| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Auto-group scheduling implementation: | 
 |  */ | 
 | #include <linux/nospec.h> | 
 | #include "sched.h" | 
 |  | 
 | unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1; | 
 | static struct autogroup autogroup_default; | 
 | static atomic_t autogroup_seq_nr; | 
 |  | 
 | void __init autogroup_init(struct task_struct *init_task) | 
 | { | 
 | 	autogroup_default.tg = &root_task_group; | 
 | 	kref_init(&autogroup_default.kref); | 
 | 	init_rwsem(&autogroup_default.lock); | 
 | 	init_task->signal->autogroup = &autogroup_default; | 
 | } | 
 |  | 
 | void autogroup_free(struct task_group *tg) | 
 | { | 
 | 	kfree(tg->autogroup); | 
 | } | 
 |  | 
 | static inline void autogroup_destroy(struct kref *kref) | 
 | { | 
 | 	struct autogroup *ag = container_of(kref, struct autogroup, kref); | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	/* We've redirected RT tasks to the root task group... */ | 
 | 	ag->tg->rt_se = NULL; | 
 | 	ag->tg->rt_rq = NULL; | 
 | #endif | 
 | 	sched_offline_group(ag->tg); | 
 | 	sched_destroy_group(ag->tg); | 
 | } | 
 |  | 
 | static inline void autogroup_kref_put(struct autogroup *ag) | 
 | { | 
 | 	kref_put(&ag->kref, autogroup_destroy); | 
 | } | 
 |  | 
 | static inline struct autogroup *autogroup_kref_get(struct autogroup *ag) | 
 | { | 
 | 	kref_get(&ag->kref); | 
 | 	return ag; | 
 | } | 
 |  | 
 | static inline struct autogroup *autogroup_task_get(struct task_struct *p) | 
 | { | 
 | 	struct autogroup *ag; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!lock_task_sighand(p, &flags)) | 
 | 		return autogroup_kref_get(&autogroup_default); | 
 |  | 
 | 	ag = autogroup_kref_get(p->signal->autogroup); | 
 | 	unlock_task_sighand(p, &flags); | 
 |  | 
 | 	return ag; | 
 | } | 
 |  | 
 | static inline struct autogroup *autogroup_create(void) | 
 | { | 
 | 	struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL); | 
 | 	struct task_group *tg; | 
 |  | 
 | 	if (!ag) | 
 | 		goto out_fail; | 
 |  | 
 | 	tg = sched_create_group(&root_task_group); | 
 | 	if (IS_ERR(tg)) | 
 | 		goto out_free; | 
 |  | 
 | 	kref_init(&ag->kref); | 
 | 	init_rwsem(&ag->lock); | 
 | 	ag->id = atomic_inc_return(&autogroup_seq_nr); | 
 | 	ag->tg = tg; | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	/* | 
 | 	 * Autogroup RT tasks are redirected to the root task group | 
 | 	 * so we don't have to move tasks around upon policy change, | 
 | 	 * or flail around trying to allocate bandwidth on the fly. | 
 | 	 * A bandwidth exception in __sched_setscheduler() allows | 
 | 	 * the policy change to proceed. | 
 | 	 */ | 
 | 	free_rt_sched_group(tg); | 
 | 	tg->rt_se = root_task_group.rt_se; | 
 | 	tg->rt_rq = root_task_group.rt_rq; | 
 | #endif | 
 | 	tg->autogroup = ag; | 
 |  | 
 | 	sched_online_group(tg, &root_task_group); | 
 | 	return ag; | 
 |  | 
 | out_free: | 
 | 	kfree(ag); | 
 | out_fail: | 
 | 	if (printk_ratelimit()) { | 
 | 		printk(KERN_WARNING "autogroup_create: %s failure.\n", | 
 | 			ag ? "sched_create_group()" : "kzalloc()"); | 
 | 	} | 
 |  | 
 | 	return autogroup_kref_get(&autogroup_default); | 
 | } | 
 |  | 
 | bool task_wants_autogroup(struct task_struct *p, struct task_group *tg) | 
 | { | 
 | 	if (tg != &root_task_group) | 
 | 		return false; | 
 | 	/* | 
 | 	 * If we race with autogroup_move_group() the caller can use the old | 
 | 	 * value of signal->autogroup but in this case sched_move_task() will | 
 | 	 * be called again before autogroup_kref_put(). | 
 | 	 * | 
 | 	 * However, there is no way sched_autogroup_exit_task() could tell us | 
 | 	 * to avoid autogroup->tg, so we abuse PF_EXITING flag for this case. | 
 | 	 */ | 
 | 	if (p->flags & PF_EXITING) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void sched_autogroup_exit_task(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * We are going to call exit_notify() and autogroup_move_group() can't | 
 | 	 * see this thread after that: we can no longer use signal->autogroup. | 
 | 	 * See the PF_EXITING check in task_wants_autogroup(). | 
 | 	 */ | 
 | 	sched_move_task(p); | 
 | } | 
 |  | 
 | static void | 
 | autogroup_move_group(struct task_struct *p, struct autogroup *ag) | 
 | { | 
 | 	struct autogroup *prev; | 
 | 	struct task_struct *t; | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON(!lock_task_sighand(p, &flags)); | 
 |  | 
 | 	prev = p->signal->autogroup; | 
 | 	if (prev == ag) { | 
 | 		unlock_task_sighand(p, &flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	p->signal->autogroup = autogroup_kref_get(ag); | 
 | 	/* | 
 | 	 * We can't avoid sched_move_task() after we changed signal->autogroup, | 
 | 	 * this process can already run with task_group() == prev->tg or we can | 
 | 	 * race with cgroup code which can read autogroup = prev under rq->lock. | 
 | 	 * In the latter case for_each_thread() can not miss a migrating thread, | 
 | 	 * cpu_cgroup_attach() must not be possible after cgroup_exit() and it | 
 | 	 * can't be removed from thread list, we hold ->siglock. | 
 | 	 * | 
 | 	 * If an exiting thread was already removed from thread list we rely on | 
 | 	 * sched_autogroup_exit_task(). | 
 | 	 */ | 
 | 	for_each_thread(p, t) | 
 | 		sched_move_task(t); | 
 |  | 
 | 	unlock_task_sighand(p, &flags); | 
 | 	autogroup_kref_put(prev); | 
 | } | 
 |  | 
 | /* Allocates GFP_KERNEL, cannot be called under any spinlock: */ | 
 | void sched_autogroup_create_attach(struct task_struct *p) | 
 | { | 
 | 	struct autogroup *ag = autogroup_create(); | 
 |  | 
 | 	autogroup_move_group(p, ag); | 
 |  | 
 | 	/* Drop extra reference added by autogroup_create(): */ | 
 | 	autogroup_kref_put(ag); | 
 | } | 
 | EXPORT_SYMBOL(sched_autogroup_create_attach); | 
 |  | 
 | /* Cannot be called under siglock. Currently has no users: */ | 
 | void sched_autogroup_detach(struct task_struct *p) | 
 | { | 
 | 	autogroup_move_group(p, &autogroup_default); | 
 | } | 
 | EXPORT_SYMBOL(sched_autogroup_detach); | 
 |  | 
 | void sched_autogroup_fork(struct signal_struct *sig) | 
 | { | 
 | 	sig->autogroup = autogroup_task_get(current); | 
 | } | 
 |  | 
 | void sched_autogroup_exit(struct signal_struct *sig) | 
 | { | 
 | 	autogroup_kref_put(sig->autogroup); | 
 | } | 
 |  | 
 | static int __init setup_autogroup(char *str) | 
 | { | 
 | 	sysctl_sched_autogroup_enabled = 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("noautogroup", setup_autogroup); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 |  | 
 | int proc_sched_autogroup_set_nice(struct task_struct *p, int nice) | 
 | { | 
 | 	static unsigned long next = INITIAL_JIFFIES; | 
 | 	struct autogroup *ag; | 
 | 	unsigned long shares; | 
 | 	int err, idx; | 
 |  | 
 | 	if (nice < MIN_NICE || nice > MAX_NICE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = security_task_setnice(current, nice); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (nice < 0 && !can_nice(current, nice)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* This is a heavy operation, taking global locks.. */ | 
 | 	if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	next = HZ / 10 + jiffies; | 
 | 	ag = autogroup_task_get(p); | 
 |  | 
 | 	idx = array_index_nospec(nice + 20, 40); | 
 | 	shares = scale_load(sched_prio_to_weight[idx]); | 
 |  | 
 | 	down_write(&ag->lock); | 
 | 	err = sched_group_set_shares(ag->tg, shares); | 
 | 	if (!err) | 
 | 		ag->nice = nice; | 
 | 	up_write(&ag->lock); | 
 |  | 
 | 	autogroup_kref_put(ag); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m) | 
 | { | 
 | 	struct autogroup *ag = autogroup_task_get(p); | 
 |  | 
 | 	if (!task_group_is_autogroup(ag->tg)) | 
 | 		goto out; | 
 |  | 
 | 	down_read(&ag->lock); | 
 | 	seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice); | 
 | 	up_read(&ag->lock); | 
 |  | 
 | out: | 
 | 	autogroup_kref_put(ag); | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | int autogroup_path(struct task_group *tg, char *buf, int buflen) | 
 | { | 
 | 	if (!task_group_is_autogroup(tg)) | 
 | 		return 0; | 
 |  | 
 | 	return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id); | 
 | } |