| /* SPDX-License-Identifier: GPL-2.0 */ | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 |  | 
 | /* | 
 |  * Expects runqueue lock to be held for atomicity of update | 
 |  */ | 
 | static inline void | 
 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) | 
 | { | 
 | 	if (rq) { | 
 | 		rq->rq_sched_info.run_delay += delta; | 
 | 		rq->rq_sched_info.pcount++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Expects runqueue lock to be held for atomicity of update | 
 |  */ | 
 | static inline void | 
 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) | 
 | { | 
 | 	if (rq) | 
 | 		rq->rq_cpu_time += delta; | 
 | } | 
 |  | 
 | static inline void | 
 | rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) | 
 | { | 
 | 	if (rq) | 
 | 		rq->rq_sched_info.run_delay += delta; | 
 | } | 
 | #define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats) | 
 | #define __schedstat_inc(var)		do { var++; } while (0) | 
 | #define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0) | 
 | #define __schedstat_add(var, amt)	do { var += (amt); } while (0) | 
 | #define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0) | 
 | #define __schedstat_set(var, val)	do { var = (val); } while (0) | 
 | #define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0) | 
 | #define   schedstat_val(var)		(var) | 
 | #define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0) | 
 |  | 
 | #else /* !CONFIG_SCHEDSTATS: */ | 
 | static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { } | 
 | static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { } | 
 | static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { } | 
 | # define   schedstat_enabled()		0 | 
 | # define __schedstat_inc(var)		do { } while (0) | 
 | # define   schedstat_inc(var)		do { } while (0) | 
 | # define __schedstat_add(var, amt)	do { } while (0) | 
 | # define   schedstat_add(var, amt)	do { } while (0) | 
 | # define __schedstat_set(var, val)	do { } while (0) | 
 | # define   schedstat_set(var, val)	do { } while (0) | 
 | # define   schedstat_val(var)		0 | 
 | # define   schedstat_val_or_zero(var)	0 | 
 | #endif /* CONFIG_SCHEDSTATS */ | 
 |  | 
 | #ifdef CONFIG_PSI | 
 | /* | 
 |  * PSI tracks state that persists across sleeps, such as iowaits and | 
 |  * memory stalls. As a result, it has to distinguish between sleeps, | 
 |  * where a task's runnable state changes, and requeues, where a task | 
 |  * and its state are being moved between CPUs and runqueues. | 
 |  */ | 
 | static inline void psi_enqueue(struct task_struct *p, bool wakeup) | 
 | { | 
 | 	int clear = 0, set = TSK_RUNNING; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 |  | 
 | 	if (!wakeup || p->sched_psi_wake_requeue) { | 
 | 		if (p->flags & PF_MEMSTALL) | 
 | 			set |= TSK_MEMSTALL; | 
 | 		if (p->sched_psi_wake_requeue) | 
 | 			p->sched_psi_wake_requeue = 0; | 
 | 	} else { | 
 | 		if (p->in_iowait) | 
 | 			clear |= TSK_IOWAIT; | 
 | 	} | 
 |  | 
 | 	psi_task_change(p, clear, set); | 
 | } | 
 |  | 
 | static inline void psi_dequeue(struct task_struct *p, bool sleep) | 
 | { | 
 | 	int clear = TSK_RUNNING, set = 0; | 
 |  | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 |  | 
 | 	if (!sleep) { | 
 | 		if (p->flags & PF_MEMSTALL) | 
 | 			clear |= TSK_MEMSTALL; | 
 | 	} else { | 
 | 		if (p->in_iowait) | 
 | 			set |= TSK_IOWAIT; | 
 | 	} | 
 |  | 
 | 	psi_task_change(p, clear, set); | 
 | } | 
 |  | 
 | static inline void psi_ttwu_dequeue(struct task_struct *p) | 
 | { | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 | 	/* | 
 | 	 * Is the task being migrated during a wakeup? Make sure to | 
 | 	 * deregister its sleep-persistent psi states from the old | 
 | 	 * queue, and let psi_enqueue() know it has to requeue. | 
 | 	 */ | 
 | 	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) { | 
 | 		struct rq_flags rf; | 
 | 		struct rq *rq; | 
 | 		int clear = 0; | 
 |  | 
 | 		if (p->in_iowait) | 
 | 			clear |= TSK_IOWAIT; | 
 | 		if (p->flags & PF_MEMSTALL) | 
 | 			clear |= TSK_MEMSTALL; | 
 |  | 
 | 		rq = __task_rq_lock(p, &rf); | 
 | 		psi_task_change(p, clear, 0); | 
 | 		p->sched_psi_wake_requeue = 1; | 
 | 		__task_rq_unlock(rq, &rf); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void psi_task_tick(struct rq *rq) | 
 | { | 
 | 	if (static_branch_likely(&psi_disabled)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(rq->curr->flags & PF_MEMSTALL)) | 
 | 		psi_memstall_tick(rq->curr, cpu_of(rq)); | 
 | } | 
 | #else /* CONFIG_PSI */ | 
 | static inline void psi_enqueue(struct task_struct *p, bool wakeup) {} | 
 | static inline void psi_dequeue(struct task_struct *p, bool sleep) {} | 
 | static inline void psi_ttwu_dequeue(struct task_struct *p) {} | 
 | static inline void psi_task_tick(struct rq *rq) {} | 
 | #endif /* CONFIG_PSI */ | 
 |  | 
 | #ifdef CONFIG_SCHED_INFO | 
 | static inline void sched_info_reset_dequeued(struct task_struct *t) | 
 | { | 
 | 	t->sched_info.last_queued = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We are interested in knowing how long it was from the *first* time a | 
 |  * task was queued to the time that it finally hit a CPU, we call this routine | 
 |  * from dequeue_task() to account for possible rq->clock skew across CPUs. The | 
 |  * delta taken on each CPU would annul the skew. | 
 |  */ | 
 | static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t) | 
 | { | 
 | 	unsigned long long now = rq_clock(rq), delta = 0; | 
 |  | 
 | 	if (sched_info_on()) { | 
 | 		if (t->sched_info.last_queued) | 
 | 			delta = now - t->sched_info.last_queued; | 
 | 	} | 
 | 	sched_info_reset_dequeued(t); | 
 | 	t->sched_info.run_delay += delta; | 
 |  | 
 | 	rq_sched_info_dequeued(rq, delta); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a task finally hits the CPU.  We can now calculate how | 
 |  * long it was waiting to run.  We also note when it began so that we | 
 |  * can keep stats on how long its timeslice is. | 
 |  */ | 
 | static void sched_info_arrive(struct rq *rq, struct task_struct *t) | 
 | { | 
 | 	unsigned long long now = rq_clock(rq), delta = 0; | 
 |  | 
 | 	if (t->sched_info.last_queued) | 
 | 		delta = now - t->sched_info.last_queued; | 
 | 	sched_info_reset_dequeued(t); | 
 | 	t->sched_info.run_delay += delta; | 
 | 	t->sched_info.last_arrival = now; | 
 | 	t->sched_info.pcount++; | 
 |  | 
 | 	rq_sched_info_arrive(rq, delta); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is only called from enqueue_task(), but also only updates | 
 |  * the timestamp if it is already not set.  It's assumed that | 
 |  * sched_info_dequeued() will clear that stamp when appropriate. | 
 |  */ | 
 | static inline void sched_info_queued(struct rq *rq, struct task_struct *t) | 
 | { | 
 | 	if (sched_info_on()) { | 
 | 		if (!t->sched_info.last_queued) | 
 | 			t->sched_info.last_queued = rq_clock(rq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a process ceases being the active-running process involuntarily | 
 |  * due, typically, to expiring its time slice (this may also be called when | 
 |  * switching to the idle task).  Now we can calculate how long we ran. | 
 |  * Also, if the process is still in the TASK_RUNNING state, call | 
 |  * sched_info_queued() to mark that it has now again started waiting on | 
 |  * the runqueue. | 
 |  */ | 
 | static inline void sched_info_depart(struct rq *rq, struct task_struct *t) | 
 | { | 
 | 	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; | 
 |  | 
 | 	rq_sched_info_depart(rq, delta); | 
 |  | 
 | 	if (t->state == TASK_RUNNING) | 
 | 		sched_info_queued(rq, t); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when tasks are switched involuntarily due, typically, to expiring | 
 |  * their time slice.  (This may also be called when switching to or from | 
 |  * the idle task.)  We are only called when prev != next. | 
 |  */ | 
 | static inline void | 
 | __sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) | 
 | { | 
 | 	/* | 
 | 	 * prev now departs the CPU.  It's not interesting to record | 
 | 	 * stats about how efficient we were at scheduling the idle | 
 | 	 * process, however. | 
 | 	 */ | 
 | 	if (prev != rq->idle) | 
 | 		sched_info_depart(rq, prev); | 
 |  | 
 | 	if (next != rq->idle) | 
 | 		sched_info_arrive(rq, next); | 
 | } | 
 |  | 
 | static inline void | 
 | sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) | 
 | { | 
 | 	if (sched_info_on()) | 
 | 		__sched_info_switch(rq, prev, next); | 
 | } | 
 |  | 
 | #else /* !CONFIG_SCHED_INFO: */ | 
 | # define sched_info_queued(rq, t)	do { } while (0) | 
 | # define sched_info_reset_dequeued(t)	do { } while (0) | 
 | # define sched_info_dequeued(rq, t)	do { } while (0) | 
 | # define sched_info_depart(rq, t)	do { } while (0) | 
 | # define sched_info_arrive(rq, next)	do { } while (0) | 
 | # define sched_info_switch(rq, t, next)	do { } while (0) | 
 | #endif /* CONFIG_SCHED_INFO */ |