|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/gcd.h> | 
|  | #include <linux/export.h> | 
|  |  | 
|  | /* | 
|  | * This implements the binary GCD algorithm. (Often attributed to Stein, | 
|  | * but as Knuth has noted, appears in a first-century Chinese math text.) | 
|  | * | 
|  | * This is faster than the division-based algorithm even on x86, which | 
|  | * has decent hardware division. | 
|  | */ | 
|  |  | 
|  | #if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) | 
|  |  | 
|  | /* If __ffs is available, the even/odd algorithm benchmarks slower. */ | 
|  |  | 
|  | /** | 
|  | * gcd - calculate and return the greatest common divisor of 2 unsigned longs | 
|  | * @a: first value | 
|  | * @b: second value | 
|  | */ | 
|  | unsigned long gcd(unsigned long a, unsigned long b) | 
|  | { | 
|  | unsigned long r = a | b; | 
|  |  | 
|  | if (!a || !b) | 
|  | return r; | 
|  |  | 
|  | b >>= __ffs(b); | 
|  | if (b == 1) | 
|  | return r & -r; | 
|  |  | 
|  | for (;;) { | 
|  | a >>= __ffs(a); | 
|  | if (a == 1) | 
|  | return r & -r; | 
|  | if (a == b) | 
|  | return a << __ffs(r); | 
|  |  | 
|  | if (a < b) | 
|  | swap(a, b); | 
|  | a -= b; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* If normalization is done by loops, the even/odd algorithm is a win. */ | 
|  | unsigned long gcd(unsigned long a, unsigned long b) | 
|  | { | 
|  | unsigned long r = a | b; | 
|  |  | 
|  | if (!a || !b) | 
|  | return r; | 
|  |  | 
|  | /* Isolate lsbit of r */ | 
|  | r &= -r; | 
|  |  | 
|  | while (!(b & r)) | 
|  | b >>= 1; | 
|  | if (b == r) | 
|  | return r; | 
|  |  | 
|  | for (;;) { | 
|  | while (!(a & r)) | 
|  | a >>= 1; | 
|  | if (a == r) | 
|  | return r; | 
|  | if (a == b) | 
|  | return a; | 
|  |  | 
|  | if (a < b) | 
|  | swap(a, b); | 
|  | a -= b; | 
|  | a >>= 1; | 
|  | if (a & r) | 
|  | a += b; | 
|  | a >>= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(gcd); |