|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2015, 2016 ARM Ltd. | 
|  | */ | 
|  |  | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/nospec.h> | 
|  |  | 
|  | #include <asm/kvm_hyp.h> | 
|  |  | 
|  | #include "vgic.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "trace.h" | 
|  |  | 
|  | struct vgic_global kvm_vgic_global_state __ro_after_init = { | 
|  | .gicv3_cpuif = STATIC_KEY_FALSE_INIT, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Locking order is always: | 
|  | * kvm->lock (mutex) | 
|  | *   its->cmd_lock (mutex) | 
|  | *     its->its_lock (mutex) | 
|  | *       vgic_cpu->ap_list_lock		must be taken with IRQs disabled | 
|  | *         kvm->lpi_list_lock		must be taken with IRQs disabled | 
|  | *           vgic_irq->irq_lock		must be taken with IRQs disabled | 
|  | * | 
|  | * As the ap_list_lock might be taken from the timer interrupt handler, | 
|  | * we have to disable IRQs before taking this lock and everything lower | 
|  | * than it. | 
|  | * | 
|  | * If you need to take multiple locks, always take the upper lock first, | 
|  | * then the lower ones, e.g. first take the its_lock, then the irq_lock. | 
|  | * If you are already holding a lock and need to take a higher one, you | 
|  | * have to drop the lower ranking lock first and re-aquire it after having | 
|  | * taken the upper one. | 
|  | * | 
|  | * When taking more than one ap_list_lock at the same time, always take the | 
|  | * lowest numbered VCPU's ap_list_lock first, so: | 
|  | *   vcpuX->vcpu_id < vcpuY->vcpu_id: | 
|  | *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); | 
|  | *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); | 
|  | * | 
|  | * Since the VGIC must support injecting virtual interrupts from ISRs, we have | 
|  | * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer | 
|  | * spinlocks for any lock that may be taken while injecting an interrupt. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Iterate over the VM's list of mapped LPIs to find the one with a | 
|  | * matching interrupt ID and return a reference to the IRQ structure. | 
|  | */ | 
|  | static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) | 
|  | { | 
|  | struct vgic_dist *dist = &kvm->arch.vgic; | 
|  | struct vgic_irq *irq = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { | 
|  | if (irq->intid != intid) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * This increases the refcount, the caller is expected to | 
|  | * call vgic_put_irq() later once it's finished with the IRQ. | 
|  | */ | 
|  | vgic_get_irq_kref(irq); | 
|  | goto out_unlock; | 
|  | } | 
|  | irq = NULL; | 
|  |  | 
|  | out_unlock: | 
|  | raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); | 
|  |  | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This looks up the virtual interrupt ID to get the corresponding | 
|  | * struct vgic_irq. It also increases the refcount, so any caller is expected | 
|  | * to call vgic_put_irq() once it's finished with this IRQ. | 
|  | */ | 
|  | struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, | 
|  | u32 intid) | 
|  | { | 
|  | /* SGIs and PPIs */ | 
|  | if (intid <= VGIC_MAX_PRIVATE) { | 
|  | intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1); | 
|  | return &vcpu->arch.vgic_cpu.private_irqs[intid]; | 
|  | } | 
|  |  | 
|  | /* SPIs */ | 
|  | if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { | 
|  | intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); | 
|  | return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; | 
|  | } | 
|  |  | 
|  | /* LPIs */ | 
|  | if (intid >= VGIC_MIN_LPI) | 
|  | return vgic_get_lpi(kvm, intid); | 
|  |  | 
|  | WARN(1, "Looking up struct vgic_irq for reserved INTID"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't do anything in here, because we lack the kvm pointer to | 
|  | * lock and remove the item from the lpi_list. So we keep this function | 
|  | * empty and use the return value of kref_put() to trigger the freeing. | 
|  | */ | 
|  | static void vgic_irq_release(struct kref *ref) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop the refcount on the LPI. Must be called with lpi_list_lock held. | 
|  | */ | 
|  | void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq) | 
|  | { | 
|  | struct vgic_dist *dist = &kvm->arch.vgic; | 
|  |  | 
|  | if (!kref_put(&irq->refcount, vgic_irq_release)) | 
|  | return; | 
|  |  | 
|  | list_del(&irq->lpi_list); | 
|  | dist->lpi_list_count--; | 
|  |  | 
|  | kfree(irq); | 
|  | } | 
|  |  | 
|  | void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) | 
|  | { | 
|  | struct vgic_dist *dist = &kvm->arch.vgic; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (irq->intid < VGIC_MIN_LPI) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); | 
|  | __vgic_put_lpi_locked(kvm, irq); | 
|  | raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); | 
|  | } | 
|  |  | 
|  | void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  | struct vgic_irq *irq, *tmp; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { | 
|  | if (irq->intid >= VGIC_MIN_LPI) { | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  | list_del(&irq->ap_list); | 
|  | irq->vcpu = NULL; | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  | vgic_put_irq(vcpu->kvm, irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); | 
|  | } | 
|  |  | 
|  | void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) | 
|  | { | 
|  | WARN_ON(irq_set_irqchip_state(irq->host_irq, | 
|  | IRQCHIP_STATE_PENDING, | 
|  | pending)); | 
|  | } | 
|  |  | 
|  | bool vgic_get_phys_line_level(struct vgic_irq *irq) | 
|  | { | 
|  | bool line_level; | 
|  |  | 
|  | BUG_ON(!irq->hw); | 
|  |  | 
|  | if (irq->get_input_level) | 
|  | return irq->get_input_level(irq->intid); | 
|  |  | 
|  | WARN_ON(irq_get_irqchip_state(irq->host_irq, | 
|  | IRQCHIP_STATE_PENDING, | 
|  | &line_level)); | 
|  | return line_level; | 
|  | } | 
|  |  | 
|  | /* Set/Clear the physical active state */ | 
|  | void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) | 
|  | { | 
|  |  | 
|  | BUG_ON(!irq->hw); | 
|  | WARN_ON(irq_set_irqchip_state(irq->host_irq, | 
|  | IRQCHIP_STATE_ACTIVE, | 
|  | active)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vgic_target_oracle - compute the target vcpu for an irq | 
|  | * | 
|  | * @irq:	The irq to route. Must be already locked. | 
|  | * | 
|  | * Based on the current state of the interrupt (enabled, pending, | 
|  | * active, vcpu and target_vcpu), compute the next vcpu this should be | 
|  | * given to. Return NULL if this shouldn't be injected at all. | 
|  | * | 
|  | * Requires the IRQ lock to be held. | 
|  | */ | 
|  | static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) | 
|  | { | 
|  | lockdep_assert_held(&irq->irq_lock); | 
|  |  | 
|  | /* If the interrupt is active, it must stay on the current vcpu */ | 
|  | if (irq->active) | 
|  | return irq->vcpu ? : irq->target_vcpu; | 
|  |  | 
|  | /* | 
|  | * If the IRQ is not active but enabled and pending, we should direct | 
|  | * it to its configured target VCPU. | 
|  | * If the distributor is disabled, pending interrupts shouldn't be | 
|  | * forwarded. | 
|  | */ | 
|  | if (irq->enabled && irq_is_pending(irq)) { | 
|  | if (unlikely(irq->target_vcpu && | 
|  | !irq->target_vcpu->kvm->arch.vgic.enabled)) | 
|  | return NULL; | 
|  |  | 
|  | return irq->target_vcpu; | 
|  | } | 
|  |  | 
|  | /* If neither active nor pending and enabled, then this IRQ should not | 
|  | * be queued to any VCPU. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The order of items in the ap_lists defines how we'll pack things in LRs as | 
|  | * well, the first items in the list being the first things populated in the | 
|  | * LRs. | 
|  | * | 
|  | * A hard rule is that active interrupts can never be pushed out of the LRs | 
|  | * (and therefore take priority) since we cannot reliably trap on deactivation | 
|  | * of IRQs and therefore they have to be present in the LRs. | 
|  | * | 
|  | * Otherwise things should be sorted by the priority field and the GIC | 
|  | * hardware support will take care of preemption of priority groups etc. | 
|  | * | 
|  | * Return negative if "a" sorts before "b", 0 to preserve order, and positive | 
|  | * to sort "b" before "a". | 
|  | */ | 
|  | static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); | 
|  | struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); | 
|  | bool penda, pendb; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * list_sort may call this function with the same element when | 
|  | * the list is fairly long. | 
|  | */ | 
|  | if (unlikely(irqa == irqb)) | 
|  | return 0; | 
|  |  | 
|  | raw_spin_lock(&irqa->irq_lock); | 
|  | raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | if (irqa->active || irqb->active) { | 
|  | ret = (int)irqb->active - (int)irqa->active; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | penda = irqa->enabled && irq_is_pending(irqa); | 
|  | pendb = irqb->enabled && irq_is_pending(irqb); | 
|  |  | 
|  | if (!penda || !pendb) { | 
|  | ret = (int)pendb - (int)penda; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Both pending and enabled, sort by priority */ | 
|  | ret = irqa->priority - irqb->priority; | 
|  | out: | 
|  | raw_spin_unlock(&irqb->irq_lock); | 
|  | raw_spin_unlock(&irqa->irq_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Must be called with the ap_list_lock held */ | 
|  | static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  |  | 
|  | lockdep_assert_held(&vgic_cpu->ap_list_lock); | 
|  |  | 
|  | list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only valid injection if changing level for level-triggered IRQs or for a | 
|  | * rising edge, and in-kernel connected IRQ lines can only be controlled by | 
|  | * their owner. | 
|  | */ | 
|  | static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) | 
|  | { | 
|  | if (irq->owner != owner) | 
|  | return false; | 
|  |  | 
|  | switch (irq->config) { | 
|  | case VGIC_CONFIG_LEVEL: | 
|  | return irq->line_level != level; | 
|  | case VGIC_CONFIG_EDGE: | 
|  | return level; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. | 
|  | * Do the queuing if necessary, taking the right locks in the right order. | 
|  | * Returns true when the IRQ was queued, false otherwise. | 
|  | * | 
|  | * Needs to be entered with the IRQ lock already held, but will return | 
|  | * with all locks dropped. | 
|  | */ | 
|  | bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | lockdep_assert_held(&irq->irq_lock); | 
|  |  | 
|  | retry: | 
|  | vcpu = vgic_target_oracle(irq); | 
|  | if (irq->vcpu || !vcpu) { | 
|  | /* | 
|  | * If this IRQ is already on a VCPU's ap_list, then it | 
|  | * cannot be moved or modified and there is no more work for | 
|  | * us to do. | 
|  | * | 
|  | * Otherwise, if the irq is not pending and enabled, it does | 
|  | * not need to be inserted into an ap_list and there is also | 
|  | * no more work for us to do. | 
|  | */ | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  |  | 
|  | /* | 
|  | * We have to kick the VCPU here, because we could be | 
|  | * queueing an edge-triggered interrupt for which we | 
|  | * get no EOI maintenance interrupt. In that case, | 
|  | * while the IRQ is already on the VCPU's AP list, the | 
|  | * VCPU could have EOI'ed the original interrupt and | 
|  | * won't see this one until it exits for some other | 
|  | * reason. | 
|  | */ | 
|  | if (vcpu) { | 
|  | kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must unlock the irq lock to take the ap_list_lock where | 
|  | * we are going to insert this new pending interrupt. | 
|  | */ | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  |  | 
|  | /* someone can do stuff here, which we re-check below */ | 
|  |  | 
|  | raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  |  | 
|  | /* | 
|  | * Did something change behind our backs? | 
|  | * | 
|  | * There are two cases: | 
|  | * 1) The irq lost its pending state or was disabled behind our | 
|  | *    backs and/or it was queued to another VCPU's ap_list. | 
|  | * 2) Someone changed the affinity on this irq behind our | 
|  | *    backs and we are now holding the wrong ap_list_lock. | 
|  | * | 
|  | * In both cases, drop the locks and retry. | 
|  | */ | 
|  |  | 
|  | if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  | raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, | 
|  | flags); | 
|  |  | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab a reference to the irq to reflect the fact that it is | 
|  | * now in the ap_list. | 
|  | */ | 
|  | vgic_get_irq_kref(irq); | 
|  | list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); | 
|  | irq->vcpu = vcpu; | 
|  |  | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  | raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); | 
|  |  | 
|  | kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic | 
|  | * @kvm:     The VM structure pointer | 
|  | * @cpuid:   The CPU for PPIs | 
|  | * @intid:   The INTID to inject a new state to. | 
|  | * @level:   Edge-triggered:  true:  to trigger the interrupt | 
|  | *			      false: to ignore the call | 
|  | *	     Level-sensitive  true:  raise the input signal | 
|  | *			      false: lower the input signal | 
|  | * @owner:   The opaque pointer to the owner of the IRQ being raised to verify | 
|  | *           that the caller is allowed to inject this IRQ.  Userspace | 
|  | *           injections will have owner == NULL. | 
|  | * | 
|  | * The VGIC is not concerned with devices being active-LOW or active-HIGH for | 
|  | * level-sensitive interrupts.  You can think of the level parameter as 1 | 
|  | * being HIGH and 0 being LOW and all devices being active-HIGH. | 
|  | */ | 
|  | int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid, | 
|  | bool level, void *owner) | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  | struct vgic_irq *irq; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | trace_vgic_update_irq_pending(cpuid, intid, level); | 
|  |  | 
|  | ret = vgic_lazy_init(kvm); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | vcpu = kvm_get_vcpu(kvm, cpuid); | 
|  | if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) | 
|  | return -EINVAL; | 
|  |  | 
|  | irq = vgic_get_irq(kvm, vcpu, intid); | 
|  | if (!irq) | 
|  | return -EINVAL; | 
|  |  | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  |  | 
|  | if (!vgic_validate_injection(irq, level, owner)) { | 
|  | /* Nothing to see here, move along... */ | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  | vgic_put_irq(kvm, irq); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (irq->config == VGIC_CONFIG_LEVEL) | 
|  | irq->line_level = level; | 
|  | else | 
|  | irq->pending_latch = true; | 
|  |  | 
|  | vgic_queue_irq_unlock(kvm, irq, flags); | 
|  | vgic_put_irq(kvm, irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* @irq->irq_lock must be held */ | 
|  | static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, | 
|  | unsigned int host_irq, | 
|  | bool (*get_input_level)(int vindid)) | 
|  | { | 
|  | struct irq_desc *desc; | 
|  | struct irq_data *data; | 
|  |  | 
|  | /* | 
|  | * Find the physical IRQ number corresponding to @host_irq | 
|  | */ | 
|  | desc = irq_to_desc(host_irq); | 
|  | if (!desc) { | 
|  | kvm_err("%s: no interrupt descriptor\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  | data = irq_desc_get_irq_data(desc); | 
|  | while (data->parent_data) | 
|  | data = data->parent_data; | 
|  |  | 
|  | irq->hw = true; | 
|  | irq->host_irq = host_irq; | 
|  | irq->hwintid = data->hwirq; | 
|  | irq->get_input_level = get_input_level; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* @irq->irq_lock must be held */ | 
|  | static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) | 
|  | { | 
|  | irq->hw = false; | 
|  | irq->hwintid = 0; | 
|  | irq->get_input_level = NULL; | 
|  | } | 
|  |  | 
|  | int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, | 
|  | u32 vintid, bool (*get_input_level)(int vindid)) | 
|  | { | 
|  | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!irq); | 
|  |  | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  | ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level); | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  | vgic_put_irq(vcpu->kvm, irq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ | 
|  | * @vcpu: The VCPU pointer | 
|  | * @vintid: The INTID of the interrupt | 
|  | * | 
|  | * Reset the active and pending states of a mapped interrupt.  Kernel | 
|  | * subsystems injecting mapped interrupts should reset their interrupt lines | 
|  | * when we are doing a reset of the VM. | 
|  | */ | 
|  | void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) | 
|  | { | 
|  | struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!irq->hw) | 
|  | goto out; | 
|  |  | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  | irq->active = false; | 
|  | irq->pending_latch = false; | 
|  | irq->line_level = false; | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  | out: | 
|  | vgic_put_irq(vcpu->kvm, irq); | 
|  | } | 
|  |  | 
|  | int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) | 
|  | { | 
|  | struct vgic_irq *irq; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!vgic_initialized(vcpu->kvm)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); | 
|  | BUG_ON(!irq); | 
|  |  | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  | kvm_vgic_unmap_irq(irq); | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  | vgic_put_irq(vcpu->kvm, irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vgic_set_owner - Set the owner of an interrupt for a VM | 
|  | * | 
|  | * @vcpu:   Pointer to the VCPU (used for PPIs) | 
|  | * @intid:  The virtual INTID identifying the interrupt (PPI or SPI) | 
|  | * @owner:  Opaque pointer to the owner | 
|  | * | 
|  | * Returns 0 if intid is not already used by another in-kernel device and the | 
|  | * owner is set, otherwise returns an error code. | 
|  | */ | 
|  | int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) | 
|  | { | 
|  | struct vgic_irq *irq; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!vgic_initialized(vcpu->kvm)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* SGIs and LPIs cannot be wired up to any device */ | 
|  | if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) | 
|  | return -EINVAL; | 
|  |  | 
|  | irq = vgic_get_irq(vcpu->kvm, vcpu, intid); | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  | if (irq->owner && irq->owner != owner) | 
|  | ret = -EEXIST; | 
|  | else | 
|  | irq->owner = owner; | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vgic_prune_ap_list - Remove non-relevant interrupts from the list | 
|  | * | 
|  | * @vcpu: The VCPU pointer | 
|  | * | 
|  | * Go over the list of "interesting" interrupts, and prune those that we | 
|  | * won't have to consider in the near future. | 
|  | */ | 
|  | static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  | struct vgic_irq *irq, *tmp; | 
|  |  | 
|  | DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | retry: | 
|  | raw_spin_lock(&vgic_cpu->ap_list_lock); | 
|  |  | 
|  | list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { | 
|  | struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; | 
|  | bool target_vcpu_needs_kick = false; | 
|  |  | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  |  | 
|  | BUG_ON(vcpu != irq->vcpu); | 
|  |  | 
|  | target_vcpu = vgic_target_oracle(irq); | 
|  |  | 
|  | if (!target_vcpu) { | 
|  | /* | 
|  | * We don't need to process this interrupt any | 
|  | * further, move it off the list. | 
|  | */ | 
|  | list_del(&irq->ap_list); | 
|  | irq->vcpu = NULL; | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  |  | 
|  | /* | 
|  | * This vgic_put_irq call matches the | 
|  | * vgic_get_irq_kref in vgic_queue_irq_unlock, | 
|  | * where we added the LPI to the ap_list. As | 
|  | * we remove the irq from the list, we drop | 
|  | * also drop the refcount. | 
|  | */ | 
|  | vgic_put_irq(vcpu->kvm, irq); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (target_vcpu == vcpu) { | 
|  | /* We're on the right CPU */ | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* This interrupt looks like it has to be migrated. */ | 
|  |  | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  | raw_spin_unlock(&vgic_cpu->ap_list_lock); | 
|  |  | 
|  | /* | 
|  | * Ensure locking order by always locking the smallest | 
|  | * ID first. | 
|  | */ | 
|  | if (vcpu->vcpu_id < target_vcpu->vcpu_id) { | 
|  | vcpuA = vcpu; | 
|  | vcpuB = target_vcpu; | 
|  | } else { | 
|  | vcpuA = target_vcpu; | 
|  | vcpuB = vcpu; | 
|  | } | 
|  |  | 
|  | raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); | 
|  | raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, | 
|  | SINGLE_DEPTH_NESTING); | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  |  | 
|  | /* | 
|  | * If the affinity has been preserved, move the | 
|  | * interrupt around. Otherwise, it means things have | 
|  | * changed while the interrupt was unlocked, and we | 
|  | * need to replay this. | 
|  | * | 
|  | * In all cases, we cannot trust the list not to have | 
|  | * changed, so we restart from the beginning. | 
|  | */ | 
|  | if (target_vcpu == vgic_target_oracle(irq)) { | 
|  | struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; | 
|  |  | 
|  | list_del(&irq->ap_list); | 
|  | irq->vcpu = target_vcpu; | 
|  | list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); | 
|  | target_vcpu_needs_kick = true; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  | raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); | 
|  | raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); | 
|  |  | 
|  | if (target_vcpu_needs_kick) { | 
|  | kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); | 
|  | kvm_vcpu_kick(target_vcpu); | 
|  | } | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&vgic_cpu->ap_list_lock); | 
|  | } | 
|  |  | 
|  | static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_fold_lr_state(vcpu); | 
|  | else | 
|  | vgic_v3_fold_lr_state(vcpu); | 
|  | } | 
|  |  | 
|  | /* Requires the irq_lock to be held. */ | 
|  | static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, | 
|  | struct vgic_irq *irq, int lr) | 
|  | { | 
|  | lockdep_assert_held(&irq->irq_lock); | 
|  |  | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_populate_lr(vcpu, irq, lr); | 
|  | else | 
|  | vgic_v3_populate_lr(vcpu, irq, lr); | 
|  | } | 
|  |  | 
|  | static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) | 
|  | { | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_clear_lr(vcpu, lr); | 
|  | else | 
|  | vgic_v3_clear_lr(vcpu, lr); | 
|  | } | 
|  |  | 
|  | static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_set_underflow(vcpu); | 
|  | else | 
|  | vgic_v3_set_underflow(vcpu); | 
|  | } | 
|  |  | 
|  | /* Requires the ap_list_lock to be held. */ | 
|  | static int compute_ap_list_depth(struct kvm_vcpu *vcpu, | 
|  | bool *multi_sgi) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  | struct vgic_irq *irq; | 
|  | int count = 0; | 
|  |  | 
|  | *multi_sgi = false; | 
|  |  | 
|  | lockdep_assert_held(&vgic_cpu->ap_list_lock); | 
|  |  | 
|  | list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { | 
|  | int w; | 
|  |  | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  | /* GICv2 SGIs can count for more than one... */ | 
|  | w = vgic_irq_get_lr_count(irq); | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  |  | 
|  | count += w; | 
|  | *multi_sgi |= (w > 1); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* Requires the VCPU's ap_list_lock to be held. */ | 
|  | static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  | struct vgic_irq *irq; | 
|  | int count; | 
|  | bool multi_sgi; | 
|  | u8 prio = 0xff; | 
|  |  | 
|  | lockdep_assert_held(&vgic_cpu->ap_list_lock); | 
|  |  | 
|  | count = compute_ap_list_depth(vcpu, &multi_sgi); | 
|  | if (count > kvm_vgic_global_state.nr_lr || multi_sgi) | 
|  | vgic_sort_ap_list(vcpu); | 
|  |  | 
|  | count = 0; | 
|  |  | 
|  | list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  |  | 
|  | /* | 
|  | * If we have multi-SGIs in the pipeline, we need to | 
|  | * guarantee that they are all seen before any IRQ of | 
|  | * lower priority. In that case, we need to filter out | 
|  | * these interrupts by exiting early. This is easy as | 
|  | * the AP list has been sorted already. | 
|  | */ | 
|  | if (multi_sgi && irq->priority > prio) { | 
|  | _raw_spin_unlock(&irq->irq_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (likely(vgic_target_oracle(irq) == vcpu)) { | 
|  | vgic_populate_lr(vcpu, irq, count++); | 
|  |  | 
|  | if (irq->source) | 
|  | prio = irq->priority; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  |  | 
|  | if (count == kvm_vgic_global_state.nr_lr) { | 
|  | if (!list_is_last(&irq->ap_list, | 
|  | &vgic_cpu->ap_list_head)) | 
|  | vgic_set_underflow(vcpu); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | vcpu->arch.vgic_cpu.used_lrs = count; | 
|  |  | 
|  | /* Nuke remaining LRs */ | 
|  | for ( ; count < kvm_vgic_global_state.nr_lr; count++) | 
|  | vgic_clear_lr(vcpu, count); | 
|  | } | 
|  |  | 
|  | static inline bool can_access_vgic_from_kernel(void) | 
|  | { | 
|  | /* | 
|  | * GICv2 can always be accessed from the kernel because it is | 
|  | * memory-mapped, and VHE systems can access GICv3 EL2 system | 
|  | * registers. | 
|  | */ | 
|  | return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); | 
|  | } | 
|  |  | 
|  | static inline void vgic_save_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) | 
|  | vgic_v2_save_state(vcpu); | 
|  | else | 
|  | __vgic_v3_save_state(vcpu); | 
|  | } | 
|  |  | 
|  | /* Sync back the hardware VGIC state into our emulation after a guest's run. */ | 
|  | void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  |  | 
|  | WARN_ON(vgic_v4_sync_hwstate(vcpu)); | 
|  |  | 
|  | /* An empty ap_list_head implies used_lrs == 0 */ | 
|  | if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) | 
|  | return; | 
|  |  | 
|  | if (can_access_vgic_from_kernel()) | 
|  | vgic_save_state(vcpu); | 
|  |  | 
|  | if (vgic_cpu->used_lrs) | 
|  | vgic_fold_lr_state(vcpu); | 
|  | vgic_prune_ap_list(vcpu); | 
|  | } | 
|  |  | 
|  | static inline void vgic_restore_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) | 
|  | vgic_v2_restore_state(vcpu); | 
|  | else | 
|  | __vgic_v3_restore_state(vcpu); | 
|  | } | 
|  |  | 
|  | /* Flush our emulation state into the GIC hardware before entering the guest. */ | 
|  | void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | WARN_ON(vgic_v4_flush_hwstate(vcpu)); | 
|  |  | 
|  | /* | 
|  | * If there are no virtual interrupts active or pending for this | 
|  | * VCPU, then there is no work to do and we can bail out without | 
|  | * taking any lock.  There is a potential race with someone injecting | 
|  | * interrupts to the VCPU, but it is a benign race as the VCPU will | 
|  | * either observe the new interrupt before or after doing this check, | 
|  | * and introducing additional synchronization mechanism doesn't change | 
|  | * this. | 
|  | * | 
|  | * Note that we still need to go through the whole thing if anything | 
|  | * can be directly injected (GICv4). | 
|  | */ | 
|  | if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) && | 
|  | !vgic_supports_direct_msis(vcpu->kvm)) | 
|  | return; | 
|  |  | 
|  | DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) { | 
|  | raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); | 
|  | vgic_flush_lr_state(vcpu); | 
|  | raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); | 
|  | } | 
|  |  | 
|  | if (can_access_vgic_from_kernel()) | 
|  | vgic_restore_state(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_vgic_load(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(!vgic_initialized(vcpu->kvm))) | 
|  | return; | 
|  |  | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_load(vcpu); | 
|  | else | 
|  | vgic_v3_load(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_vgic_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(!vgic_initialized(vcpu->kvm))) | 
|  | return; | 
|  |  | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_put(vcpu); | 
|  | else | 
|  | vgic_v3_put(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(!irqchip_in_kernel(vcpu->kvm))) | 
|  | return; | 
|  |  | 
|  | if (kvm_vgic_global_state.type == VGIC_V2) | 
|  | vgic_v2_vmcr_sync(vcpu); | 
|  | else | 
|  | vgic_v3_vmcr_sync(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 
|  | struct vgic_irq *irq; | 
|  | bool pending = false; | 
|  | unsigned long flags; | 
|  | struct vgic_vmcr vmcr; | 
|  |  | 
|  | if (!vcpu->kvm->arch.vgic.enabled) | 
|  | return false; | 
|  |  | 
|  | if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) | 
|  | return true; | 
|  |  | 
|  | vgic_get_vmcr(vcpu, &vmcr); | 
|  |  | 
|  | raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { | 
|  | raw_spin_lock(&irq->irq_lock); | 
|  | pending = irq_is_pending(irq) && irq->enabled && | 
|  | !irq->active && | 
|  | irq->priority < vmcr.pmr; | 
|  | raw_spin_unlock(&irq->irq_lock); | 
|  |  | 
|  | if (pending) | 
|  | break; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); | 
|  |  | 
|  | return pending; | 
|  | } | 
|  |  | 
|  | void vgic_kick_vcpus(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  | int c; | 
|  |  | 
|  | /* | 
|  | * We've injected an interrupt, time to find out who deserves | 
|  | * a good kick... | 
|  | */ | 
|  | kvm_for_each_vcpu(c, vcpu, kvm) { | 
|  | if (kvm_vgic_vcpu_pending_irq(vcpu)) { | 
|  | kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) | 
|  | { | 
|  | struct vgic_irq *irq; | 
|  | bool map_is_active; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!vgic_initialized(vcpu->kvm)) | 
|  | return false; | 
|  |  | 
|  | irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); | 
|  | raw_spin_lock_irqsave(&irq->irq_lock, flags); | 
|  | map_is_active = irq->hw && irq->active; | 
|  | raw_spin_unlock_irqrestore(&irq->irq_lock, flags); | 
|  | vgic_put_irq(vcpu->kvm, irq); | 
|  |  | 
|  | return map_is_active; | 
|  | } |