| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Dynamic DMA mapping support. | 
 |  * | 
 |  * This implementation is a fallback for platforms that do not support | 
 |  * I/O TLBs (aka DMA address translation hardware). | 
 |  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | 
 |  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | 
 |  * Copyright (C) 2000, 2003 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  * | 
 |  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API. | 
 |  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid | 
 |  *			unnecessary i-cache flushing. | 
 |  * 04/07/.. ak		Better overflow handling. Assorted fixes. | 
 |  * 05/09/10 linville	Add support for syncing ranges, support syncing for | 
 |  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | 
 |  * 08/12/11 beckyb	Add highmem support | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "software IO TLB: " fmt | 
 |  | 
 | #include <linux/cache.h> | 
 | #include <linux/dma-direct.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/export.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/string.h> | 
 | #include <linux/swiotlb.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/mem_encrypt.h> | 
 | #include <linux/set_memory.h> | 
 | #ifdef CONFIG_DEBUG_FS | 
 | #include <linux/debugfs.h> | 
 | #endif | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/dma.h> | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/iommu-helper.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/swiotlb.h> | 
 |  | 
 | #define OFFSET(val,align) ((unsigned long)	\ | 
 | 	                   ( (val) & ( (align) - 1))) | 
 |  | 
 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) | 
 |  | 
 | /* | 
 |  * Minimum IO TLB size to bother booting with.  Systems with mainly | 
 |  * 64bit capable cards will only lightly use the swiotlb.  If we can't | 
 |  * allocate a contiguous 1MB, we're probably in trouble anyway. | 
 |  */ | 
 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | 
 |  | 
 | enum swiotlb_force swiotlb_force; | 
 |  | 
 | /* | 
 |  * Used to do a quick range check in swiotlb_tbl_unmap_single and | 
 |  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this | 
 |  * API. | 
 |  */ | 
 | phys_addr_t io_tlb_start, io_tlb_end; | 
 |  | 
 | /* | 
 |  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and | 
 |  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages. | 
 |  */ | 
 | static unsigned long io_tlb_nslabs; | 
 |  | 
 | /* | 
 |  * The number of used IO TLB block | 
 |  */ | 
 | static unsigned long io_tlb_used; | 
 |  | 
 | /* | 
 |  * This is a free list describing the number of free entries available from | 
 |  * each index | 
 |  */ | 
 | static unsigned int *io_tlb_list; | 
 | static unsigned int io_tlb_index; | 
 |  | 
 | /* | 
 |  * Max segment that we can provide which (if pages are contingous) will | 
 |  * not be bounced (unless SWIOTLB_FORCE is set). | 
 |  */ | 
 | unsigned int max_segment; | 
 |  | 
 | /* | 
 |  * We need to save away the original address corresponding to a mapped entry | 
 |  * for the sync operations. | 
 |  */ | 
 | #define INVALID_PHYS_ADDR (~(phys_addr_t)0) | 
 | static phys_addr_t *io_tlb_orig_addr; | 
 |  | 
 | /* | 
 |  * Protect the above data structures in the map and unmap calls | 
 |  */ | 
 | static DEFINE_SPINLOCK(io_tlb_lock); | 
 |  | 
 | static int late_alloc; | 
 |  | 
 | static int __init | 
 | setup_io_tlb_npages(char *str) | 
 | { | 
 | 	if (isdigit(*str)) { | 
 | 		io_tlb_nslabs = simple_strtoul(str, &str, 0); | 
 | 		/* avoid tail segment of size < IO_TLB_SEGSIZE */ | 
 | 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
 | 	} | 
 | 	if (*str == ',') | 
 | 		++str; | 
 | 	if (!strcmp(str, "force")) { | 
 | 		swiotlb_force = SWIOTLB_FORCE; | 
 | 	} else if (!strcmp(str, "noforce")) { | 
 | 		swiotlb_force = SWIOTLB_NO_FORCE; | 
 | 		io_tlb_nslabs = 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("swiotlb", setup_io_tlb_npages); | 
 |  | 
 | static bool no_iotlb_memory; | 
 |  | 
 | unsigned long swiotlb_nr_tbl(void) | 
 | { | 
 | 	return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs; | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); | 
 |  | 
 | unsigned int swiotlb_max_segment(void) | 
 | { | 
 | 	return unlikely(no_iotlb_memory) ? 0 : max_segment; | 
 | } | 
 | EXPORT_SYMBOL_GPL(swiotlb_max_segment); | 
 |  | 
 | void swiotlb_set_max_segment(unsigned int val) | 
 | { | 
 | 	if (swiotlb_force == SWIOTLB_FORCE) | 
 | 		max_segment = 1; | 
 | 	else | 
 | 		max_segment = rounddown(val, PAGE_SIZE); | 
 | } | 
 |  | 
 | /* default to 64MB */ | 
 | #define IO_TLB_DEFAULT_SIZE (64UL<<20) | 
 | unsigned long swiotlb_size_or_default(void) | 
 | { | 
 | 	unsigned long size; | 
 |  | 
 | 	size = io_tlb_nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	return size ? size : (IO_TLB_DEFAULT_SIZE); | 
 | } | 
 |  | 
 | void swiotlb_print_info(void) | 
 | { | 
 | 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	if (no_iotlb_memory) { | 
 | 		pr_warn("No low mem\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", | 
 | 	       (unsigned long long)io_tlb_start, | 
 | 	       (unsigned long long)io_tlb_end, | 
 | 	       bytes >> 20); | 
 | } | 
 |  | 
 | /* | 
 |  * Early SWIOTLB allocation may be too early to allow an architecture to | 
 |  * perform the desired operations.  This function allows the architecture to | 
 |  * call SWIOTLB when the operations are possible.  It needs to be called | 
 |  * before the SWIOTLB memory is used. | 
 |  */ | 
 | void __init swiotlb_update_mem_attributes(void) | 
 | { | 
 | 	void *vaddr; | 
 | 	unsigned long bytes; | 
 |  | 
 | 	if (no_iotlb_memory || late_alloc) | 
 | 		return; | 
 |  | 
 | 	vaddr = phys_to_virt(io_tlb_start); | 
 | 	bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); | 
 | 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); | 
 | 	memset(vaddr, 0, bytes); | 
 | } | 
 |  | 
 | int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) | 
 | { | 
 | 	unsigned long i, bytes; | 
 | 	size_t alloc_size; | 
 |  | 
 | 	bytes = nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	io_tlb_nslabs = nslabs; | 
 | 	io_tlb_start = __pa(tlb); | 
 | 	io_tlb_end = io_tlb_start + bytes; | 
 |  | 
 | 	/* | 
 | 	 * Allocate and initialize the free list array.  This array is used | 
 | 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | 
 | 	 * between io_tlb_start and io_tlb_end. | 
 | 	 */ | 
 | 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int)); | 
 | 	io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE); | 
 | 	if (!io_tlb_list) | 
 | 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n", | 
 | 		      __func__, alloc_size, PAGE_SIZE); | 
 |  | 
 | 	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)); | 
 | 	io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE); | 
 | 	if (!io_tlb_orig_addr) | 
 | 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n", | 
 | 		      __func__, alloc_size, PAGE_SIZE); | 
 |  | 
 | 	for (i = 0; i < io_tlb_nslabs; i++) { | 
 | 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | 
 | 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | 
 | 	} | 
 | 	io_tlb_index = 0; | 
 | 	no_iotlb_memory = false; | 
 |  | 
 | 	if (verbose) | 
 | 		swiotlb_print_info(); | 
 |  | 
 | 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Statically reserve bounce buffer space and initialize bounce buffer data | 
 |  * structures for the software IO TLB used to implement the DMA API. | 
 |  */ | 
 | void  __init | 
 | swiotlb_init(int verbose) | 
 | { | 
 | 	size_t default_size = IO_TLB_DEFAULT_SIZE; | 
 | 	unsigned char *vstart; | 
 | 	unsigned long bytes; | 
 |  | 
 | 	if (!io_tlb_nslabs) { | 
 | 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | 
 | 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
 | 	} | 
 |  | 
 | 	bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	/* Get IO TLB memory from the low pages */ | 
 | 	vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE); | 
 | 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) | 
 | 		return; | 
 |  | 
 | 	if (io_tlb_start) { | 
 | 		memblock_free_early(io_tlb_start, | 
 | 				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | 
 | 		io_tlb_start = 0; | 
 | 	} | 
 | 	pr_warn("Cannot allocate buffer"); | 
 | 	no_iotlb_memory = true; | 
 | } | 
 |  | 
 | /* | 
 |  * Systems with larger DMA zones (those that don't support ISA) can | 
 |  * initialize the swiotlb later using the slab allocator if needed. | 
 |  * This should be just like above, but with some error catching. | 
 |  */ | 
 | int | 
 | swiotlb_late_init_with_default_size(size_t default_size) | 
 | { | 
 | 	unsigned long bytes, req_nslabs = io_tlb_nslabs; | 
 | 	unsigned char *vstart = NULL; | 
 | 	unsigned int order; | 
 | 	int rc = 0; | 
 |  | 
 | 	if (!io_tlb_nslabs) { | 
 | 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | 
 | 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get IO TLB memory from the low pages | 
 | 	 */ | 
 | 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); | 
 | 	io_tlb_nslabs = SLABS_PER_PAGE << order; | 
 | 	bytes = io_tlb_nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | 
 | 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | 
 | 						  order); | 
 | 		if (vstart) | 
 | 			break; | 
 | 		order--; | 
 | 	} | 
 |  | 
 | 	if (!vstart) { | 
 | 		io_tlb_nslabs = req_nslabs; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	if (order != get_order(bytes)) { | 
 | 		pr_warn("only able to allocate %ld MB\n", | 
 | 			(PAGE_SIZE << order) >> 20); | 
 | 		io_tlb_nslabs = SLABS_PER_PAGE << order; | 
 | 	} | 
 | 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); | 
 | 	if (rc) | 
 | 		free_pages((unsigned long)vstart, order); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void swiotlb_cleanup(void) | 
 | { | 
 | 	io_tlb_end = 0; | 
 | 	io_tlb_start = 0; | 
 | 	io_tlb_nslabs = 0; | 
 | 	max_segment = 0; | 
 | } | 
 |  | 
 | int | 
 | swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) | 
 | { | 
 | 	unsigned long i, bytes; | 
 |  | 
 | 	bytes = nslabs << IO_TLB_SHIFT; | 
 |  | 
 | 	io_tlb_nslabs = nslabs; | 
 | 	io_tlb_start = virt_to_phys(tlb); | 
 | 	io_tlb_end = io_tlb_start + bytes; | 
 |  | 
 | 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); | 
 | 	memset(tlb, 0, bytes); | 
 |  | 
 | 	/* | 
 | 	 * Allocate and initialize the free list array.  This array is used | 
 | 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | 
 | 	 * between io_tlb_start and io_tlb_end. | 
 | 	 */ | 
 | 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | 
 | 	                              get_order(io_tlb_nslabs * sizeof(int))); | 
 | 	if (!io_tlb_list) | 
 | 		goto cleanup3; | 
 |  | 
 | 	io_tlb_orig_addr = (phys_addr_t *) | 
 | 		__get_free_pages(GFP_KERNEL, | 
 | 				 get_order(io_tlb_nslabs * | 
 | 					   sizeof(phys_addr_t))); | 
 | 	if (!io_tlb_orig_addr) | 
 | 		goto cleanup4; | 
 |  | 
 | 	for (i = 0; i < io_tlb_nslabs; i++) { | 
 | 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | 
 | 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | 
 | 	} | 
 | 	io_tlb_index = 0; | 
 | 	no_iotlb_memory = false; | 
 |  | 
 | 	swiotlb_print_info(); | 
 |  | 
 | 	late_alloc = 1; | 
 |  | 
 | 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); | 
 |  | 
 | 	return 0; | 
 |  | 
 | cleanup4: | 
 | 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | 
 | 	                                                 sizeof(int))); | 
 | 	io_tlb_list = NULL; | 
 | cleanup3: | 
 | 	swiotlb_cleanup(); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void __init swiotlb_exit(void) | 
 | { | 
 | 	if (!io_tlb_orig_addr) | 
 | 		return; | 
 |  | 
 | 	if (late_alloc) { | 
 | 		free_pages((unsigned long)io_tlb_orig_addr, | 
 | 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | 
 | 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | 
 | 								 sizeof(int))); | 
 | 		free_pages((unsigned long)phys_to_virt(io_tlb_start), | 
 | 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT)); | 
 | 	} else { | 
 | 		memblock_free_late(__pa(io_tlb_orig_addr), | 
 | 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); | 
 | 		memblock_free_late(__pa(io_tlb_list), | 
 | 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); | 
 | 		memblock_free_late(io_tlb_start, | 
 | 				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); | 
 | 	} | 
 | 	swiotlb_cleanup(); | 
 | } | 
 |  | 
 | /* | 
 |  * Bounce: copy the swiotlb buffer from or back to the original dma location | 
 |  */ | 
 | static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, | 
 | 			   size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long pfn = PFN_DOWN(orig_addr); | 
 | 	unsigned char *vaddr = phys_to_virt(tlb_addr); | 
 |  | 
 | 	if (PageHighMem(pfn_to_page(pfn))) { | 
 | 		/* The buffer does not have a mapping.  Map it in and copy */ | 
 | 		unsigned int offset = orig_addr & ~PAGE_MASK; | 
 | 		char *buffer; | 
 | 		unsigned int sz = 0; | 
 | 		unsigned long flags; | 
 |  | 
 | 		while (size) { | 
 | 			sz = min_t(size_t, PAGE_SIZE - offset, size); | 
 |  | 
 | 			local_irq_save(flags); | 
 | 			buffer = kmap_atomic(pfn_to_page(pfn)); | 
 | 			if (dir == DMA_TO_DEVICE) | 
 | 				memcpy(vaddr, buffer + offset, sz); | 
 | 			else | 
 | 				memcpy(buffer + offset, vaddr, sz); | 
 | 			kunmap_atomic(buffer); | 
 | 			local_irq_restore(flags); | 
 |  | 
 | 			size -= sz; | 
 | 			pfn++; | 
 | 			vaddr += sz; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} else if (dir == DMA_TO_DEVICE) { | 
 | 		memcpy(vaddr, phys_to_virt(orig_addr), size); | 
 | 	} else { | 
 | 		memcpy(phys_to_virt(orig_addr), vaddr, size); | 
 | 	} | 
 | } | 
 |  | 
 | phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, | 
 | 				   dma_addr_t tbl_dma_addr, | 
 | 				   phys_addr_t orig_addr, | 
 | 				   size_t mapping_size, | 
 | 				   size_t alloc_size, | 
 | 				   enum dma_data_direction dir, | 
 | 				   unsigned long attrs) | 
 | { | 
 | 	unsigned long flags; | 
 | 	phys_addr_t tlb_addr; | 
 | 	unsigned int nslots, stride, index, wrap; | 
 | 	int i; | 
 | 	unsigned long mask; | 
 | 	unsigned long offset_slots; | 
 | 	unsigned long max_slots; | 
 | 	unsigned long tmp_io_tlb_used; | 
 |  | 
 | 	if (no_iotlb_memory) | 
 | 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); | 
 |  | 
 | 	if (mem_encrypt_active()) | 
 | 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); | 
 |  | 
 | 	if (mapping_size > alloc_size) { | 
 | 		dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", | 
 | 			      mapping_size, alloc_size); | 
 | 		return (phys_addr_t)DMA_MAPPING_ERROR; | 
 | 	} | 
 |  | 
 | 	mask = dma_get_seg_boundary(hwdev); | 
 |  | 
 | 	tbl_dma_addr &= mask; | 
 |  | 
 | 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * Carefully handle integer overflow which can occur when mask == ~0UL. | 
 | 	 */ | 
 | 	max_slots = mask + 1 | 
 | 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | 
 | 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * For mappings greater than or equal to a page, we limit the stride | 
 | 	 * (and hence alignment) to a page size. | 
 | 	 */ | 
 | 	nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
 | 	if (alloc_size >= PAGE_SIZE) | 
 | 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | 
 | 	else | 
 | 		stride = 1; | 
 |  | 
 | 	BUG_ON(!nslots); | 
 |  | 
 | 	/* | 
 | 	 * Find suitable number of IO TLB entries size that will fit this | 
 | 	 * request and allocate a buffer from that IO TLB pool. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&io_tlb_lock, flags); | 
 |  | 
 | 	if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) | 
 | 		goto not_found; | 
 |  | 
 | 	index = ALIGN(io_tlb_index, stride); | 
 | 	if (index >= io_tlb_nslabs) | 
 | 		index = 0; | 
 | 	wrap = index; | 
 |  | 
 | 	do { | 
 | 		while (iommu_is_span_boundary(index, nslots, offset_slots, | 
 | 					      max_slots)) { | 
 | 			index += stride; | 
 | 			if (index >= io_tlb_nslabs) | 
 | 				index = 0; | 
 | 			if (index == wrap) | 
 | 				goto not_found; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we find a slot that indicates we have 'nslots' number of | 
 | 		 * contiguous buffers, we allocate the buffers from that slot | 
 | 		 * and mark the entries as '0' indicating unavailable. | 
 | 		 */ | 
 | 		if (io_tlb_list[index] >= nslots) { | 
 | 			int count = 0; | 
 |  | 
 | 			for (i = index; i < (int) (index + nslots); i++) | 
 | 				io_tlb_list[i] = 0; | 
 | 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | 
 | 				io_tlb_list[i] = ++count; | 
 | 			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); | 
 |  | 
 | 			/* | 
 | 			 * Update the indices to avoid searching in the next | 
 | 			 * round. | 
 | 			 */ | 
 | 			io_tlb_index = ((index + nslots) < io_tlb_nslabs | 
 | 					? (index + nslots) : 0); | 
 |  | 
 | 			goto found; | 
 | 		} | 
 | 		index += stride; | 
 | 		if (index >= io_tlb_nslabs) | 
 | 			index = 0; | 
 | 	} while (index != wrap); | 
 |  | 
 | not_found: | 
 | 	tmp_io_tlb_used = io_tlb_used; | 
 |  | 
 | 	spin_unlock_irqrestore(&io_tlb_lock, flags); | 
 | 	if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) | 
 | 		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", | 
 | 			 alloc_size, io_tlb_nslabs, tmp_io_tlb_used); | 
 | 	return (phys_addr_t)DMA_MAPPING_ERROR; | 
 | found: | 
 | 	io_tlb_used += nslots; | 
 | 	spin_unlock_irqrestore(&io_tlb_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Save away the mapping from the original address to the DMA address. | 
 | 	 * This is needed when we sync the memory.  Then we sync the buffer if | 
 | 	 * needed. | 
 | 	 */ | 
 | 	for (i = 0; i < nslots; i++) | 
 | 		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); | 
 | 	/* | 
 | 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig | 
 | 	 * to the tlb buffer, if we knew for sure the device will | 
 | 	 * overwirte the entire current content. But we don't. Thus | 
 | 	 * unconditional bounce may prevent leaking swiotlb content (i.e. | 
 | 	 * kernel memory) to user-space. | 
 | 	 */ | 
 | 	swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE); | 
 | 	return tlb_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * tlb_addr is the physical address of the bounce buffer to unmap. | 
 |  */ | 
 | void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, | 
 | 			      size_t mapping_size, size_t alloc_size, | 
 | 			      enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
 | 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; | 
 | 	phys_addr_t orig_addr = io_tlb_orig_addr[index]; | 
 |  | 
 | 	/* | 
 | 	 * First, sync the memory before unmapping the entry | 
 | 	 */ | 
 | 	if (orig_addr != INVALID_PHYS_ADDR && | 
 | 	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && | 
 | 	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | 
 | 		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE); | 
 |  | 
 | 	/* | 
 | 	 * Return the buffer to the free list by setting the corresponding | 
 | 	 * entries to indicate the number of contiguous entries available. | 
 | 	 * While returning the entries to the free list, we merge the entries | 
 | 	 * with slots below and above the pool being returned. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&io_tlb_lock, flags); | 
 | 	{ | 
 | 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | 
 | 			 io_tlb_list[index + nslots] : 0); | 
 | 		/* | 
 | 		 * Step 1: return the slots to the free list, merging the | 
 | 		 * slots with superceeding slots | 
 | 		 */ | 
 | 		for (i = index + nslots - 1; i >= index; i--) { | 
 | 			io_tlb_list[i] = ++count; | 
 | 			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; | 
 | 		} | 
 | 		/* | 
 | 		 * Step 2: merge the returned slots with the preceding slots, | 
 | 		 * if available (non zero) | 
 | 		 */ | 
 | 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | 
 | 			io_tlb_list[i] = ++count; | 
 |  | 
 | 		io_tlb_used -= nslots; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&io_tlb_lock, flags); | 
 | } | 
 |  | 
 | void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, | 
 | 			     size_t size, enum dma_data_direction dir, | 
 | 			     enum dma_sync_target target) | 
 | { | 
 | 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; | 
 | 	phys_addr_t orig_addr = io_tlb_orig_addr[index]; | 
 |  | 
 | 	if (orig_addr == INVALID_PHYS_ADDR) | 
 | 		return; | 
 | 	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); | 
 |  | 
 | 	switch (target) { | 
 | 	case SYNC_FOR_CPU: | 
 | 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | 
 | 			swiotlb_bounce(orig_addr, tlb_addr, | 
 | 				       size, DMA_FROM_DEVICE); | 
 | 		else | 
 | 			BUG_ON(dir != DMA_TO_DEVICE); | 
 | 		break; | 
 | 	case SYNC_FOR_DEVICE: | 
 | 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | 
 | 			swiotlb_bounce(orig_addr, tlb_addr, | 
 | 				       size, DMA_TO_DEVICE); | 
 | 		else | 
 | 			BUG_ON(dir != DMA_FROM_DEVICE); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing | 
 |  * to the device copy the data into it as well. | 
 |  */ | 
 | bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr, | 
 | 		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force); | 
 |  | 
 | 	if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { | 
 | 		dev_warn_ratelimited(dev, | 
 | 			"Cannot do DMA to address %pa\n", phys); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Oh well, have to allocate and map a bounce buffer. */ | 
 | 	*phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), | 
 | 			*phys, size, size, dir, attrs); | 
 | 	if (*phys == (phys_addr_t)DMA_MAPPING_ERROR) | 
 | 		return false; | 
 |  | 
 | 	/* Ensure that the address returned is DMA'ble */ | 
 | 	*dma_addr = __phys_to_dma(dev, *phys); | 
 | 	if (unlikely(!dma_capable(dev, *dma_addr, size))) { | 
 | 		swiotlb_tbl_unmap_single(dev, *phys, size, size, dir, | 
 | 			attrs | DMA_ATTR_SKIP_CPU_SYNC); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | size_t swiotlb_max_mapping_size(struct device *dev) | 
 | { | 
 | 	return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE; | 
 | } | 
 |  | 
 | bool is_swiotlb_active(void) | 
 | { | 
 | 	/* | 
 | 	 * When SWIOTLB is initialized, even if io_tlb_start points to physical | 
 | 	 * address zero, io_tlb_end surely doesn't. | 
 | 	 */ | 
 | 	return io_tlb_end != 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 |  | 
 | static int __init swiotlb_create_debugfs(void) | 
 | { | 
 | 	struct dentry *root; | 
 |  | 
 | 	root = debugfs_create_dir("swiotlb", NULL); | 
 | 	debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs); | 
 | 	debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used); | 
 | 	return 0; | 
 | } | 
 |  | 
 | late_initcall(swiotlb_create_debugfs); | 
 |  | 
 | #endif |