| /* | 
 |  * (C) Copyright 2006-2008 | 
 |  * Stefan Roese, DENX Software Engineering, sr@denx.de. | 
 |  * | 
 |  * SPDX-License-Identifier:	GPL-2.0+ | 
 |  */ | 
 |  | 
 | #include <common.h> | 
 | #include <nand.h> | 
 | #include <asm/io.h> | 
 |  | 
 | static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS; | 
 |  | 
 | #define ECCSTEPS	(CONFIG_SYS_NAND_PAGE_SIZE / \ | 
 | 					CONFIG_SYS_NAND_ECCSIZE) | 
 | #define ECCTOTAL	(ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES) | 
 |  | 
 |  | 
 | #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512) | 
 | /* | 
 |  * NAND command for small page NAND devices (512) | 
 |  */ | 
 | static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; | 
 |  | 
 | 	while (!this->dev_ready(mtd)) | 
 | 		; | 
 |  | 
 | 	/* Begin command latch cycle */ | 
 | 	this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
 | 	/* Set ALE and clear CLE to start address cycle */ | 
 | 	/* Column address */ | 
 | 	this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE); | 
 | 	this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */ | 
 | 	this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff, | 
 | 		       NAND_CTRL_ALE); /* A[24:17] */ | 
 | #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE | 
 | 	/* One more address cycle for devices > 32MiB */ | 
 | 	this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, | 
 | 		       NAND_CTRL_ALE); /* A[28:25] */ | 
 | #endif | 
 | 	/* Latch in address */ | 
 | 	this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	/* | 
 | 	 * Wait a while for the data to be ready | 
 | 	 */ | 
 | 	while (!this->dev_ready(mtd)) | 
 | 		; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | /* | 
 |  * NAND command for large page NAND devices (2k) | 
 |  */ | 
 | static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; | 
 | 	void (*hwctrl)(struct mtd_info *mtd, int cmd, | 
 | 			unsigned int ctrl) = this->cmd_ctrl; | 
 |  | 
 | 	while (!this->dev_ready(mtd)) | 
 | 		; | 
 |  | 
 | 	/* Emulate NAND_CMD_READOOB */ | 
 | 	if (cmd == NAND_CMD_READOOB) { | 
 | 		offs += CONFIG_SYS_NAND_PAGE_SIZE; | 
 | 		cmd = NAND_CMD_READ0; | 
 | 	} | 
 |  | 
 | 	/* Shift the offset from byte addressing to word addressing. */ | 
 | 	if (this->options & NAND_BUSWIDTH_16) | 
 | 		offs >>= 1; | 
 |  | 
 | 	/* Begin command latch cycle */ | 
 | 	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
 | 	/* Set ALE and clear CLE to start address cycle */ | 
 | 	/* Column address */ | 
 | 	hwctrl(mtd, offs & 0xff, | 
 | 		       NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */ | 
 | 	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */ | 
 | 	/* Row address */ | 
 | 	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */ | 
 | 	hwctrl(mtd, ((page_addr >> 8) & 0xff), | 
 | 		       NAND_CTRL_ALE); /* A[27:20] */ | 
 | #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE | 
 | 	/* One more address cycle for devices > 128MiB */ | 
 | 	hwctrl(mtd, (page_addr >> 16) & 0x0f, | 
 | 		       NAND_CTRL_ALE); /* A[31:28] */ | 
 | #endif | 
 | 	/* Latch in address */ | 
 | 	hwctrl(mtd, NAND_CMD_READSTART, | 
 | 		       NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
 | 	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	/* | 
 | 	 * Wait a while for the data to be ready | 
 | 	 */ | 
 | 	while (!this->dev_ready(mtd)) | 
 | 		; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int nand_is_bad_block(struct mtd_info *mtd, int block) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 |  | 
 | 	nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB); | 
 |  | 
 | 	/* | 
 | 	 * Read one byte (or two if it's a 16 bit chip). | 
 | 	 */ | 
 | 	if (this->options & NAND_BUSWIDTH_16) { | 
 | 		if (readw(this->IO_ADDR_R) != 0xffff) | 
 | 			return 1; | 
 | 	} else { | 
 | 		if (readb(this->IO_ADDR_R) != 0xff) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) | 
 | static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	u_char ecc_calc[ECCTOTAL]; | 
 | 	u_char ecc_code[ECCTOTAL]; | 
 | 	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; | 
 | 	int i; | 
 | 	int eccsize = CONFIG_SYS_NAND_ECCSIZE; | 
 | 	int eccbytes = CONFIG_SYS_NAND_ECCBYTES; | 
 | 	int eccsteps = ECCSTEPS; | 
 | 	uint8_t *p = dst; | 
 |  | 
 | 	nand_command(mtd, block, page, 0, NAND_CMD_READOOB); | 
 | 	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); | 
 | 	nand_command(mtd, block, page, 0, NAND_CMD_READ0); | 
 |  | 
 | 	/* Pick the ECC bytes out of the oob data */ | 
 | 	for (i = 0; i < ECCTOTAL; i++) | 
 | 		ecc_code[i] = oob_data[nand_ecc_pos[i]]; | 
 |  | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		this->ecc.hwctl(mtd, NAND_ECC_READ); | 
 | 		this->read_buf(mtd, p, eccsize); | 
 | 		this->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 | 		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	u_char ecc_calc[ECCTOTAL]; | 
 | 	u_char ecc_code[ECCTOTAL]; | 
 | 	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; | 
 | 	int i; | 
 | 	int eccsize = CONFIG_SYS_NAND_ECCSIZE; | 
 | 	int eccbytes = CONFIG_SYS_NAND_ECCBYTES; | 
 | 	int eccsteps = ECCSTEPS; | 
 | 	uint8_t *p = dst; | 
 |  | 
 | 	nand_command(mtd, block, page, 0, NAND_CMD_READ0); | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		this->ecc.hwctl(mtd, NAND_ECC_READ); | 
 | 		this->read_buf(mtd, p, eccsize); | 
 | 		this->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 | 	} | 
 | 	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); | 
 |  | 
 | 	/* Pick the ECC bytes out of the oob data */ | 
 | 	for (i = 0; i < ECCTOTAL; i++) | 
 | 		ecc_code[i] = oob_data[nand_ecc_pos[i]]; | 
 |  | 
 | 	eccsteps = ECCSTEPS; | 
 | 	p = dst; | 
 |  | 
 | 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		/* No chance to do something with the possible error message | 
 | 		 * from correct_data(). We just hope that all possible errors | 
 | 		 * are corrected by this routine. | 
 | 		 */ | 
 | 		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */ | 
 |  | 
 | static int nand_load(struct mtd_info *mtd, unsigned int offs, | 
 | 		     unsigned int uboot_size, uchar *dst) | 
 | { | 
 | 	unsigned int block, lastblock; | 
 | 	unsigned int page; | 
 |  | 
 | 	/* | 
 | 	 * offs has to be aligned to a page address! | 
 | 	 */ | 
 | 	block = offs / CONFIG_SYS_NAND_BLOCK_SIZE; | 
 | 	lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE; | 
 | 	page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE; | 
 |  | 
 | 	while (block <= lastblock) { | 
 | 		if (!nand_is_bad_block(mtd, block)) { | 
 | 			/* | 
 | 			 * Skip bad blocks | 
 | 			 */ | 
 | 			while (page < CONFIG_SYS_NAND_PAGE_COUNT) { | 
 | 				nand_read_page(mtd, block, page, dst); | 
 | 				dst += CONFIG_SYS_NAND_PAGE_SIZE; | 
 | 				page++; | 
 | 			} | 
 |  | 
 | 			page = 0; | 
 | 		} else { | 
 | 			lastblock++; | 
 | 		} | 
 |  | 
 | 		block++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The main entry for NAND booting. It's necessary that SDRAM is already | 
 |  * configured and available since this code loads the main U-Boot image | 
 |  * from NAND into SDRAM and starts it from there. | 
 |  */ | 
 | void nand_boot(void) | 
 | { | 
 | 	struct nand_chip nand_chip; | 
 | 	nand_info_t nand_info; | 
 | 	__attribute__((noreturn)) void (*uboot)(void); | 
 |  | 
 | 	/* | 
 | 	 * Init board specific nand support | 
 | 	 */ | 
 | 	nand_chip.select_chip = NULL; | 
 | 	nand_info.priv = &nand_chip; | 
 | 	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE; | 
 | 	nand_chip.dev_ready = NULL;	/* preset to NULL */ | 
 | 	nand_chip.options = 0; | 
 | 	board_nand_init(&nand_chip); | 
 |  | 
 | 	if (nand_chip.select_chip) | 
 | 		nand_chip.select_chip(&nand_info, 0); | 
 |  | 
 | 	/* | 
 | 	 * Load U-Boot image from NAND into RAM | 
 | 	 */ | 
 | 	nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE, | 
 | 		  (uchar *)CONFIG_SYS_NAND_U_BOOT_DST); | 
 |  | 
 | #ifdef CONFIG_NAND_ENV_DST | 
 | 	nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, | 
 | 		  (uchar *)CONFIG_NAND_ENV_DST); | 
 |  | 
 | #ifdef CONFIG_ENV_OFFSET_REDUND | 
 | 	nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, | 
 | 		  (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); | 
 | #endif | 
 | #endif | 
 |  | 
 | 	if (nand_chip.select_chip) | 
 | 		nand_chip.select_chip(&nand_info, -1); | 
 |  | 
 | 	/* | 
 | 	 * Jump to U-Boot image | 
 | 	 */ | 
 | 	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; | 
 | 	(*uboot)(); | 
 | } |