ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/arm64/kernel/head.S b/marvell/linux/arch/arm64/kernel/head.S
new file mode 100644
index 0000000..23a4b53
--- /dev/null
+++ b/marvell/linux/arch/arm64/kernel/head.S
@@ -0,0 +1,997 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Low-level CPU initialisation
+ * Based on arch/arm/kernel/head.S
+ *
+ * Copyright (C) 1994-2002 Russell King
+ * Copyright (C) 2003-2012 ARM Ltd.
+ * Authors:	Catalin Marinas <catalin.marinas@arm.com>
+ *		Will Deacon <will.deacon@arm.com>
+ */
+
+#include <linux/linkage.h>
+#include <linux/init.h>
+#include <linux/irqchip/arm-gic-v3.h>
+
+#include <asm/assembler.h>
+#include <asm/boot.h>
+#include <asm/ptrace.h>
+#include <asm/asm-offsets.h>
+#include <asm/cache.h>
+#include <asm/cputype.h>
+#include <asm/elf.h>
+#include <asm/image.h>
+#include <asm/kernel-pgtable.h>
+#include <asm/kvm_arm.h>
+#include <asm/memory.h>
+#include <asm/pgtable-hwdef.h>
+#include <asm/pgtable.h>
+#include <asm/page.h>
+#include <asm/scs.h>
+#include <asm/smp.h>
+#include <asm/sysreg.h>
+#include <asm/thread_info.h>
+#include <asm/virt.h>
+
+#include "efi-header.S"
+
+#define __PHYS_OFFSET	(KERNEL_START - TEXT_OFFSET)
+
+#if (TEXT_OFFSET & 0xfff) != 0
+#error TEXT_OFFSET must be at least 4KB aligned
+#elif (PAGE_OFFSET & 0x1fffff) != 0
+#error PAGE_OFFSET must be at least 2MB aligned
+#elif TEXT_OFFSET > 0x1fffff
+#error TEXT_OFFSET must be less than 2MB
+#endif
+
+/*
+ * Kernel startup entry point.
+ * ---------------------------
+ *
+ * The requirements are:
+ *   MMU = off, D-cache = off, I-cache = on or off,
+ *   x0 = physical address to the FDT blob.
+ *
+ * This code is mostly position independent so you call this at
+ * __pa(PAGE_OFFSET + TEXT_OFFSET).
+ *
+ * Note that the callee-saved registers are used for storing variables
+ * that are useful before the MMU is enabled. The allocations are described
+ * in the entry routines.
+ */
+	__HEAD
+_head:
+	/*
+	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
+	 */
+#ifdef CONFIG_EFI
+	/*
+	 * This add instruction has no meaningful effect except that
+	 * its opcode forms the magic "MZ" signature required by UEFI.
+	 */
+	add	x13, x18, #0x16
+	b	stext
+#else
+	b	stext				// branch to kernel start, magic
+	.long	0				// reserved
+#endif
+	le64sym	_kernel_offset_le		// Image load offset from start of RAM, little-endian
+	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
+	le64sym	_kernel_flags_le		// Informative flags, little-endian
+	.quad	0				// reserved
+	.quad	0				// reserved
+	.quad	0				// reserved
+	.ascii	ARM64_IMAGE_MAGIC		// Magic number
+#ifdef CONFIG_EFI
+	.long	pe_header - _head		// Offset to the PE header.
+
+pe_header:
+	__EFI_PE_HEADER
+#else
+	.long	0				// reserved
+#endif
+
+	__INIT
+
+	/*
+	 * The following callee saved general purpose registers are used on the
+	 * primary lowlevel boot path:
+	 *
+	 *  Register   Scope                      Purpose
+	 *  x21        stext() .. start_kernel()  FDT pointer passed at boot in x0
+	 *  x23        stext() .. start_kernel()  physical misalignment/KASLR offset
+	 *  x28        __create_page_tables()     callee preserved temp register
+	 *  x19/x20    __primary_switch()         callee preserved temp registers
+	 *  x24        __primary_switch() .. relocate_kernel()
+	 *                                        current RELR displacement
+	 */
+ENTRY(stext)
+	bl	preserve_boot_args
+	bl	el2_setup			// Drop to EL1, w0=cpu_boot_mode
+	adrp	x23, __PHYS_OFFSET
+	and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
+	bl	set_cpu_boot_mode_flag
+	bl	__create_page_tables
+	/*
+	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
+	 * details.
+	 * On return, the CPU will be ready for the MMU to be turned on and
+	 * the TCR will have been set.
+	 */
+	bl	__cpu_setup			// initialise processor
+	b	__primary_switch
+ENDPROC(stext)
+
+/*
+ * Preserve the arguments passed by the bootloader in x0 .. x3
+ */
+preserve_boot_args:
+	mov	x21, x0				// x21=FDT
+
+	adr_l	x0, boot_args			// record the contents of
+	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
+	stp	x2, x3, [x0, #16]
+
+	dmb	sy				// needed before dc ivac with
+						// MMU off
+
+	mov	x1, #0x20			// 4 x 8 bytes
+	b	__inval_dcache_area		// tail call
+ENDPROC(preserve_boot_args)
+
+/*
+ * Macro to create a table entry to the next page.
+ *
+ *	tbl:	page table address
+ *	virt:	virtual address
+ *	shift:	#imm page table shift
+ *	ptrs:	#imm pointers per table page
+ *
+ * Preserves:	virt
+ * Corrupts:	ptrs, tmp1, tmp2
+ * Returns:	tbl -> next level table page address
+ */
+	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
+	add	\tmp1, \tbl, #PAGE_SIZE
+	phys_to_pte \tmp2, \tmp1
+	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
+	lsr	\tmp1, \virt, #\shift
+	sub	\ptrs, \ptrs, #1
+	and	\tmp1, \tmp1, \ptrs		// table index
+	str	\tmp2, [\tbl, \tmp1, lsl #3]
+	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
+	.endm
+
+/*
+ * Macro to populate page table entries, these entries can be pointers to the next level
+ * or last level entries pointing to physical memory.
+ *
+ *	tbl:	page table address
+ *	rtbl:	pointer to page table or physical memory
+ *	index:	start index to write
+ *	eindex:	end index to write - [index, eindex] written to
+ *	flags:	flags for pagetable entry to or in
+ *	inc:	increment to rtbl between each entry
+ *	tmp1:	temporary variable
+ *
+ * Preserves:	tbl, eindex, flags, inc
+ * Corrupts:	index, tmp1
+ * Returns:	rtbl
+ */
+	.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
+.Lpe\@:	phys_to_pte \tmp1, \rtbl
+	orr	\tmp1, \tmp1, \flags	// tmp1 = table entry
+	str	\tmp1, [\tbl, \index, lsl #3]
+	add	\rtbl, \rtbl, \inc	// rtbl = pa next level
+	add	\index, \index, #1
+	cmp	\index, \eindex
+	b.ls	.Lpe\@
+	.endm
+
+/*
+ * Compute indices of table entries from virtual address range. If multiple entries
+ * were needed in the previous page table level then the next page table level is assumed
+ * to be composed of multiple pages. (This effectively scales the end index).
+ *
+ *	vstart:	virtual address of start of range
+ *	vend:	virtual address of end of range - we map [vstart, vend]
+ *	shift:	shift used to transform virtual address into index
+ *	ptrs:	number of entries in page table
+ *	istart:	index in table corresponding to vstart
+ *	iend:	index in table corresponding to vend
+ *	count:	On entry: how many extra entries were required in previous level, scales
+ *			  our end index.
+ *		On exit: returns how many extra entries required for next page table level
+ *
+ * Preserves:	vstart, vend, shift, ptrs
+ * Returns:	istart, iend, count
+ */
+	.macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
+	lsr	\iend, \vend, \shift
+	mov	\istart, \ptrs
+	sub	\istart, \istart, #1
+	and	\iend, \iend, \istart	// iend = (vend >> shift) & (ptrs - 1)
+	mov	\istart, \ptrs
+	mul	\istart, \istart, \count
+	add	\iend, \iend, \istart	// iend += (count - 1) * ptrs
+					// our entries span multiple tables
+
+	lsr	\istart, \vstart, \shift
+	mov	\count, \ptrs
+	sub	\count, \count, #1
+	and	\istart, \istart, \count
+
+	sub	\count, \iend, \istart
+	.endm
+
+/*
+ * Map memory for specified virtual address range. Each level of page table needed supports
+ * multiple entries. If a level requires n entries the next page table level is assumed to be
+ * formed from n pages.
+ *
+ *	tbl:	location of page table
+ *	rtbl:	address to be used for first level page table entry (typically tbl + PAGE_SIZE)
+ *	vstart:	virtual address of start of range
+ *	vend:	virtual address of end of range - we map [vstart, vend - 1]
+ *	flags:	flags to use to map last level entries
+ *	phys:	physical address corresponding to vstart - physical memory is contiguous
+ *	pgds:	the number of pgd entries
+ *
+ * Temporaries:	istart, iend, tmp, count, sv - these need to be different registers
+ * Preserves:	vstart, flags
+ * Corrupts:	tbl, rtbl, vend, istart, iend, tmp, count, sv
+ */
+	.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
+	sub \vend, \vend, #1
+	add \rtbl, \tbl, #PAGE_SIZE
+	mov \sv, \rtbl
+	mov \count, #0
+	compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
+	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
+	mov \tbl, \sv
+	mov \sv, \rtbl
+
+#if SWAPPER_PGTABLE_LEVELS > 3
+	compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
+	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
+	mov \tbl, \sv
+	mov \sv, \rtbl
+#endif
+
+#if SWAPPER_PGTABLE_LEVELS > 2
+	compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
+	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
+	mov \tbl, \sv
+#endif
+
+	compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
+	bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
+	populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
+	.endm
+
+/*
+ * Setup the initial page tables. We only setup the barest amount which is
+ * required to get the kernel running. The following sections are required:
+ *   - identity mapping to enable the MMU (low address, TTBR0)
+ *   - first few MB of the kernel linear mapping to jump to once the MMU has
+ *     been enabled
+ */
+__create_page_tables:
+	mov	x28, lr
+
+	/*
+	 * Invalidate the init page tables to avoid potential dirty cache lines
+	 * being evicted. Other page tables are allocated in rodata as part of
+	 * the kernel image, and thus are clean to the PoC per the boot
+	 * protocol.
+	 */
+	adrp	x0, init_pg_dir
+	adrp	x1, init_pg_end
+	sub	x1, x1, x0
+	bl	__inval_dcache_area
+
+	/*
+	 * Clear the init page tables.
+	 */
+	adrp	x0, init_pg_dir
+	adrp	x1, init_pg_end
+	sub	x1, x1, x0
+1:	stp	xzr, xzr, [x0], #16
+	stp	xzr, xzr, [x0], #16
+	stp	xzr, xzr, [x0], #16
+	stp	xzr, xzr, [x0], #16
+	subs	x1, x1, #64
+	b.ne	1b
+
+	mov	x7, SWAPPER_MM_MMUFLAGS
+
+	/*
+	 * Create the identity mapping.
+	 */
+	adrp	x0, idmap_pg_dir
+	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
+
+#ifdef CONFIG_ARM64_VA_BITS_52
+	mrs_s	x6, SYS_ID_AA64MMFR2_EL1
+	and	x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
+	mov	x5, #52
+	cbnz	x6, 1f
+#endif
+	mov	x5, #VA_BITS_MIN
+1:
+	adr_l	x6, vabits_actual
+	str	x5, [x6]
+	dmb	sy
+	dc	ivac, x6		// Invalidate potentially stale cache line
+
+	/*
+	 * VA_BITS may be too small to allow for an ID mapping to be created
+	 * that covers system RAM if that is located sufficiently high in the
+	 * physical address space. So for the ID map, use an extended virtual
+	 * range in that case, and configure an additional translation level
+	 * if needed.
+	 *
+	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
+	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
+	 * this number conveniently equals the number of leading zeroes in
+	 * the physical address of __idmap_text_end.
+	 */
+	adrp	x5, __idmap_text_end
+	clz	x5, x5
+	cmp	x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough?
+	b.ge	1f			// .. then skip VA range extension
+
+	adr_l	x6, idmap_t0sz
+	str	x5, [x6]
+	dmb	sy
+	dc	ivac, x6		// Invalidate potentially stale cache line
+
+#if (VA_BITS < 48)
+#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
+#define EXTRA_PTRS	(1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
+
+	/*
+	 * If VA_BITS < 48, we have to configure an additional table level.
+	 * First, we have to verify our assumption that the current value of
+	 * VA_BITS was chosen such that all translation levels are fully
+	 * utilised, and that lowering T0SZ will always result in an additional
+	 * translation level to be configured.
+	 */
+#if VA_BITS != EXTRA_SHIFT
+#error "Mismatch between VA_BITS and page size/number of translation levels"
+#endif
+
+	mov	x4, EXTRA_PTRS
+	create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
+#else
+	/*
+	 * If VA_BITS == 48, we don't have to configure an additional
+	 * translation level, but the top-level table has more entries.
+	 */
+	mov	x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
+	str_l	x4, idmap_ptrs_per_pgd, x5
+#endif
+1:
+	ldr_l	x4, idmap_ptrs_per_pgd
+	mov	x5, x3				// __pa(__idmap_text_start)
+	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
+
+	map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
+
+	/*
+	 * Map the kernel image (starting with PHYS_OFFSET).
+	 */
+	adrp	x0, init_pg_dir
+	mov_q	x5, KIMAGE_VADDR + TEXT_OFFSET	// compile time __va(_text)
+	add	x5, x5, x23			// add KASLR displacement
+	mov	x4, PTRS_PER_PGD
+	adrp	x6, _end			// runtime __pa(_end)
+	adrp	x3, _text			// runtime __pa(_text)
+	sub	x6, x6, x3			// _end - _text
+	add	x6, x6, x5			// runtime __va(_end)
+
+	map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
+
+	/*
+	 * Since the page tables have been populated with non-cacheable
+	 * accesses (MMU disabled), invalidate those tables again to
+	 * remove any speculatively loaded cache lines.
+	 */
+	dmb	sy
+
+	adrp	x0, idmap_pg_dir
+	adrp	x1, idmap_pg_end
+	sub	x1, x1, x0
+	bl	__inval_dcache_area
+
+	adrp	x0, init_pg_dir
+	adrp	x1, init_pg_end
+	sub	x1, x1, x0
+	bl	__inval_dcache_area
+
+	ret	x28
+ENDPROC(__create_page_tables)
+	.ltorg
+
+/*
+ * The following fragment of code is executed with the MMU enabled.
+ *
+ *   x0 = __PHYS_OFFSET
+ */
+__primary_switched:
+	adrp	x4, init_thread_union
+	add	sp, x4, #THREAD_SIZE
+	adr_l	x5, init_task
+	msr	sp_el0, x5			// Save thread_info
+
+	adr_l	x8, vectors			// load VBAR_EL1 with virtual
+	msr	vbar_el1, x8			// vector table address
+	isb
+
+	stp	xzr, x30, [sp, #-16]!
+	mov	x29, sp
+
+#ifdef CONFIG_SHADOW_CALL_STACK
+	adr_l	x18, init_shadow_call_stack	// Set shadow call stack
+#endif
+
+	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
+
+	ldr_l	x4, kimage_vaddr		// Save the offset between
+	sub	x4, x4, x0			// the kernel virtual and
+	str_l	x4, kimage_voffset, x5		// physical mappings
+
+	// Clear BSS
+	adr_l	x0, __bss_start
+	mov	x1, xzr
+	adr_l	x2, __bss_stop
+	sub	x2, x2, x0
+	bl	__pi_memset
+	dsb	ishst				// Make zero page visible to PTW
+
+#ifdef CONFIG_KASAN
+	bl	kasan_early_init
+#endif
+#ifdef CONFIG_RANDOMIZE_BASE
+	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
+	b.ne	0f
+	mov	x0, x21				// pass FDT address in x0
+	bl	kaslr_early_init		// parse FDT for KASLR options
+	cbz	x0, 0f				// KASLR disabled? just proceed
+	orr	x23, x23, x0			// record KASLR offset
+	ldp	x29, x30, [sp], #16		// we must enable KASLR, return
+	ret					// to __primary_switch()
+0:
+#endif
+	add	sp, sp, #16
+	mov	x29, #0
+	mov	x30, #0
+	b	start_kernel
+ENDPROC(__primary_switched)
+
+/*
+ * end early head section, begin head code that is also used for
+ * hotplug and needs to have the same protections as the text region
+ */
+	.section ".idmap.text","awx"
+
+ENTRY(kimage_vaddr)
+	.quad		_text - TEXT_OFFSET
+EXPORT_SYMBOL(kimage_vaddr)
+
+/*
+ * If we're fortunate enough to boot at EL2, ensure that the world is
+ * sane before dropping to EL1.
+ *
+ * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
+ * booted in EL1 or EL2 respectively.
+ */
+ENTRY(el2_setup)
+	msr	SPsel, #1			// We want to use SP_EL{1,2}
+	mrs	x0, CurrentEL
+	cmp	x0, #CurrentEL_EL2
+	b.eq	1f
+	mov_q	x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
+	msr	sctlr_el1, x0
+	mov	w0, #BOOT_CPU_MODE_EL1		// This cpu booted in EL1
+	isb
+	ret
+
+1:	mov_q	x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
+	msr	sctlr_el2, x0
+
+#ifdef CONFIG_ARM64_VHE
+	/*
+	 * Check for VHE being present. For the rest of the EL2 setup,
+	 * x2 being non-zero indicates that we do have VHE, and that the
+	 * kernel is intended to run at EL2.
+	 */
+	mrs	x2, id_aa64mmfr1_el1
+	ubfx	x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4
+#else
+	mov	x2, xzr
+#endif
+
+	/* Hyp configuration. */
+	mov_q	x0, HCR_HOST_NVHE_FLAGS
+	cbz	x2, set_hcr
+	mov_q	x0, HCR_HOST_VHE_FLAGS
+set_hcr:
+	msr	hcr_el2, x0
+	isb
+
+	/*
+	 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
+	 * This is not necessary for VHE, since the host kernel runs in EL2,
+	 * and EL0 accesses are configured in the later stage of boot process.
+	 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
+	 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
+	 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
+	 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
+	 * EL2.
+	 */
+	cbnz	x2, 1f
+	mrs	x0, cnthctl_el2
+	orr	x0, x0, #3			// Enable EL1 physical timers
+	msr	cnthctl_el2, x0
+1:
+	msr	cntvoff_el2, xzr		// Clear virtual offset
+
+#ifdef CONFIG_ARM_GIC_V3
+	/* GICv3 system register access */
+	mrs	x0, id_aa64pfr0_el1
+	ubfx	x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4
+	cbz	x0, 3f
+
+	mrs_s	x0, SYS_ICC_SRE_EL2
+	orr	x0, x0, #ICC_SRE_EL2_SRE	// Set ICC_SRE_EL2.SRE==1
+	orr	x0, x0, #ICC_SRE_EL2_ENABLE	// Set ICC_SRE_EL2.Enable==1
+	msr_s	SYS_ICC_SRE_EL2, x0
+	isb					// Make sure SRE is now set
+	mrs_s	x0, SYS_ICC_SRE_EL2		// Read SRE back,
+	tbz	x0, #0, 3f			// and check that it sticks
+	msr_s	SYS_ICH_HCR_EL2, xzr		// Reset ICC_HCR_EL2 to defaults
+
+3:
+#endif
+
+	/* Populate ID registers. */
+	mrs	x0, midr_el1
+	mrs	x1, mpidr_el1
+	msr	vpidr_el2, x0
+	msr	vmpidr_el2, x1
+
+#ifdef CONFIG_COMPAT
+	msr	hstr_el2, xzr			// Disable CP15 traps to EL2
+#endif
+
+	/* EL2 debug */
+	mrs	x1, id_aa64dfr0_el1
+	sbfx	x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4
+	cmp	x0, #1
+	b.lt	4f				// Skip if no PMU present
+	mrs	x0, pmcr_el0			// Disable debug access traps
+	ubfx	x0, x0, #11, #5			// to EL2 and allow access to
+4:
+	csel	x3, xzr, x0, lt			// all PMU counters from EL1
+
+	/* Statistical profiling */
+	ubfx	x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
+	cbz	x0, 7f				// Skip if SPE not present
+	cbnz	x2, 6f				// VHE?
+	mrs_s	x4, SYS_PMBIDR_EL1		// If SPE available at EL2,
+	and	x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
+	cbnz	x4, 5f				// then permit sampling of physical
+	mov	x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
+		      1 << SYS_PMSCR_EL2_PA_SHIFT)
+	msr_s	SYS_PMSCR_EL2, x4		// addresses and physical counter
+5:
+	mov	x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
+	orr	x3, x3, x1			// If we don't have VHE, then
+	b	7f				// use EL1&0 translation.
+6:						// For VHE, use EL2 translation
+	orr	x3, x3, #MDCR_EL2_TPMS		// and disable access from EL1
+7:
+	msr	mdcr_el2, x3			// Configure debug traps
+
+	/* LORegions */
+	mrs	x1, id_aa64mmfr1_el1
+	ubfx	x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
+	cbz	x0, 1f
+	msr_s	SYS_LORC_EL1, xzr
+1:
+
+	/* Stage-2 translation */
+	msr	vttbr_el2, xzr
+
+	cbz	x2, install_el2_stub
+
+	mov	w0, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
+	isb
+	ret
+
+install_el2_stub:
+	/*
+	 * When VHE is not in use, early init of EL2 and EL1 needs to be
+	 * done here.
+	 * When VHE _is_ in use, EL1 will not be used in the host and
+	 * requires no configuration, and all non-hyp-specific EL2 setup
+	 * will be done via the _EL1 system register aliases in __cpu_setup.
+	 */
+	mov_q	x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
+	msr	sctlr_el1, x0
+
+	/* Coprocessor traps. */
+	mov	x0, #0x33ff
+	msr	cptr_el2, x0			// Disable copro. traps to EL2
+
+	/* SVE register access */
+	mrs	x1, id_aa64pfr0_el1
+	ubfx	x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
+	cbz	x1, 7f
+
+	bic	x0, x0, #CPTR_EL2_TZ		// Also disable SVE traps
+	msr	cptr_el2, x0			// Disable copro. traps to EL2
+	isb
+	mov	x1, #ZCR_ELx_LEN_MASK		// SVE: Enable full vector
+	msr_s	SYS_ZCR_EL2, x1			// length for EL1.
+
+	/* Hypervisor stub */
+7:	adr_l	x0, __hyp_stub_vectors
+	msr	vbar_el2, x0
+
+	/* spsr */
+	mov	x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
+		      PSR_MODE_EL1h)
+	msr	spsr_el2, x0
+	msr	elr_el2, lr
+	mov	w0, #BOOT_CPU_MODE_EL2		// This CPU booted in EL2
+	eret
+ENDPROC(el2_setup)
+
+/*
+ * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
+ * in w0. See arch/arm64/include/asm/virt.h for more info.
+ */
+set_cpu_boot_mode_flag:
+	adr_l	x1, __boot_cpu_mode
+	cmp	w0, #BOOT_CPU_MODE_EL2
+	b.ne	1f
+	add	x1, x1, #4
+1:	str	w0, [x1]			// This CPU has booted in EL1
+	dmb	sy
+	dc	ivac, x1			// Invalidate potentially stale cache line
+	ret
+ENDPROC(set_cpu_boot_mode_flag)
+
+/*
+ * These values are written with the MMU off, but read with the MMU on.
+ * Writers will invalidate the corresponding address, discarding up to a
+ * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
+ * sufficient alignment that the CWG doesn't overlap another section.
+ */
+	.pushsection ".mmuoff.data.write", "aw"
+/*
+ * We need to find out the CPU boot mode long after boot, so we need to
+ * store it in a writable variable.
+ *
+ * This is not in .bss, because we set it sufficiently early that the boot-time
+ * zeroing of .bss would clobber it.
+ */
+ENTRY(__boot_cpu_mode)
+	.long	BOOT_CPU_MODE_EL2
+	.long	BOOT_CPU_MODE_EL1
+/*
+ * The booting CPU updates the failed status @__early_cpu_boot_status,
+ * with MMU turned off.
+ */
+ENTRY(__early_cpu_boot_status)
+	.quad 	0
+
+	.popsection
+
+	/*
+	 * This provides a "holding pen" for platforms to hold all secondary
+	 * cores are held until we're ready for them to initialise.
+	 */
+ENTRY(secondary_holding_pen)
+	bl	el2_setup			// Drop to EL1, w0=cpu_boot_mode
+	bl	set_cpu_boot_mode_flag
+	mrs	x0, mpidr_el1
+	mov_q	x1, MPIDR_HWID_BITMASK
+	and	x0, x0, x1
+	adr_l	x3, secondary_holding_pen_release
+pen:	ldr	x4, [x3]
+	cmp	x4, x0
+	b.eq	secondary_startup
+	wfe
+	b	pen
+ENDPROC(secondary_holding_pen)
+
+	/*
+	 * Secondary entry point that jumps straight into the kernel. Only to
+	 * be used where CPUs are brought online dynamically by the kernel.
+	 */
+ENTRY(secondary_entry)
+	bl	el2_setup			// Drop to EL1
+	bl	set_cpu_boot_mode_flag
+	b	secondary_startup
+ENDPROC(secondary_entry)
+
+secondary_startup:
+	/*
+	 * Common entry point for secondary CPUs.
+	 */
+	bl	__cpu_secondary_check52bitva
+	bl	__cpu_setup			// initialise processor
+	adrp	x1, swapper_pg_dir
+	bl	__enable_mmu
+	ldr	x8, =__secondary_switched
+	br	x8
+ENDPROC(secondary_startup)
+
+__secondary_switched:
+	adr_l	x5, vectors
+	msr	vbar_el1, x5
+	isb
+
+	adr_l	x0, secondary_data
+	ldr	x1, [x0, #CPU_BOOT_STACK]	// get secondary_data.stack
+	cbz	x1, __secondary_too_slow
+	mov	sp, x1
+	ldr	x2, [x0, #CPU_BOOT_TASK]
+	cbz	x2, __secondary_too_slow
+	msr	sp_el0, x2
+#ifdef CONFIG_SHADOW_CALL_STACK
+	ldr	x18, [x2, #TSK_TI_SCS]		// set shadow call stack
+	str	xzr, [x2, #TSK_TI_SCS]		// limit visibility of saved SCS
+#endif
+	mov	x29, #0
+	mov	x30, #0
+	b	secondary_start_kernel
+ENDPROC(__secondary_switched)
+
+__secondary_too_slow:
+	wfe
+	wfi
+	b	__secondary_too_slow
+ENDPROC(__secondary_too_slow)
+
+/*
+ * The booting CPU updates the failed status @__early_cpu_boot_status,
+ * with MMU turned off.
+ *
+ * update_early_cpu_boot_status tmp, status
+ *  - Corrupts tmp1, tmp2
+ *  - Writes 'status' to __early_cpu_boot_status and makes sure
+ *    it is committed to memory.
+ */
+
+	.macro	update_early_cpu_boot_status status, tmp1, tmp2
+	mov	\tmp2, #\status
+	adr_l	\tmp1, __early_cpu_boot_status
+	str	\tmp2, [\tmp1]
+	dmb	sy
+	dc	ivac, \tmp1			// Invalidate potentially stale cache line
+	.endm
+
+/*
+ * Enable the MMU.
+ *
+ *  x0  = SCTLR_EL1 value for turning on the MMU.
+ *  x1  = TTBR1_EL1 value
+ *
+ * Returns to the caller via x30/lr. This requires the caller to be covered
+ * by the .idmap.text section.
+ *
+ * Checks if the selected granule size is supported by the CPU.
+ * If it isn't, park the CPU
+ */
+ENTRY(__enable_mmu)
+	mrs	x2, ID_AA64MMFR0_EL1
+	ubfx	x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
+	cmp	x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
+	b.ne	__no_granule_support
+	update_early_cpu_boot_status 0, x2, x3
+	adrp	x2, idmap_pg_dir
+	phys_to_ttbr x1, x1
+	phys_to_ttbr x2, x2
+	msr	ttbr0_el1, x2			// load TTBR0
+	offset_ttbr1 x1, x3
+	msr	ttbr1_el1, x1			// load TTBR1
+	isb
+	msr	sctlr_el1, x0
+	isb
+	/*
+	 * Invalidate the local I-cache so that any instructions fetched
+	 * speculatively from the PoC are discarded, since they may have
+	 * been dynamically patched at the PoU.
+	 */
+	ic	iallu
+	dsb	nsh
+	isb
+	ret
+ENDPROC(__enable_mmu)
+
+ENTRY(__cpu_secondary_check52bitva)
+#ifdef CONFIG_ARM64_VA_BITS_52
+	ldr_l	x0, vabits_actual
+	cmp	x0, #52
+	b.ne	2f
+
+	mrs_s	x0, SYS_ID_AA64MMFR2_EL1
+	and	x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
+	cbnz	x0, 2f
+
+	update_early_cpu_boot_status \
+		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
+1:	wfe
+	wfi
+	b	1b
+
+#endif
+2:	ret
+ENDPROC(__cpu_secondary_check52bitva)
+
+__no_granule_support:
+	/* Indicate that this CPU can't boot and is stuck in the kernel */
+	update_early_cpu_boot_status \
+		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
+1:
+	wfe
+	wfi
+	b	1b
+ENDPROC(__no_granule_support)
+
+#ifdef CONFIG_RELOCATABLE
+__relocate_kernel:
+	/*
+	 * Iterate over each entry in the relocation table, and apply the
+	 * relocations in place.
+	 */
+	ldr	w9, =__rela_offset		// offset to reloc table
+	ldr	w10, =__rela_size		// size of reloc table
+
+	mov_q	x11, KIMAGE_VADDR		// default virtual offset
+	add	x11, x11, x23			// actual virtual offset
+	add	x9, x9, x11			// __va(.rela)
+	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)
+
+0:	cmp	x9, x10
+	b.hs	1f
+	ldp	x12, x13, [x9], #24
+	ldr	x14, [x9, #-8]
+	cmp	w13, #R_AARCH64_RELATIVE
+	b.ne	0b
+	add	x14, x14, x23			// relocate
+	str	x14, [x12, x23]
+	b	0b
+
+1:
+#ifdef CONFIG_RELR
+	/*
+	 * Apply RELR relocations.
+	 *
+	 * RELR is a compressed format for storing relative relocations. The
+	 * encoded sequence of entries looks like:
+	 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
+	 *
+	 * i.e. start with an address, followed by any number of bitmaps. The
+	 * address entry encodes 1 relocation. The subsequent bitmap entries
+	 * encode up to 63 relocations each, at subsequent offsets following
+	 * the last address entry.
+	 *
+	 * The bitmap entries must have 1 in the least significant bit. The
+	 * assumption here is that an address cannot have 1 in lsb. Odd
+	 * addresses are not supported. Any odd addresses are stored in the RELA
+	 * section, which is handled above.
+	 *
+	 * Excluding the least significant bit in the bitmap, each non-zero
+	 * bit in the bitmap represents a relocation to be applied to
+	 * a corresponding machine word that follows the base address
+	 * word. The second least significant bit represents the machine
+	 * word immediately following the initial address, and each bit
+	 * that follows represents the next word, in linear order. As such,
+	 * a single bitmap can encode up to 63 relocations in a 64-bit object.
+	 *
+	 * In this implementation we store the address of the next RELR table
+	 * entry in x9, the address being relocated by the current address or
+	 * bitmap entry in x13 and the address being relocated by the current
+	 * bit in x14.
+	 *
+	 * Because addends are stored in place in the binary, RELR relocations
+	 * cannot be applied idempotently. We use x24 to keep track of the
+	 * currently applied displacement so that we can correctly relocate if
+	 * __relocate_kernel is called twice with non-zero displacements (i.e.
+	 * if there is both a physical misalignment and a KASLR displacement).
+	 */
+	ldr	w9, =__relr_offset		// offset to reloc table
+	ldr	w10, =__relr_size		// size of reloc table
+	add	x9, x9, x11			// __va(.relr)
+	add	x10, x9, x10			// __va(.relr) + sizeof(.relr)
+
+	sub	x15, x23, x24			// delta from previous offset
+	cbz	x15, 7f				// nothing to do if unchanged
+	mov	x24, x23			// save new offset
+
+2:	cmp	x9, x10
+	b.hs	7f
+	ldr	x11, [x9], #8
+	tbnz	x11, #0, 3f			// branch to handle bitmaps
+	add	x13, x11, x23
+	ldr	x12, [x13]			// relocate address entry
+	add	x12, x12, x15
+	str	x12, [x13], #8			// adjust to start of bitmap
+	b	2b
+
+3:	mov	x14, x13
+4:	lsr	x11, x11, #1
+	cbz	x11, 6f
+	tbz	x11, #0, 5f			// skip bit if not set
+	ldr	x12, [x14]			// relocate bit
+	add	x12, x12, x15
+	str	x12, [x14]
+
+5:	add	x14, x14, #8			// move to next bit's address
+	b	4b
+
+6:	/*
+	 * Move to the next bitmap's address. 8 is the word size, and 63 is the
+	 * number of significant bits in a bitmap entry.
+	 */
+	add	x13, x13, #(8 * 63)
+	b	2b
+
+7:
+#endif
+	ret
+
+ENDPROC(__relocate_kernel)
+#endif
+
+__primary_switch:
+#ifdef CONFIG_RANDOMIZE_BASE
+	mov	x19, x0				// preserve new SCTLR_EL1 value
+	mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value
+#endif
+
+	adrp	x1, init_pg_dir
+	bl	__enable_mmu
+#ifdef CONFIG_RELOCATABLE
+#ifdef CONFIG_RELR
+	mov	x24, #0				// no RELR displacement yet
+#endif
+	bl	__relocate_kernel
+#ifdef CONFIG_RANDOMIZE_BASE
+	ldr	x8, =__primary_switched
+	adrp	x0, __PHYS_OFFSET
+	blr	x8
+
+	/*
+	 * If we return here, we have a KASLR displacement in x23 which we need
+	 * to take into account by discarding the current kernel mapping and
+	 * creating a new one.
+	 */
+	pre_disable_mmu_workaround
+	msr	sctlr_el1, x20			// disable the MMU
+	isb
+	bl	__create_page_tables		// recreate kernel mapping
+
+	tlbi	vmalle1				// Remove any stale TLB entries
+	dsb	nsh
+	isb
+
+	msr	sctlr_el1, x19			// re-enable the MMU
+	isb
+	ic	iallu				// flush instructions fetched
+	dsb	nsh				// via old mapping
+	isb
+
+	bl	__relocate_kernel
+#endif
+#endif
+	ldr	x8, =__primary_switched
+	adrp	x0, __PHYS_OFFSET
+	br	x8
+ENDPROC(__primary_switch)