ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/Documentation/filesystems/cramfs.txt b/marvell/linux/Documentation/filesystems/cramfs.txt
new file mode 100644
index 0000000..8e19a53
--- /dev/null
+++ b/marvell/linux/Documentation/filesystems/cramfs.txt
@@ -0,0 +1,118 @@
+
+	Cramfs - cram a filesystem onto a small ROM
+
+cramfs is designed to be simple and small, and to compress things well. 
+
+It uses the zlib routines to compress a file one page at a time, and
+allows random page access.  The meta-data is not compressed, but is
+expressed in a very terse representation to make it use much less
+diskspace than traditional filesystems. 
+
+You can't write to a cramfs filesystem (making it compressible and
+compact also makes it _very_ hard to update on-the-fly), so you have to
+create the disk image with the "mkcramfs" utility.
+
+
+Usage Notes
+-----------
+
+File sizes are limited to less than 16MB.
+
+Maximum filesystem size is a little over 256MB.  (The last file on the
+filesystem is allowed to extend past 256MB.)
+
+Only the low 8 bits of gid are stored.  The current version of
+mkcramfs simply truncates to 8 bits, which is a potential security
+issue.
+
+Hard links are supported, but hard linked files
+will still have a link count of 1 in the cramfs image.
+
+Cramfs directories have no `.' or `..' entries.  Directories (like
+every other file on cramfs) always have a link count of 1.  (There's
+no need to use -noleaf in `find', btw.)
+
+No timestamps are stored in a cramfs, so these default to the epoch
+(1970 GMT).  Recently-accessed files may have updated timestamps, but
+the update lasts only as long as the inode is cached in memory, after
+which the timestamp reverts to 1970, i.e. moves backwards in time.
+
+Currently, cramfs must be written and read with architectures of the
+same endianness, and can be read only by kernels with PAGE_SIZE
+== 4096.  At least the latter of these is a bug, but it hasn't been
+decided what the best fix is.  For the moment if you have larger pages
+you can just change the #define in mkcramfs.c, so long as you don't
+mind the filesystem becoming unreadable to future kernels.
+
+
+Memory Mapped cramfs image
+--------------------------
+
+The CRAMFS_MTD Kconfig option adds support for loading data directly from
+a physical linear memory range (usually non volatile memory like Flash)
+instead of going through the block device layer. This saves some memory
+since no intermediate buffering is necessary to hold the data before
+decompressing.
+
+And when data blocks are kept uncompressed and properly aligned, they will
+automatically be mapped directly into user space whenever possible providing
+eXecute-In-Place (XIP) from ROM of read-only segments. Data segments mapped
+read-write (hence they have to be copied to RAM) may still be compressed in
+the cramfs image in the same file along with non compressed read-only
+segments. Both MMU and no-MMU systems are supported. This is particularly
+handy for tiny embedded systems with very tight memory constraints.
+
+The location of the cramfs image in memory is system dependent. You must
+know the proper physical address where the cramfs image is located and
+configure an MTD device for it. Also, that MTD device must be supported
+by a map driver that implements the "point" method. Examples of such
+MTD drivers are cfi_cmdset_0001 (Intel/Sharp CFI flash) or physmap
+(Flash device in physical memory map). MTD partitions based on such devices
+are fine too. Then that device should be specified with the "mtd:" prefix
+as the mount device argument. For example, to mount the MTD device named
+"fs_partition" on the /mnt directory:
+
+$ mount -t cramfs mtd:fs_partition /mnt
+
+To boot a kernel with this as root filesystem, suffice to specify
+something like "root=mtd:fs_partition" on the kernel command line.
+
+
+Tools
+-----
+
+A version of mkcramfs that can take advantage of the latest capabilities
+described above can be found here:
+
+https://github.com/npitre/cramfs-tools
+
+
+For /usr/share/magic
+--------------------
+
+0	ulelong	0x28cd3d45	Linux cramfs offset 0
+>4	ulelong	x		size %d
+>8	ulelong	x		flags 0x%x
+>12	ulelong	x		future 0x%x
+>16	string	>\0		signature "%.16s"
+>32	ulelong	x		fsid.crc 0x%x
+>36	ulelong	x		fsid.edition %d
+>40	ulelong	x		fsid.blocks %d
+>44	ulelong	x		fsid.files %d
+>48	string	>\0		name "%.16s"
+512	ulelong	0x28cd3d45	Linux cramfs offset 512
+>516	ulelong	x		size %d
+>520	ulelong	x		flags 0x%x
+>524	ulelong	x		future 0x%x
+>528	string	>\0		signature "%.16s"
+>544	ulelong	x		fsid.crc 0x%x
+>548	ulelong	x		fsid.edition %d
+>552	ulelong	x		fsid.blocks %d
+>556	ulelong	x		fsid.files %d
+>560	string	>\0		name "%.16s"
+
+
+Hacker Notes
+------------
+
+See fs/cramfs/README for filesystem layout and implementation notes.