 | 			*dst++ = swahw32(get_unaligned(src)); | 
 | 			src++; | 
 | 		} | 
 | 	} else if ((unsigned long)dst & 3) { | 
 | 		while (words--) { | 
 | 			put_unaligned(swahw32(*src++), dst); | 
 | 			dst++; | 
 | 		} | 
 | 	} else { | 
 | 		while (words--) | 
 | 			*dst++ = swahw32(*src++); | 
 | 	} | 
 | } | 
 |  | 
 | static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) | 
 | { | 
 | 	memcpy(dst, src, words * 4); | 
 | } | 
 |  | 
 | static int sh_msiof_transfer_one(struct spi_controller *ctlr, | 
 | 				 struct spi_device *spi, | 
 | 				 struct spi_transfer *t) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); | 
 | 	void (*copy32)(u32 *, const u32 *, unsigned int); | 
 | 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); | 
 | 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); | 
 | 	const void *tx_buf = t->tx_buf; | 
 | 	void *rx_buf = t->rx_buf; | 
 | 	unsigned int len = t->len; | 
 | 	unsigned int bits = t->bits_per_word; | 
 | 	unsigned int bytes_per_word; | 
 | 	unsigned int words; | 
 | 	int n; | 
 | 	bool swab; | 
 | 	int ret; | 
 |  | 
 | 	/* reset registers */ | 
 | 	sh_msiof_spi_reset_regs(p); | 
 |  | 
 | 	/* setup clocks (clock already enabled in chipselect()) */ | 
 | 	if (!spi_controller_is_slave(p->ctlr)) | 
 | 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); | 
 |  | 
 | 	while (ctlr->dma_tx && len > 15) { | 
 | 		/* | 
 | 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit | 
 | 		 *  words, with byte resp. word swapping. | 
 | 		 */ | 
 | 		unsigned int l = 0; | 
 |  | 
 | 		if (tx_buf) | 
 | 			l = min(round_down(len, 4), p->tx_fifo_size * 4); | 
 | 		if (rx_buf) | 
 | 			l = min(round_down(len, 4), p->rx_fifo_size * 4); | 
 |  | 
 | 		if (bits <= 8) { | 
 | 			copy32 = copy_bswap32; | 
 | 		} else if (bits <= 16) { | 
 | 			copy32 = copy_wswap32; | 
 | 		} else { | 
 | 			copy32 = copy_plain32; | 
 | 		} | 
 |  | 
 | 		if (tx_buf) | 
 | 			copy32(p->tx_dma_page, tx_buf, l / 4); | 
 |  | 
 | 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); | 
 | 		if (ret == -EAGAIN) { | 
 | 			dev_warn_once(&p->pdev->dev, | 
 | 				"DMA not available, falling back to PIO\n"); | 
 | 			break; | 
 | 		} | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (rx_buf) { | 
 | 			copy32(rx_buf, p->rx_dma_page, l / 4); | 
 | 			rx_buf += l; | 
 | 		} | 
 | 		if (tx_buf) | 
 | 			tx_buf += l; | 
 |  | 
 | 		len -= l; | 
 | 		if (!len) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (bits <= 8 && len > 15) { | 
 | 		bits = 32; | 
 | 		swab = true; | 
 | 	} else { | 
 | 		swab = false; | 
 | 	} | 
 |  | 
 | 	/* setup bytes per word and fifo read/write functions */ | 
 | 	if (bits <= 8) { | 
 | 		bytes_per_word = 1; | 
 | 		tx_fifo = sh_msiof_spi_write_fifo_8; | 
 | 		rx_fifo = sh_msiof_spi_read_fifo_8; | 
 | 	} else if (bits <= 16) { | 
 | 		bytes_per_word = 2; | 
 | 		if ((unsigned long)tx_buf & 0x01) | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_16u; | 
 | 		else | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_16; | 
 |  | 
 | 		if ((unsigned long)rx_buf & 0x01) | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_16u; | 
 | 		else | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_16; | 
 | 	} else if (swab) { | 
 | 		bytes_per_word = 4; | 
 | 		if ((unsigned long)tx_buf & 0x03) | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_s32u; | 
 | 		else | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_s32; | 
 |  | 
 | 		if ((unsigned long)rx_buf & 0x03) | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_s32u; | 
 | 		else | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_s32; | 
 | 	} else { | 
 | 		bytes_per_word = 4; | 
 | 		if ((unsigned long)tx_buf & 0x03) | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_32u; | 
 | 		else | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_32; | 
 |  | 
 | 		if ((unsigned long)rx_buf & 0x03) | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_32u; | 
 | 		else | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_32; | 
 | 	} | 
 |  | 
 | 	/* transfer in fifo sized chunks */ | 
 | 	words = len / bytes_per_word; | 
 |  | 
 | 	while (words > 0) { | 
 | 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, | 
 | 					   words, bits); | 
 | 		if (n < 0) | 
 | 			return n; | 
 |  | 
 | 		if (tx_buf) | 
 | 			tx_buf += n * bytes_per_word; | 
 | 		if (rx_buf) | 
 | 			rx_buf += n * bytes_per_word; | 
 | 		words -= n; | 
 |  | 
 | 		if (words == 0 && (len % bytes_per_word)) { | 
 | 			words = len % bytes_per_word; | 
 | 			bits = t->bits_per_word; | 
 | 			bytes_per_word = 1; | 
 | 			tx_fifo = sh_msiof_spi_write_fifo_8; | 
 | 			rx_fifo = sh_msiof_spi_read_fifo_8; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct sh_msiof_chipdata sh_data = { | 
 | 	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32), | 
 | 	.tx_fifo_size = 64, | 
 | 	.rx_fifo_size = 64, | 
 | 	.ctlr_flags = 0, | 
 | 	.min_div_pow = 0, | 
 | }; | 
 |  | 
 | static const struct sh_msiof_chipdata rcar_gen2_data = { | 
 | 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | | 
 | 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32), | 
 | 	.tx_fifo_size = 64, | 
 | 	.rx_fifo_size = 64, | 
 | 	.ctlr_flags = SPI_CONTROLLER_MUST_TX, | 
 | 	.min_div_pow = 0, | 
 | }; | 
 |  | 
 | static const struct sh_msiof_chipdata rcar_gen3_data = { | 
 | 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | | 
 | 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32), | 
 | 	.tx_fifo_size = 64, | 
 | 	.rx_fifo_size = 64, | 
 | 	.ctlr_flags = SPI_CONTROLLER_MUST_TX, | 
 | 	.min_div_pow = 1, | 
 | }; | 
 |  | 
 | static const struct sh_msiof_chipdata rcar_r8a7795_data = { | 
 | 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | | 
 | 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32), | 
 | 	.tx_fifo_size = 64, | 
 | 	.rx_fifo_size = 64, | 
 | 	.ctlr_flags = SPI_CONTROLLER_MUST_TX, | 
 | 	.min_div_pow = 1, | 
 | 	.flags = SH_MSIOF_FLAG_FIXED_DTDL_200, | 
 | }; | 
 |  | 
 | static const struct of_device_id sh_msiof_match[] = { | 
 | 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7795",   .data = &rcar_r8a7795_data }, | 
 | 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data }, | 
 | 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, | 
 | 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */ | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, sh_msiof_match); | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) | 
 | { | 
 | 	struct sh_msiof_spi_info *info; | 
 | 	struct device_node *np = dev->of_node; | 
 | 	u32 num_cs = 1; | 
 |  | 
 | 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); | 
 | 	if (!info) | 
 | 		return NULL; | 
 |  | 
 | 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE | 
 | 							    : MSIOF_SPI_MASTER; | 
 |  | 
 | 	/* Parse the MSIOF properties */ | 
 | 	if (info->mode == MSIOF_SPI_MASTER) | 
 | 		of_property_read_u32(np, "num-cs", &num_cs); | 
 | 	of_property_read_u32(np, "renesas,tx-fifo-size", | 
 | 					&info->tx_fifo_override); | 
 | 	of_property_read_u32(np, "renesas,rx-fifo-size", | 
 | 					&info->rx_fifo_override); | 
 | 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl); | 
 | 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl); | 
 |  | 
 | 	info->num_chipselect = num_cs; | 
 |  | 
 | 	return info; | 
 | } | 
 | #else | 
 | static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p) | 
 | { | 
 | 	struct device *dev = &p->pdev->dev; | 
 | 	unsigned int used_ss_mask = 0; | 
 | 	unsigned int cs_gpios = 0; | 
 | 	unsigned int num_cs, i; | 
 | 	int ret; | 
 |  | 
 | 	ret = gpiod_count(dev, "cs"); | 
 | 	if (ret <= 0) | 
 | 		return 0; | 
 |  | 
 | 	num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect); | 
 | 	for (i = 0; i < num_cs; i++) { | 
 | 		struct gpio_desc *gpiod; | 
 |  | 
 | 		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); | 
 | 		if (!IS_ERR(gpiod)) { | 
 | 			devm_gpiod_put(dev, gpiod); | 
 | 			cs_gpios++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (PTR_ERR(gpiod) != -ENOENT) | 
 | 			return PTR_ERR(gpiod); | 
 |  | 
 | 		if (i >= MAX_SS) { | 
 | 			dev_err(dev, "Invalid native chip select %d\n", i); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		used_ss_mask |= BIT(i); | 
 | 	} | 
 | 	p->unused_ss = ffz(used_ss_mask); | 
 | 	if (cs_gpios && p->unused_ss >= MAX_SS) { | 
 | 		dev_err(dev, "No unused native chip select available\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, | 
 | 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) | 
 | { | 
 | 	dma_cap_mask_t mask; | 
 | 	struct dma_chan *chan; | 
 | 	struct dma_slave_config cfg; | 
 | 	int ret; | 
 |  | 
 | 	dma_cap_zero(mask); | 
 | 	dma_cap_set(DMA_SLAVE, mask); | 
 |  | 
 | 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, | 
 | 				(void *)(unsigned long)id, dev, | 
 | 				dir == DMA_MEM_TO_DEV ? "tx" : "rx"); | 
 | 	if (!chan) { | 
 | 		dev_warn(dev, "dma_request_slave_channel_compat failed\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	memset(&cfg, 0, sizeof(cfg)); | 
 | 	cfg.direction = dir; | 
 | 	if (dir == DMA_MEM_TO_DEV) { | 
 | 		cfg.dst_addr = port_addr; | 
 | 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 	} else { | 
 | 		cfg.src_addr = port_addr; | 
 | 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 	} | 
 |  | 
 | 	ret = dmaengine_slave_config(chan, &cfg); | 
 | 	if (ret) { | 
 | 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); | 
 | 		dma_release_channel(chan); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return chan; | 
 | } | 
 |  | 
 | static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) | 
 | { | 
 | 	struct platform_device *pdev = p->pdev; | 
 | 	struct device *dev = &pdev->dev; | 
 | 	const struct sh_msiof_spi_info *info = p->info; | 
 | 	unsigned int dma_tx_id, dma_rx_id; | 
 | 	const struct resource *res; | 
 | 	struct spi_controller *ctlr; | 
 | 	struct device *tx_dev, *rx_dev; | 
 |  | 
 | 	if (dev->of_node) { | 
 | 		/* In the OF case we will get the slave IDs from the DT */ | 
 | 		dma_tx_id = 0; | 
 | 		dma_rx_id = 0; | 
 | 	} else if (info && info->dma_tx_id && info->dma_rx_id) { | 
 | 		dma_tx_id = info->dma_tx_id; | 
 | 		dma_rx_id = info->dma_rx_id; | 
 | 	} else { | 
 | 		/* The driver assumes no error */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* The DMA engine uses the second register set, if present */ | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 
 | 	if (!res) | 
 | 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 |  | 
 | 	ctlr = p->ctlr; | 
 | 	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, | 
 | 						 dma_tx_id, res->start + TFDR); | 
 | 	if (!ctlr->dma_tx) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, | 
 | 						 dma_rx_id, res->start + RFDR); | 
 | 	if (!ctlr->dma_rx) | 
 | 		goto free_tx_chan; | 
 |  | 
 | 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); | 
 | 	if (!p->tx_dma_page) | 
 | 		goto free_rx_chan; | 
 |  | 
 | 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); | 
 | 	if (!p->rx_dma_page) | 
 | 		goto free_tx_page; | 
 |  | 
 | 	tx_dev = ctlr->dma_tx->device->dev; | 
 | 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, | 
 | 					DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(tx_dev, p->tx_dma_addr)) | 
 | 		goto free_rx_page; | 
 |  | 
 | 	rx_dev = ctlr->dma_rx->device->dev; | 
 | 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, | 
 | 					DMA_FROM_DEVICE); | 
 | 	if (dma_mapping_error(rx_dev, p->rx_dma_addr)) | 
 | 		goto unmap_tx_page; | 
 |  | 
 | 	dev_info(dev, "DMA available"); | 
 | 	return 0; | 
 |  | 
 | unmap_tx_page: | 
 | 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); | 
 | free_rx_page: | 
 | 	free_page((unsigned long)p->rx_dma_page); | 
 | free_tx_page: | 
 | 	free_page((unsigned long)p->tx_dma_page); | 
 | free_rx_chan: | 
 | 	dma_release_channel(ctlr->dma_rx); | 
 | free_tx_chan: | 
 | 	dma_release_channel(ctlr->dma_tx); | 
 | 	ctlr->dma_tx = NULL; | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) | 
 | { | 
 | 	struct spi_controller *ctlr = p->ctlr; | 
 |  | 
 | 	if (!ctlr->dma_tx) | 
 | 		return; | 
 |  | 
 | 	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE, | 
 | 			 DMA_FROM_DEVICE); | 
 | 	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE, | 
 | 			 DMA_TO_DEVICE); | 
 | 	free_page((unsigned long)p->rx_dma_page); | 
 | 	free_page((unsigned long)p->tx_dma_page); | 
 | 	dma_release_channel(ctlr->dma_rx); | 
 | 	dma_release_channel(ctlr->dma_tx); | 
 | } | 
 |  | 
 | static int sh_msiof_spi_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct spi_controller *ctlr; | 
 | 	const struct sh_msiof_chipdata *chipdata; | 
 | 	struct sh_msiof_spi_info *info; | 
 | 	struct sh_msiof_spi_priv *p; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	chipdata = of_device_get_match_data(&pdev->dev); | 
 | 	if (chipdata) { | 
 | 		info = sh_msiof_spi_parse_dt(&pdev->dev); | 
 | 	} else { | 
 | 		chipdata = (const void *)pdev->id_entry->driver_data; | 
 | 		info = dev_get_platdata(&pdev->dev); | 
 | 	} | 
 |  | 
 | 	if (!info) { | 
 | 		dev_err(&pdev->dev, "failed to obtain device info\n"); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200) | 
 | 		info->dtdl = 200; | 
 |  | 
 | 	if (info->mode == MSIOF_SPI_SLAVE) | 
 | 		ctlr = spi_alloc_slave(&pdev->dev, | 
 | 				       sizeof(struct sh_msiof_spi_priv)); | 
 | 	else | 
 | 		ctlr = spi_alloc_master(&pdev->dev, | 
 | 					sizeof(struct sh_msiof_spi_priv)); | 
 | 	if (ctlr == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p = spi_controller_get_devdata(ctlr); | 
 |  | 
 | 	platform_set_drvdata(pdev, p); | 
 | 	p->ctlr = ctlr; | 
 | 	p->info = info; | 
 | 	p->min_div_pow = chipdata->min_div_pow; | 
 |  | 
 | 	init_completion(&p->done); | 
 | 	init_completion(&p->done_txdma); | 
 |  | 
 | 	p->clk = devm_clk_get(&pdev->dev, NULL); | 
 | 	if (IS_ERR(p->clk)) { | 
 | 		dev_err(&pdev->dev, "cannot get clock\n"); | 
 | 		ret = PTR_ERR(p->clk); | 
 | 		goto err1; | 
 | 	} | 
 |  | 
 | 	i = platform_get_irq(pdev, 0); | 
 | 	if (i < 0) { | 
 | 		ret = i; | 
 | 		goto err1; | 
 | 	} | 
 |  | 
 | 	p->mapbase = devm_platform_ioremap_resource(pdev, 0); | 
 | 	if (IS_ERR(p->mapbase)) { | 
 | 		ret = PTR_ERR(p->mapbase); | 
 | 		goto err1; | 
 | 	} | 
 |  | 
 | 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, | 
 | 			       dev_name(&pdev->dev), p); | 
 | 	if (ret) { | 
 | 		dev_err(&pdev->dev, "unable to request irq\n"); | 
 | 		goto err1; | 
 | 	} | 
 |  | 
 | 	p->pdev = pdev; | 
 | 	pm_runtime_enable(&pdev->dev); | 
 |  | 
 | 	/* Platform data may override FIFO sizes */ | 
 | 	p->tx_fifo_size = chipdata->tx_fifo_size; | 
 | 	p->rx_fifo_size = chipdata->rx_fifo_size; | 
 | 	if (p->info->tx_fifo_override) | 
 | 		p->tx_fifo_size = p->info->tx_fifo_override; | 
 | 	if (p->info->rx_fifo_override) | 
 | 		p->rx_fifo_size = p->info->rx_fifo_override; | 
 |  | 
 | 	/* Setup GPIO chip selects */ | 
 | 	ctlr->num_chipselect = p->info->num_chipselect; | 
 | 	ret = sh_msiof_get_cs_gpios(p); | 
 | 	if (ret) | 
 | 		goto err1; | 
 |  | 
 | 	/* init controller code */ | 
 | 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | 
 | 	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; | 
 | 	ctlr->flags = chipdata->ctlr_flags; | 
 | 	ctlr->bus_num = pdev->id; | 
 | 	ctlr->dev.of_node = pdev->dev.of_node; | 
 | 	ctlr->setup = sh_msiof_spi_setup; | 
 | 	ctlr->prepare_message = sh_msiof_prepare_message; | 
 | 	ctlr->slave_abort = sh_msiof_slave_abort; | 
 | 	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask; | 
 | 	ctlr->auto_runtime_pm = true; | 
 | 	ctlr->transfer_one = sh_msiof_transfer_one; | 
 | 	ctlr->use_gpio_descriptors = true; | 
 |  | 
 | 	ret = sh_msiof_request_dma(p); | 
 | 	if (ret < 0) | 
 | 		dev_warn(&pdev->dev, "DMA not available, using PIO\n"); | 
 |  | 
 | 	ret = devm_spi_register_controller(&pdev->dev, ctlr); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); | 
 | 		goto err2; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 |  err2: | 
 | 	sh_msiof_release_dma(p); | 
 | 	pm_runtime_disable(&pdev->dev); | 
 |  err1: | 
 | 	spi_controller_put(ctlr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sh_msiof_spi_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); | 
 |  | 
 | 	sh_msiof_release_dma(p); | 
 | 	pm_runtime_disable(&pdev->dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct platform_device_id spi_driver_ids[] = { | 
 | 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data }, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(platform, spi_driver_ids); | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int sh_msiof_spi_suspend(struct device *dev) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); | 
 |  | 
 | 	return spi_controller_suspend(p->ctlr); | 
 | } | 
 |  | 
 | static int sh_msiof_spi_resume(struct device *dev) | 
 | { | 
 | 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); | 
 |  | 
 | 	return spi_controller_resume(p->ctlr); | 
 | } | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, | 
 | 			 sh_msiof_spi_resume); | 
 | #define DEV_PM_OPS	&sh_msiof_spi_pm_ops | 
 | #else | 
 | #define DEV_PM_OPS	NULL | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | static struct platform_driver sh_msiof_spi_drv = { | 
 | 	.probe		= sh_msiof_spi_probe, | 
 | 	.remove		= sh_msiof_spi_remove, | 
 | 	.id_table	= spi_driver_ids, | 
 | 	.driver		= { | 
 | 		.name		= "spi_sh_msiof", | 
 | 		.pm		= DEV_PM_OPS, | 
 | 		.of_match_table = of_match_ptr(sh_msiof_match), | 
 | 	}, | 
 | }; | 
 | module_platform_driver(sh_msiof_spi_drv); | 
 |  | 
 | MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver"); | 
 | MODULE_AUTHOR("Magnus Damm"); | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_ALIAS("platform:spi_sh_msiof"); |