|  | /* | 
|  | * Copyright (c) International Business Machines Corp., 2006 | 
|  | * Copyright (c) Nokia Corporation, 2006, 2007 | 
|  | * | 
|  | * SPDX-License-Identifier:	GPL-2.0+ | 
|  | * | 
|  | * Author: Artem Bityutskiy (Битюцкий Артём) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file includes volume table manipulation code. The volume table is an | 
|  | * on-flash table containing volume meta-data like name, number of reserved | 
|  | * physical eraseblocks, type, etc. The volume table is stored in the so-called | 
|  | * "layout volume". | 
|  | * | 
|  | * The layout volume is an internal volume which is organized as follows. It | 
|  | * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical | 
|  | * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each | 
|  | * other. This redundancy guarantees robustness to unclean reboots. The volume | 
|  | * table is basically an array of volume table records. Each record contains | 
|  | * full information about the volume and protected by a CRC checksum. | 
|  | * | 
|  | * The volume table is changed, it is first changed in RAM. Then LEB 0 is | 
|  | * erased, and the updated volume table is written back to LEB 0. Then same for | 
|  | * LEB 1. This scheme guarantees recoverability from unclean reboots. | 
|  | * | 
|  | * In this UBI implementation the on-flash volume table does not contain any | 
|  | * information about how many data static volumes contain. This information may | 
|  | * be found from the scanning data. | 
|  | * | 
|  | * But it would still be beneficial to store this information in the volume | 
|  | * table. For example, suppose we have a static volume X, and all its physical | 
|  | * eraseblocks became bad for some reasons. Suppose we are attaching the | 
|  | * corresponding MTD device, the scanning has found no logical eraseblocks | 
|  | * corresponding to the volume X. According to the volume table volume X does | 
|  | * exist. So we don't know whether it is just empty or all its physical | 
|  | * eraseblocks went bad. So we cannot alarm the user about this corruption. | 
|  | * | 
|  | * The volume table also stores so-called "update marker", which is used for | 
|  | * volume updates. Before updating the volume, the update marker is set, and | 
|  | * after the update operation is finished, the update marker is cleared. So if | 
|  | * the update operation was interrupted (e.g. by an unclean reboot) - the | 
|  | * update marker is still there and we know that the volume's contents is | 
|  | * damaged. | 
|  | */ | 
|  |  | 
|  | #ifdef UBI_LINUX | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/err.h> | 
|  | #include <asm/div64.h> | 
|  | #endif | 
|  |  | 
|  | #include <ubi_uboot.h> | 
|  | #include "ubi.h" | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | 
|  | static void paranoid_vtbl_check(const struct ubi_device *ubi); | 
|  | #else | 
|  | #define paranoid_vtbl_check(ubi) | 
|  | #endif | 
|  |  | 
|  | /* Empty volume table record */ | 
|  | static struct ubi_vtbl_record empty_vtbl_record; | 
|  |  | 
|  | /** | 
|  | * ubi_change_vtbl_record - change volume table record. | 
|  | * @ubi: UBI device description object | 
|  | * @idx: table index to change | 
|  | * @vtbl_rec: new volume table record | 
|  | * | 
|  | * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty | 
|  | * volume table record is written. The caller does not have to calculate CRC of | 
|  | * the record as it is done by this function. Returns zero in case of success | 
|  | * and a negative error code in case of failure. | 
|  | */ | 
|  | int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, | 
|  | struct ubi_vtbl_record *vtbl_rec) | 
|  | { | 
|  | int i, err; | 
|  | uint32_t crc; | 
|  | struct ubi_volume *layout_vol; | 
|  |  | 
|  | ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); | 
|  | layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; | 
|  |  | 
|  | if (!vtbl_rec) | 
|  | vtbl_rec = &empty_vtbl_record; | 
|  | else { | 
|  | crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); | 
|  | vtbl_rec->crc = cpu_to_be32(crc); | 
|  | } | 
|  |  | 
|  | memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); | 
|  | for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { | 
|  | err = ubi_eba_unmap_leb(ubi, layout_vol, i); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, | 
|  | ubi->vtbl_size, UBI_LONGTERM); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | paranoid_vtbl_check(ubi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vtbl_check - check if volume table is not corrupted and contains sensible | 
|  | *              data. | 
|  | * @ubi: UBI device description object | 
|  | * @vtbl: volume table | 
|  | * | 
|  | * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, | 
|  | * and %-EINVAL if it contains inconsistent data. | 
|  | */ | 
|  | static int vtbl_check(const struct ubi_device *ubi, | 
|  | const struct ubi_vtbl_record *vtbl) | 
|  | { | 
|  | int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; | 
|  | int upd_marker, err; | 
|  | uint32_t crc; | 
|  | const char *name; | 
|  |  | 
|  | for (i = 0; i < ubi->vtbl_slots; i++) { | 
|  | cond_resched(); | 
|  |  | 
|  | reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); | 
|  | alignment = be32_to_cpu(vtbl[i].alignment); | 
|  | data_pad = be32_to_cpu(vtbl[i].data_pad); | 
|  | upd_marker = vtbl[i].upd_marker; | 
|  | vol_type = vtbl[i].vol_type; | 
|  | name_len = be16_to_cpu(vtbl[i].name_len); | 
|  | name = (const char *) &vtbl[i].name[0]; | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); | 
|  | if (be32_to_cpu(vtbl[i].crc) != crc) { | 
|  | ubi_err("bad CRC at record %u: %#08x, not %#08x", | 
|  | i, crc, be32_to_cpu(vtbl[i].crc)); | 
|  | ubi_dbg_dump_vtbl_record(&vtbl[i], i); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (reserved_pebs == 0) { | 
|  | if (memcmp(&vtbl[i], &empty_vtbl_record, | 
|  | UBI_VTBL_RECORD_SIZE)) { | 
|  | err = 2; | 
|  | goto bad; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || | 
|  | name_len < 0) { | 
|  | err = 3; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (alignment > ubi->leb_size || alignment == 0) { | 
|  | err = 4; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | n = alignment & (ubi->min_io_size - 1); | 
|  | if (alignment != 1 && n) { | 
|  | err = 5; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | n = ubi->leb_size % alignment; | 
|  | if (data_pad != n) { | 
|  | dbg_err("bad data_pad, has to be %d", n); | 
|  | err = 6; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { | 
|  | err = 7; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (upd_marker != 0 && upd_marker != 1) { | 
|  | err = 8; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (reserved_pebs > ubi->good_peb_count) { | 
|  | dbg_err("too large reserved_pebs, good PEBs %d", | 
|  | ubi->good_peb_count); | 
|  | err = 9; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (name_len > UBI_VOL_NAME_MAX) { | 
|  | err = 10; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (name[0] == '\0') { | 
|  | err = 11; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (name_len != strnlen(name, name_len + 1)) { | 
|  | err = 12; | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Checks that all names are unique */ | 
|  | for (i = 0; i < ubi->vtbl_slots - 1; i++) { | 
|  | for (n = i + 1; n < ubi->vtbl_slots; n++) { | 
|  | int len1 = be16_to_cpu(vtbl[i].name_len); | 
|  | int len2 = be16_to_cpu(vtbl[n].name_len); | 
|  |  | 
|  | if (len1 > 0 && len1 == len2 && | 
|  | !strncmp((char *)vtbl[i].name, (char *)vtbl[n].name, len1)) { | 
|  | ubi_err("volumes %d and %d have the same name" | 
|  | " \"%s\"", i, n, vtbl[i].name); | 
|  | ubi_dbg_dump_vtbl_record(&vtbl[i], i); | 
|  | ubi_dbg_dump_vtbl_record(&vtbl[n], n); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | ubi_err("volume table check failed: record %d, error %d", i, err); | 
|  | ubi_dbg_dump_vtbl_record(&vtbl[i], i); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_vtbl - create a copy of volume table. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * @copy: number of the volume table copy | 
|  | * @vtbl: contents of the volume table | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si, | 
|  | int copy, void *vtbl) | 
|  | { | 
|  | int err, tries = 0; | 
|  | static struct ubi_vid_hdr *vid_hdr; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_scan_leb *new_seb, *old_seb = NULL; | 
|  |  | 
|  | ubi_msg("create volume table (copy #%d)", copy + 1); | 
|  |  | 
|  | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | 
|  | if (!vid_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Check if there is a logical eraseblock which would have to contain | 
|  | * this volume table copy was found during scanning. It has to be wiped | 
|  | * out. | 
|  | */ | 
|  | sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); | 
|  | if (sv) | 
|  | old_seb = ubi_scan_find_seb(sv, copy); | 
|  |  | 
|  | retry: | 
|  | new_seb = ubi_scan_get_free_peb(ubi, si); | 
|  | if (IS_ERR(new_seb)) { | 
|  | err = PTR_ERR(new_seb); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | vid_hdr->vol_type = UBI_VID_DYNAMIC; | 
|  | vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); | 
|  | vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; | 
|  | vid_hdr->data_size = vid_hdr->used_ebs = | 
|  | vid_hdr->data_pad = cpu_to_be32(0); | 
|  | vid_hdr->lnum = cpu_to_be32(copy); | 
|  | vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum); | 
|  | vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0); | 
|  |  | 
|  | /* The EC header is already there, write the VID header */ | 
|  | err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); | 
|  | if (err) | 
|  | goto write_error; | 
|  |  | 
|  | /* Write the layout volume contents */ | 
|  | err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); | 
|  | if (err) | 
|  | goto write_error; | 
|  |  | 
|  | /* | 
|  | * And add it to the scanning information. Don't delete the old | 
|  | * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. | 
|  | */ | 
|  | err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, | 
|  | vid_hdr, 0); | 
|  | kfree(new_seb); | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | return err; | 
|  |  | 
|  | write_error: | 
|  | if (err == -EIO && ++tries <= 5) { | 
|  | /* | 
|  | * Probably this physical eraseblock went bad, try to pick | 
|  | * another one. | 
|  | */ | 
|  | list_add_tail(&new_seb->u.list, &si->corr); | 
|  | goto retry; | 
|  | } | 
|  | kfree(new_seb); | 
|  | out_free: | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | return err; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * process_lvol - process the layout volume. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * @sv: layout volume scanning information | 
|  | * | 
|  | * This function is responsible for reading the layout volume, ensuring it is | 
|  | * not corrupted, and recovering from corruptions if needed. Returns volume | 
|  | * table in case of success and a negative error code in case of failure. | 
|  | */ | 
|  | static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, | 
|  | struct ubi_scan_info *si, | 
|  | struct ubi_scan_volume *sv) | 
|  | { | 
|  | int err; | 
|  | struct rb_node *rb; | 
|  | struct ubi_scan_leb *seb; | 
|  | struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; | 
|  | int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; | 
|  |  | 
|  | /* | 
|  | * UBI goes through the following steps when it changes the layout | 
|  | * volume: | 
|  | * a. erase LEB 0; | 
|  | * b. write new data to LEB 0; | 
|  | * c. erase LEB 1; | 
|  | * d. write new data to LEB 1. | 
|  | * | 
|  | * Before the change, both LEBs contain the same data. | 
|  | * | 
|  | * Due to unclean reboots, the contents of LEB 0 may be lost, but there | 
|  | * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. | 
|  | * Similarly, LEB 1 may be lost, but there should be LEB 0. And | 
|  | * finally, unclean reboots may result in a situation when neither LEB | 
|  | * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB | 
|  | * 0 contains more recent information. | 
|  | * | 
|  | * So the plan is to first check LEB 0. Then | 
|  | * a. if LEB 0 is OK, it must be containing the most resent data; then | 
|  | *    we compare it with LEB 1, and if they are different, we copy LEB | 
|  | *    0 to LEB 1; | 
|  | * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 | 
|  | *    to LEB 0. | 
|  | */ | 
|  |  | 
|  | dbg_msg("check layout volume"); | 
|  |  | 
|  | /* Read both LEB 0 and LEB 1 into memory */ | 
|  | ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { | 
|  | leb[seb->lnum] = vmalloc(ubi->vtbl_size); | 
|  | if (!leb[seb->lnum]) { | 
|  | err = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  | memset(leb[seb->lnum], 0, ubi->vtbl_size); | 
|  |  | 
|  | err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, | 
|  | ubi->vtbl_size); | 
|  | if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) | 
|  | /* | 
|  | * Scrub the PEB later. Note, -EBADMSG indicates an | 
|  | * uncorrectable ECC error, but we have our own CRC and | 
|  | * the data will be checked later. If the data is OK, | 
|  | * the PEB will be scrubbed (because we set | 
|  | * seb->scrub). If the data is not OK, the contents of | 
|  | * the PEB will be recovered from the second copy, and | 
|  | * seb->scrub will be cleared in | 
|  | * 'ubi_scan_add_used()'. | 
|  | */ | 
|  | seb->scrub = 1; | 
|  | else if (err) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (leb[0]) { | 
|  | leb_corrupted[0] = vtbl_check(ubi, leb[0]); | 
|  | if (leb_corrupted[0] < 0) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if (!leb_corrupted[0]) { | 
|  | /* LEB 0 is OK */ | 
|  | if (leb[1]) | 
|  | leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size); | 
|  | if (leb_corrupted[1]) { | 
|  | ubi_warn("volume table copy #2 is corrupted"); | 
|  | err = create_vtbl(ubi, si, 1, leb[0]); | 
|  | if (err) | 
|  | goto out_free; | 
|  | ubi_msg("volume table was restored"); | 
|  | } | 
|  |  | 
|  | /* Both LEB 1 and LEB 2 are OK and consistent */ | 
|  | vfree(leb[1]); | 
|  | return leb[0]; | 
|  | } else { | 
|  | /* LEB 0 is corrupted or does not exist */ | 
|  | if (leb[1]) { | 
|  | leb_corrupted[1] = vtbl_check(ubi, leb[1]); | 
|  | if (leb_corrupted[1] < 0) | 
|  | goto out_free; | 
|  | } | 
|  | if (leb_corrupted[1]) { | 
|  | /* Both LEB 0 and LEB 1 are corrupted */ | 
|  | ubi_err("both volume tables are corrupted"); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ubi_warn("volume table copy #1 is corrupted"); | 
|  | err = create_vtbl(ubi, si, 0, leb[1]); | 
|  | if (err) | 
|  | goto out_free; | 
|  | ubi_msg("volume table was restored"); | 
|  |  | 
|  | vfree(leb[0]); | 
|  | return leb[1]; | 
|  | } | 
|  |  | 
|  | out_free: | 
|  | vfree(leb[0]); | 
|  | vfree(leb[1]); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_empty_lvol - create empty layout volume. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * This function returns volume table contents in case of success and a | 
|  | * negative error code in case of failure. | 
|  | */ | 
|  | static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, | 
|  | struct ubi_scan_info *si) | 
|  | { | 
|  | int i; | 
|  | struct ubi_vtbl_record *vtbl; | 
|  |  | 
|  | vtbl = vmalloc(ubi->vtbl_size); | 
|  | if (!vtbl) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | memset(vtbl, 0, ubi->vtbl_size); | 
|  |  | 
|  | for (i = 0; i < ubi->vtbl_slots; i++) | 
|  | memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); | 
|  |  | 
|  | for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { | 
|  | int err; | 
|  |  | 
|  | err = create_vtbl(ubi, si, i, vtbl); | 
|  | if (err) { | 
|  | vfree(vtbl); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | } | 
|  |  | 
|  | return vtbl; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_volumes - initialize volume information for existing volumes. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * @vtbl: volume table | 
|  | * | 
|  | * This function allocates volume description objects for existing volumes. | 
|  | * Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, | 
|  | const struct ubi_vtbl_record *vtbl) | 
|  | { | 
|  | int i, reserved_pebs = 0; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_volume *vol; | 
|  |  | 
|  | for (i = 0; i < ubi->vtbl_slots; i++) { | 
|  | cond_resched(); | 
|  |  | 
|  | if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) | 
|  | continue; /* Empty record */ | 
|  |  | 
|  | vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); | 
|  | if (!vol) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); | 
|  | vol->alignment = be32_to_cpu(vtbl[i].alignment); | 
|  | vol->data_pad = be32_to_cpu(vtbl[i].data_pad); | 
|  | vol->upd_marker = vtbl[i].upd_marker; | 
|  | vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? | 
|  | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | 
|  | vol->name_len = be16_to_cpu(vtbl[i].name_len); | 
|  | vol->usable_leb_size = ubi->leb_size - vol->data_pad; | 
|  | memcpy(vol->name, vtbl[i].name, vol->name_len); | 
|  | vol->name[vol->name_len] = '\0'; | 
|  | vol->vol_id = i; | 
|  |  | 
|  | if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { | 
|  | /* Auto re-size flag may be set only for one volume */ | 
|  | if (ubi->autoresize_vol_id != -1) { | 
|  | ubi_err("more then one auto-resize volume (%d " | 
|  | "and %d)", ubi->autoresize_vol_id, i); | 
|  | kfree(vol); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ubi->autoresize_vol_id = i; | 
|  | } | 
|  |  | 
|  | ubi_assert(!ubi->volumes[i]); | 
|  | ubi->volumes[i] = vol; | 
|  | ubi->vol_count += 1; | 
|  | vol->ubi = ubi; | 
|  | reserved_pebs += vol->reserved_pebs; | 
|  |  | 
|  | /* | 
|  | * In case of dynamic volume UBI knows nothing about how many | 
|  | * data is stored there. So assume the whole volume is used. | 
|  | */ | 
|  | if (vol->vol_type == UBI_DYNAMIC_VOLUME) { | 
|  | vol->used_ebs = vol->reserved_pebs; | 
|  | vol->last_eb_bytes = vol->usable_leb_size; | 
|  | vol->used_bytes = | 
|  | (long long)vol->used_ebs * vol->usable_leb_size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Static volumes only */ | 
|  | sv = ubi_scan_find_sv(si, i); | 
|  | if (!sv) { | 
|  | /* | 
|  | * No eraseblocks belonging to this volume found. We | 
|  | * don't actually know whether this static volume is | 
|  | * completely corrupted or just contains no data. And | 
|  | * we cannot know this as long as data size is not | 
|  | * stored on flash. So we just assume the volume is | 
|  | * empty. FIXME: this should be handled. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (sv->leb_count != sv->used_ebs) { | 
|  | /* | 
|  | * We found a static volume which misses several | 
|  | * eraseblocks. Treat it as corrupted. | 
|  | */ | 
|  | ubi_warn("static volume %d misses %d LEBs - corrupted", | 
|  | sv->vol_id, sv->used_ebs - sv->leb_count); | 
|  | vol->corrupted = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | vol->used_ebs = sv->used_ebs; | 
|  | vol->used_bytes = | 
|  | (long long)(vol->used_ebs - 1) * vol->usable_leb_size; | 
|  | vol->used_bytes += sv->last_data_size; | 
|  | vol->last_eb_bytes = sv->last_data_size; | 
|  | } | 
|  |  | 
|  | /* And add the layout volume */ | 
|  | vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); | 
|  | if (!vol) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; | 
|  | vol->alignment = 1; | 
|  | vol->vol_type = UBI_DYNAMIC_VOLUME; | 
|  | vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; | 
|  | memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); | 
|  | vol->usable_leb_size = ubi->leb_size; | 
|  | vol->used_ebs = vol->reserved_pebs; | 
|  | vol->last_eb_bytes = vol->reserved_pebs; | 
|  | vol->used_bytes = | 
|  | (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); | 
|  | vol->vol_id = UBI_LAYOUT_VOLUME_ID; | 
|  | vol->ref_count = 1; | 
|  |  | 
|  | ubi_assert(!ubi->volumes[i]); | 
|  | ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; | 
|  | reserved_pebs += vol->reserved_pebs; | 
|  | ubi->vol_count += 1; | 
|  | vol->ubi = ubi; | 
|  |  | 
|  | if (reserved_pebs > ubi->avail_pebs) | 
|  | ubi_err("not enough PEBs, required %d, available %d", | 
|  | reserved_pebs, ubi->avail_pebs); | 
|  | ubi->rsvd_pebs += reserved_pebs; | 
|  | ubi->avail_pebs -= reserved_pebs; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_sv - check volume scanning information. | 
|  | * @vol: UBI volume description object | 
|  | * @sv: volume scanning information | 
|  | * | 
|  | * This function returns zero if the volume scanning information is consistent | 
|  | * to the data read from the volume tabla, and %-EINVAL if not. | 
|  | */ | 
|  | static int check_sv(const struct ubi_volume *vol, | 
|  | const struct ubi_scan_volume *sv) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (sv->highest_lnum >= vol->reserved_pebs) { | 
|  | err = 1; | 
|  | goto bad; | 
|  | } | 
|  | if (sv->leb_count > vol->reserved_pebs) { | 
|  | err = 2; | 
|  | goto bad; | 
|  | } | 
|  | if (sv->vol_type != vol->vol_type) { | 
|  | err = 3; | 
|  | goto bad; | 
|  | } | 
|  | if (sv->used_ebs > vol->reserved_pebs) { | 
|  | err = 4; | 
|  | goto bad; | 
|  | } | 
|  | if (sv->data_pad != vol->data_pad) { | 
|  | err = 5; | 
|  | goto bad; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | ubi_err("bad scanning information, error %d", err); | 
|  | ubi_dbg_dump_sv(sv); | 
|  | ubi_dbg_dump_vol_info(vol); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_scanning_info - check that scanning information. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * Even though we protect on-flash data by CRC checksums, we still don't trust | 
|  | * the media. This function ensures that scanning information is consistent to | 
|  | * the information read from the volume table. Returns zero if the scanning | 
|  | * information is OK and %-EINVAL if it is not. | 
|  | */ | 
|  | static int check_scanning_info(const struct ubi_device *ubi, | 
|  | struct ubi_scan_info *si) | 
|  | { | 
|  | int err, i; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_volume *vol; | 
|  |  | 
|  | if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { | 
|  | ubi_err("scanning found %d volumes, maximum is %d + %d", | 
|  | si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && | 
|  | si->highest_vol_id < UBI_INTERNAL_VOL_START) { | 
|  | ubi_err("too large volume ID %d found by scanning", | 
|  | si->highest_vol_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { | 
|  | cond_resched(); | 
|  |  | 
|  | sv = ubi_scan_find_sv(si, i); | 
|  | vol = ubi->volumes[i]; | 
|  | if (!vol) { | 
|  | if (sv) | 
|  | ubi_scan_rm_volume(si, sv); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (vol->reserved_pebs == 0) { | 
|  | ubi_assert(i < ubi->vtbl_slots); | 
|  |  | 
|  | if (!sv) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * During scanning we found a volume which does not | 
|  | * exist according to the information in the volume | 
|  | * table. This must have happened due to an unclean | 
|  | * reboot while the volume was being removed. Discard | 
|  | * these eraseblocks. | 
|  | */ | 
|  | ubi_msg("finish volume %d removal", sv->vol_id); | 
|  | ubi_scan_rm_volume(si, sv); | 
|  | } else if (sv) { | 
|  | err = check_sv(vol, sv); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_read_volume_table - read volume table. | 
|  | * information. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * This function reads volume table, checks it, recover from errors if needed, | 
|  | * or creates it if needed. Returns zero in case of success and a negative | 
|  | * error code in case of failure. | 
|  | */ | 
|  | int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) | 
|  | { | 
|  | int i, err; | 
|  | struct ubi_scan_volume *sv; | 
|  |  | 
|  | empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); | 
|  |  | 
|  | /* | 
|  | * The number of supported volumes is limited by the eraseblock size | 
|  | * and by the UBI_MAX_VOLUMES constant. | 
|  | */ | 
|  | ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; | 
|  | if (ubi->vtbl_slots > UBI_MAX_VOLUMES) | 
|  | ubi->vtbl_slots = UBI_MAX_VOLUMES; | 
|  |  | 
|  | ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; | 
|  | ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); | 
|  |  | 
|  | sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); | 
|  | if (!sv) { | 
|  | /* | 
|  | * No logical eraseblocks belonging to the layout volume were | 
|  | * found. This could mean that the flash is just empty. In | 
|  | * this case we create empty layout volume. | 
|  | * | 
|  | * But if flash is not empty this must be a corruption or the | 
|  | * MTD device just contains garbage. | 
|  | */ | 
|  | if (si->is_empty) { | 
|  | ubi->vtbl = create_empty_lvol(ubi, si); | 
|  | if (IS_ERR(ubi->vtbl)) | 
|  | return PTR_ERR(ubi->vtbl); | 
|  | } else { | 
|  | ubi_err("the layout volume was not found"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { | 
|  | /* This must not happen with proper UBI images */ | 
|  | dbg_err("too many LEBs (%d) in layout volume", | 
|  | sv->leb_count); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ubi->vtbl = process_lvol(ubi, si, sv); | 
|  | if (IS_ERR(ubi->vtbl)) | 
|  | return PTR_ERR(ubi->vtbl); | 
|  | } | 
|  |  | 
|  | ubi->avail_pebs = ubi->good_peb_count; | 
|  |  | 
|  | /* | 
|  | * The layout volume is OK, initialize the corresponding in-RAM data | 
|  | * structures. | 
|  | */ | 
|  | err = init_volumes(ubi, si, ubi->vtbl); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | /* | 
|  | * Get sure that the scanning information is consistent to the | 
|  | * information stored in the volume table. | 
|  | */ | 
|  | err = check_scanning_info(ubi, si); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | vfree(ubi->vtbl); | 
|  | for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) | 
|  | if (ubi->volumes[i]) { | 
|  | kfree(ubi->volumes[i]); | 
|  | ubi->volumes[i] = NULL; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | 
|  |  | 
|  | /** | 
|  | * paranoid_vtbl_check - check volume table. | 
|  | * @ubi: UBI device description object | 
|  | */ | 
|  | static void paranoid_vtbl_check(const struct ubi_device *ubi) | 
|  | { | 
|  | if (vtbl_check(ubi, ubi->vtbl)) { | 
|  | ubi_err("paranoid check failed"); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |