ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/arm64/mm/fault.c b/marvell/linux/arch/arm64/mm/fault.c
new file mode 100644
index 0000000..ab5f8a6
--- /dev/null
+++ b/marvell/linux/arch/arm64/mm/fault.c
@@ -0,0 +1,920 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Based on arch/arm/mm/fault.c
+ *
+ * Copyright (C) 1995  Linus Torvalds
+ * Copyright (C) 1995-2004 Russell King
+ * Copyright (C) 2012 ARM Ltd.
+ */
+
+#include <linux/acpi.h>
+#include <linux/bitfield.h>
+#include <linux/extable.h>
+#include <linux/kfence.h>
+#include <linux/signal.h>
+#include <linux/mm.h>
+#include <linux/hardirq.h>
+#include <linux/init.h>
+#include <linux/kprobes.h>
+#include <linux/uaccess.h>
+#include <linux/page-flags.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/debug.h>
+#include <linux/highmem.h>
+#include <linux/perf_event.h>
+#include <linux/preempt.h>
+#include <linux/hugetlb.h>
+
+#include <asm/acpi.h>
+#include <asm/bug.h>
+#include <asm/cmpxchg.h>
+#include <asm/cpufeature.h>
+#include <asm/exception.h>
+#include <asm/daifflags.h>
+#include <asm/debug-monitors.h>
+#include <asm/esr.h>
+#include <asm/kasan.h>
+#include <asm/sysreg.h>
+#include <asm/system_misc.h>
+#include <asm/pgtable.h>
+#include <asm/tlbflush.h>
+#include <asm/traps.h>
+
+struct fault_info {
+	int	(*fn)(unsigned long addr, unsigned int esr,
+		      struct pt_regs *regs);
+	int	sig;
+	int	code;
+	const char *name;
+};
+
+static const struct fault_info fault_info[];
+static struct fault_info debug_fault_info[];
+
+static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
+{
+	return fault_info + (esr & ESR_ELx_FSC);
+}
+
+static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
+{
+	return debug_fault_info + DBG_ESR_EVT(esr);
+}
+
+static void data_abort_decode(unsigned int esr)
+{
+	pr_alert("Data abort info:\n");
+
+	if (esr & ESR_ELx_ISV) {
+		pr_alert("  Access size = %u byte(s)\n",
+			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
+		pr_alert("  SSE = %lu, SRT = %lu\n",
+			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
+			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
+		pr_alert("  SF = %lu, AR = %lu\n",
+			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
+			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
+	} else {
+		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
+	}
+
+	pr_alert("  CM = %lu, WnR = %lu\n",
+		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
+		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
+}
+
+static void mem_abort_decode(unsigned int esr)
+{
+	pr_alert("Mem abort info:\n");
+
+	pr_alert("  ESR = 0x%08x\n", esr);
+	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
+		 ESR_ELx_EC(esr), esr_get_class_string(esr),
+		 (esr & ESR_ELx_IL) ? 32 : 16);
+	pr_alert("  SET = %lu, FnV = %lu\n",
+		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
+		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
+	pr_alert("  EA = %lu, S1PTW = %lu\n",
+		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
+		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
+
+	if (esr_is_data_abort(esr))
+		data_abort_decode(esr);
+}
+
+static inline bool is_ttbr0_addr(unsigned long addr)
+{
+	/* entry assembly clears tags for TTBR0 addrs */
+	return addr < TASK_SIZE;
+}
+
+static inline bool is_ttbr1_addr(unsigned long addr)
+{
+	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
+	return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
+}
+
+static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
+{
+	/* Either init_pg_dir or swapper_pg_dir */
+	if (mm == &init_mm)
+		return __pa_symbol(mm->pgd);
+
+	return (unsigned long)virt_to_phys(mm->pgd);
+}
+
+/*
+ * Dump out the page tables associated with 'addr' in the currently active mm.
+ */
+static void show_pte(unsigned long addr)
+{
+	struct mm_struct *mm;
+	pgd_t *pgdp;
+	pgd_t pgd;
+
+	if (is_ttbr0_addr(addr)) {
+		/* TTBR0 */
+		mm = current->active_mm;
+		if (mm == &init_mm) {
+			pr_alert("[%016lx] user address but active_mm is swapper\n",
+				 addr);
+			return;
+		}
+	} else if (is_ttbr1_addr(addr)) {
+		/* TTBR1 */
+		mm = &init_mm;
+	} else {
+		pr_alert("[%016lx] address between user and kernel address ranges\n",
+			 addr);
+		return;
+	}
+
+	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
+		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
+		 vabits_actual, mm_to_pgd_phys(mm));
+	pgdp = pgd_offset(mm, addr);
+	pgd = READ_ONCE(*pgdp);
+	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
+
+	do {
+		pud_t *pudp, pud;
+		pmd_t *pmdp, pmd;
+		pte_t *ptep, pte;
+
+		if (pgd_none(pgd) || pgd_bad(pgd))
+			break;
+
+		pudp = pud_offset(pgdp, addr);
+		pud = READ_ONCE(*pudp);
+		pr_cont(", pud=%016llx", pud_val(pud));
+		if (pud_none(pud) || pud_bad(pud))
+			break;
+
+		pmdp = pmd_offset(pudp, addr);
+		pmd = READ_ONCE(*pmdp);
+		pr_cont(", pmd=%016llx", pmd_val(pmd));
+		if (pmd_none(pmd) || pmd_bad(pmd))
+			break;
+
+		ptep = pte_offset_map(pmdp, addr);
+		pte = READ_ONCE(*ptep);
+		pr_cont(", pte=%016llx", pte_val(pte));
+		pte_unmap(ptep);
+	} while(0);
+
+	pr_cont("\n");
+}
+
+/*
+ * This function sets the access flags (dirty, accessed), as well as write
+ * permission, and only to a more permissive setting.
+ *
+ * It needs to cope with hardware update of the accessed/dirty state by other
+ * agents in the system and can safely skip the __sync_icache_dcache() call as,
+ * like set_pte_at(), the PTE is never changed from no-exec to exec here.
+ *
+ * Returns whether or not the PTE actually changed.
+ */
+int ptep_set_access_flags(struct vm_area_struct *vma,
+			  unsigned long address, pte_t *ptep,
+			  pte_t entry, int dirty)
+{
+	pteval_t old_pteval, pteval;
+	pte_t pte = READ_ONCE(*ptep);
+
+	if (pte_same(pte, entry))
+		return 0;
+
+	/* only preserve the access flags and write permission */
+	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
+
+	/*
+	 * Setting the flags must be done atomically to avoid racing with the
+	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
+	 * be set to the most permissive (lowest value) of *ptep and entry
+	 * (calculated as: a & b == ~(~a | ~b)).
+	 */
+	pte_val(entry) ^= PTE_RDONLY;
+	pteval = pte_val(pte);
+	do {
+		old_pteval = pteval;
+		pteval ^= PTE_RDONLY;
+		pteval |= pte_val(entry);
+		pteval ^= PTE_RDONLY;
+		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
+	} while (pteval != old_pteval);
+
+	flush_tlb_fix_spurious_fault(vma, address);
+	return 1;
+}
+
+static bool is_el1_instruction_abort(unsigned int esr)
+{
+	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
+}
+
+static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
+					   struct pt_regs *regs)
+{
+	unsigned int ec       = ESR_ELx_EC(esr);
+	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
+
+	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
+		return false;
+
+	if (fsc_type == ESR_ELx_FSC_PERM)
+		return true;
+
+	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
+		return fsc_type == ESR_ELx_FSC_FAULT &&
+			(regs->pstate & PSR_PAN_BIT);
+
+	return false;
+}
+
+static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
+							unsigned int esr,
+							struct pt_regs *regs)
+{
+	unsigned long flags;
+	u64 par, dfsc;
+
+	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
+	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
+		return false;
+
+	local_irq_save(flags);
+	asm volatile("at s1e1r, %0" :: "r" (addr));
+	isb();
+	par = read_sysreg(par_el1);
+	local_irq_restore(flags);
+
+	/*
+	 * If we now have a valid translation, treat the translation fault as
+	 * spurious.
+	 */
+	if (!(par & SYS_PAR_EL1_F))
+		return true;
+
+	/*
+	 * If we got a different type of fault from the AT instruction,
+	 * treat the translation fault as spurious.
+	 */
+	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
+	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
+}
+
+static void die_kernel_fault(const char *msg, unsigned long addr,
+			     unsigned int esr, struct pt_regs *regs)
+{
+	bust_spinlocks(1);
+
+	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
+		 addr);
+
+	mem_abort_decode(esr);
+
+	show_pte(addr);
+	die("Oops", regs, esr);
+	bust_spinlocks(0);
+	make_task_dead(SIGKILL);
+}
+
+static void __do_kernel_fault(unsigned long addr, unsigned int esr,
+			      struct pt_regs *regs)
+{
+	const char *msg;
+
+	/*
+	 * Are we prepared to handle this kernel fault?
+	 * We are almost certainly not prepared to handle instruction faults.
+	 */
+	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
+		return;
+
+	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
+	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
+		return;
+
+	if (is_el1_permission_fault(addr, esr, regs)) {
+		if (esr & ESR_ELx_WNR)
+			msg = "write to read-only memory";
+		else
+			msg = "read from unreadable memory";
+	} else if (addr < PAGE_SIZE) {
+		msg = "NULL pointer dereference";
+	} else {
+		if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
+			return;
+
+		msg = "paging request";
+	}
+
+	die_kernel_fault(msg, addr, esr, regs);
+}
+
+static void set_thread_esr(unsigned long address, unsigned int esr)
+{
+	current->thread.fault_address = address;
+
+	/*
+	 * If the faulting address is in the kernel, we must sanitize the ESR.
+	 * From userspace's point of view, kernel-only mappings don't exist
+	 * at all, so we report them as level 0 translation faults.
+	 * (This is not quite the way that "no mapping there at all" behaves:
+	 * an alignment fault not caused by the memory type would take
+	 * precedence over translation fault for a real access to empty
+	 * space. Unfortunately we can't easily distinguish "alignment fault
+	 * not caused by memory type" from "alignment fault caused by memory
+	 * type", so we ignore this wrinkle and just return the translation
+	 * fault.)
+	 */
+	if (!is_ttbr0_addr(current->thread.fault_address)) {
+		switch (ESR_ELx_EC(esr)) {
+		case ESR_ELx_EC_DABT_LOW:
+			/*
+			 * These bits provide only information about the
+			 * faulting instruction, which userspace knows already.
+			 * We explicitly clear bits which are architecturally
+			 * RES0 in case they are given meanings in future.
+			 * We always report the ESR as if the fault was taken
+			 * to EL1 and so ISV and the bits in ISS[23:14] are
+			 * clear. (In fact it always will be a fault to EL1.)
+			 */
+			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
+				ESR_ELx_CM | ESR_ELx_WNR;
+			esr |= ESR_ELx_FSC_FAULT;
+			break;
+		case ESR_ELx_EC_IABT_LOW:
+			/*
+			 * Claim a level 0 translation fault.
+			 * All other bits are architecturally RES0 for faults
+			 * reported with that DFSC value, so we clear them.
+			 */
+			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
+			esr |= ESR_ELx_FSC_FAULT;
+			break;
+		default:
+			/*
+			 * This should never happen (entry.S only brings us
+			 * into this code for insn and data aborts from a lower
+			 * exception level). Fail safe by not providing an ESR
+			 * context record at all.
+			 */
+			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
+			esr = 0;
+			break;
+		}
+	}
+
+	current->thread.fault_code = esr;
+}
+
+static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
+{
+	/*
+	 * If we are in kernel mode at this point, we have no context to
+	 * handle this fault with.
+	 */
+	if (user_mode(regs)) {
+		const struct fault_info *inf = esr_to_fault_info(esr);
+
+		set_thread_esr(addr, esr);
+		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
+				      inf->name);
+	} else {
+		__do_kernel_fault(addr, esr, regs);
+	}
+}
+
+#define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
+#define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
+
+static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
+			   unsigned int mm_flags, unsigned long vm_flags)
+{
+	struct vm_area_struct *vma = find_vma(mm, addr);
+
+	if (unlikely(!vma))
+		return VM_FAULT_BADMAP;
+
+	/*
+	 * Ok, we have a good vm_area for this memory access, so we can handle
+	 * it.
+	 */
+	if (unlikely(vma->vm_start > addr)) {
+		if (!(vma->vm_flags & VM_GROWSDOWN))
+			return VM_FAULT_BADMAP;
+		if (expand_stack(vma, addr))
+			return VM_FAULT_BADMAP;
+	}
+
+	/*
+	 * Check that the permissions on the VMA allow for the fault which
+	 * occurred.
+	 */
+	if (!(vma->vm_flags & vm_flags))
+		return VM_FAULT_BADACCESS;
+	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
+}
+
+static bool is_el0_instruction_abort(unsigned int esr)
+{
+	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
+}
+
+/*
+ * Note: not valid for EL1 DC IVAC, but we never use that such that it
+ * should fault. EL0 cannot issue DC IVAC (undef).
+ */
+static bool is_write_abort(unsigned int esr)
+{
+	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
+}
+
+static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
+				   struct pt_regs *regs)
+{
+	const struct fault_info *inf;
+	struct mm_struct *mm = current->mm;
+	vm_fault_t fault, major = 0;
+	unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
+	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
+
+	if (kprobe_page_fault(regs, esr))
+		return 0;
+
+	/*
+	 * If we're in an interrupt or have no user context, we must not take
+	 * the fault.
+	 */
+	if (faulthandler_disabled() || !mm)
+		goto no_context;
+
+	if (user_mode(regs))
+		mm_flags |= FAULT_FLAG_USER;
+
+	if (is_el0_instruction_abort(esr)) {
+		vm_flags = VM_EXEC;
+		mm_flags |= FAULT_FLAG_INSTRUCTION;
+	} else if (is_write_abort(esr)) {
+		vm_flags = VM_WRITE;
+		mm_flags |= FAULT_FLAG_WRITE;
+	}
+
+	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
+		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
+		if (regs->orig_addr_limit == KERNEL_DS)
+			die_kernel_fault("access to user memory with fs=KERNEL_DS",
+					 addr, esr, regs);
+
+		if (is_el1_instruction_abort(esr))
+			die_kernel_fault("execution of user memory",
+					 addr, esr, regs);
+
+		if (!search_exception_tables(regs->pc))
+			die_kernel_fault("access to user memory outside uaccess routines",
+					 addr, esr, regs);
+	}
+
+	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
+
+	/*
+	 * As per x86, we may deadlock here. However, since the kernel only
+	 * validly references user space from well defined areas of the code,
+	 * we can bug out early if this is from code which shouldn't.
+	 */
+	if (!down_read_trylock(&mm->mmap_sem)) {
+		if (!user_mode(regs) && !search_exception_tables(regs->pc))
+			goto no_context;
+retry:
+		down_read(&mm->mmap_sem);
+	} else {
+		/*
+		 * The above down_read_trylock() might have succeeded in which
+		 * case, we'll have missed the might_sleep() from down_read().
+		 */
+		might_sleep();
+#ifdef CONFIG_DEBUG_VM
+		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
+			up_read(&mm->mmap_sem);
+			goto no_context;
+		}
+#endif
+	}
+
+	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
+	major |= fault & VM_FAULT_MAJOR;
+
+	/* Quick path to respond to signals */
+	if (fault_signal_pending(fault, regs)) {
+		if (!user_mode(regs))
+			goto no_context;
+		return 0;
+	}
+
+	if (fault & VM_FAULT_RETRY) {
+		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
+			mm_flags |= FAULT_FLAG_TRIED;
+			goto retry;
+		}
+	}
+	up_read(&mm->mmap_sem);
+
+	/*
+	 * Handle the "normal" (no error) case first.
+	 */
+	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
+			      VM_FAULT_BADACCESS)))) {
+		/*
+		 * Major/minor page fault accounting is only done
+		 * once. If we go through a retry, it is extremely
+		 * likely that the page will be found in page cache at
+		 * that point.
+		 */
+		if (major) {
+			current->maj_flt++;
+			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
+				      addr);
+		} else {
+			current->min_flt++;
+			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
+				      addr);
+		}
+
+		return 0;
+	}
+
+	/*
+	 * If we are in kernel mode at this point, we have no context to
+	 * handle this fault with.
+	 */
+	if (!user_mode(regs))
+		goto no_context;
+
+	if (fault & VM_FAULT_OOM) {
+		/*
+		 * We ran out of memory, call the OOM killer, and return to
+		 * userspace (which will retry the fault, or kill us if we got
+		 * oom-killed).
+		 */
+		pagefault_out_of_memory();
+		return 0;
+	}
+
+	inf = esr_to_fault_info(esr);
+	set_thread_esr(addr, esr);
+	if (fault & VM_FAULT_SIGBUS) {
+		/*
+		 * We had some memory, but were unable to successfully fix up
+		 * this page fault.
+		 */
+		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
+				      inf->name);
+	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
+		unsigned int lsb;
+
+		lsb = PAGE_SHIFT;
+		if (fault & VM_FAULT_HWPOISON_LARGE)
+			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
+
+		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
+				       inf->name);
+	} else {
+		/*
+		 * Something tried to access memory that isn't in our memory
+		 * map.
+		 */
+		arm64_force_sig_fault(SIGSEGV,
+				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
+				      (void __user *)addr,
+				      inf->name);
+	}
+
+	return 0;
+
+no_context:
+	__do_kernel_fault(addr, esr, regs);
+	return 0;
+}
+
+static int __kprobes do_translation_fault(unsigned long addr,
+					  unsigned int esr,
+					  struct pt_regs *regs)
+{
+	if (is_ttbr0_addr(addr))
+		return do_page_fault(addr, esr, regs);
+
+	do_bad_area(addr, esr, regs);
+	return 0;
+}
+
+static int do_alignment_fault(unsigned long addr, unsigned int esr,
+			      struct pt_regs *regs)
+{
+	do_bad_area(addr, esr, regs);
+	return 0;
+}
+
+static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
+{
+	return 1; /* "fault" */
+}
+
+static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
+{
+	const struct fault_info *inf;
+	void __user *siaddr;
+
+	inf = esr_to_fault_info(esr);
+
+	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
+		/*
+		 * APEI claimed this as a firmware-first notification.
+		 * Some processing deferred to task_work before ret_to_user().
+		 */
+		return 0;
+	}
+
+	if (esr & ESR_ELx_FnV)
+		siaddr = NULL;
+	else
+		siaddr  = (void __user *)addr;
+	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
+
+	return 0;
+}
+
+static const struct fault_info fault_info[] = {
+	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
+	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
+	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
+	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
+	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
+	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
+	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
+	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
+	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
+	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
+	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
+	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
+	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
+	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
+	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
+	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
+	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
+};
+
+asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
+					 struct pt_regs *regs)
+{
+	const struct fault_info *inf = esr_to_fault_info(esr);
+
+	if (!inf->fn(addr, esr, regs))
+		return;
+
+	if (!user_mode(regs)) {
+		pr_alert("Unhandled fault at 0x%016lx\n", addr);
+		mem_abort_decode(esr);
+		show_pte(addr);
+	}
+
+	arm64_notify_die(inf->name, regs,
+			 inf->sig, inf->code, (void __user *)addr, esr);
+}
+
+asmlinkage void __exception do_el0_irq_bp_hardening(void)
+{
+	/* PC has already been checked in entry.S */
+	arm64_apply_bp_hardening();
+}
+
+asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
+						   unsigned int esr,
+						   struct pt_regs *regs)
+{
+	/*
+	 * We've taken an instruction abort from userspace and not yet
+	 * re-enabled IRQs. If the address is a kernel address, apply
+	 * BP hardening prior to enabling IRQs and pre-emption.
+	 */
+	if (!is_ttbr0_addr(addr))
+		arm64_apply_bp_hardening();
+
+	local_daif_restore(DAIF_PROCCTX);
+	do_mem_abort(addr, esr, regs);
+}
+
+
+asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
+					   unsigned int esr,
+					   struct pt_regs *regs)
+{
+	if (user_mode(regs)) {
+		if (!is_ttbr0_addr(instruction_pointer(regs)))
+			arm64_apply_bp_hardening();
+		local_daif_restore(DAIF_PROCCTX);
+	}
+
+	arm64_notify_die("SP/PC alignment exception", regs,
+			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
+}
+
+int __init early_brk64(unsigned long addr, unsigned int esr,
+		       struct pt_regs *regs);
+
+/*
+ * __refdata because early_brk64 is __init, but the reference to it is
+ * clobbered at arch_initcall time.
+ * See traps.c and debug-monitors.c:debug_traps_init().
+ */
+static struct fault_info __refdata debug_fault_info[] = {
+	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
+	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
+	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
+	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
+	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
+	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
+	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
+	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
+};
+
+void __init hook_debug_fault_code(int nr,
+				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
+				  int sig, int code, const char *name)
+{
+	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
+
+	debug_fault_info[nr].fn		= fn;
+	debug_fault_info[nr].sig	= sig;
+	debug_fault_info[nr].code	= code;
+	debug_fault_info[nr].name	= name;
+}
+
+/*
+ * In debug exception context, we explicitly disable preemption despite
+ * having interrupts disabled.
+ * This serves two purposes: it makes it much less likely that we would
+ * accidentally schedule in exception context and it will force a warning
+ * if we somehow manage to schedule by accident.
+ */
+static void debug_exception_enter(struct pt_regs *regs)
+{
+	/*
+	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
+	 * already disabled to preserve the last enabled/disabled addresses.
+	 */
+	if (interrupts_enabled(regs))
+		trace_hardirqs_off();
+
+	if (user_mode(regs)) {
+		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
+	} else {
+		/*
+		 * We might have interrupted pretty much anything.  In
+		 * fact, if we're a debug exception, we can even interrupt
+		 * NMI processing. We don't want this code makes in_nmi()
+		 * to return true, but we need to notify RCU.
+		 */
+		rcu_nmi_enter();
+	}
+
+	preempt_disable();
+
+	/* This code is a bit fragile.  Test it. */
+	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
+}
+NOKPROBE_SYMBOL(debug_exception_enter);
+
+static void debug_exception_exit(struct pt_regs *regs)
+{
+	preempt_enable_no_resched();
+
+	if (!user_mode(regs))
+		rcu_nmi_exit();
+
+	if (interrupts_enabled(regs))
+		trace_hardirqs_on();
+}
+NOKPROBE_SYMBOL(debug_exception_exit);
+
+#ifdef CONFIG_ARM64_ERRATUM_1463225
+DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
+
+static int __exception
+cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
+{
+	if (user_mode(regs))
+		return 0;
+
+	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
+		return 0;
+
+	/*
+	 * We've taken a dummy step exception from the kernel to ensure
+	 * that interrupts are re-enabled on the syscall path. Return back
+	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
+	 * masked so that we can safely restore the mdscr and get on with
+	 * handling the syscall.
+	 */
+	regs->pstate |= PSR_D_BIT;
+	return 1;
+}
+#else
+static int __exception
+cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
+{
+	return 0;
+}
+#endif /* CONFIG_ARM64_ERRATUM_1463225 */
+
+asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
+					       unsigned int esr,
+					       struct pt_regs *regs)
+{
+	const struct fault_info *inf = esr_to_debug_fault_info(esr);
+	unsigned long pc = instruction_pointer(regs);
+
+	if (cortex_a76_erratum_1463225_debug_handler(regs))
+		return;
+
+	debug_exception_enter(regs);
+
+	if (user_mode(regs) && !is_ttbr0_addr(pc))
+		arm64_apply_bp_hardening();
+
+	if (inf->fn(addr_if_watchpoint, esr, regs)) {
+		arm64_notify_die(inf->name, regs,
+				 inf->sig, inf->code, (void __user *)pc, esr);
+	}
+
+	debug_exception_exit(regs);
+}
+NOKPROBE_SYMBOL(do_debug_exception);