ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/arm64/mm/init.c b/marvell/linux/arch/arm64/mm/init.c
new file mode 100644
index 0000000..cbcac03
--- /dev/null
+++ b/marvell/linux/arch/arm64/mm/init.c
@@ -0,0 +1,620 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Based on arch/arm/mm/init.c
+ *
+ * Copyright (C) 1995-2005 Russell King
+ * Copyright (C) 2012 ARM Ltd.
+ */
+
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/errno.h>
+#include <linux/swap.h>
+#include <linux/init.h>
+#include <linux/cache.h>
+#include <linux/mman.h>
+#include <linux/nodemask.h>
+#include <linux/initrd.h>
+#include <linux/gfp.h>
+#include <linux/memblock.h>
+#include <linux/sort.h>
+#include <linux/of.h>
+#include <linux/of_fdt.h>
+#include <linux/dma-mapping.h>
+#include <linux/dma-contiguous.h>
+#include <linux/efi.h>
+#include <linux/swiotlb.h>
+#include <linux/vmalloc.h>
+#include <linux/mm.h>
+#include <linux/kexec.h>
+#include <linux/crash_dump.h>
+
+#include <asm/boot.h>
+#include <asm/fixmap.h>
+#include <asm/kasan.h>
+#include <asm/kernel-pgtable.h>
+#include <asm/memory.h>
+#include <asm/numa.h>
+#include <asm/sections.h>
+#include <asm/setup.h>
+#include <linux/sizes.h>
+#include <asm/tlb.h>
+#include <asm/alternative.h>
+
+/*
+ * We need to be able to catch inadvertent references to memstart_addr
+ * that occur (potentially in generic code) before arm64_memblock_init()
+ * executes, which assigns it its actual value. So use a default value
+ * that cannot be mistaken for a real physical address.
+ */
+s64 memstart_addr __ro_after_init = -1;
+EXPORT_SYMBOL(memstart_addr);
+
+phys_addr_t arm64_dma_phys_limit __ro_after_init;
+
+#ifdef CONFIG_KEXEC_CORE
+/*
+ * reserve_crashkernel() - reserves memory for crash kernel
+ *
+ * This function reserves memory area given in "crashkernel=" kernel command
+ * line parameter. The memory reserved is used by dump capture kernel when
+ * primary kernel is crashing.
+ */
+static void __init reserve_crashkernel(void)
+{
+	unsigned long long crash_base, crash_size;
+	int ret;
+
+	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
+				&crash_size, &crash_base);
+	/* no crashkernel= or invalid value specified */
+	if (ret || !crash_size)
+		return;
+
+	crash_size = PAGE_ALIGN(crash_size);
+
+	if (crash_base == 0) {
+		/* Current arm64 boot protocol requires 2MB alignment */
+		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
+				crash_size, SZ_2M);
+		if (crash_base == 0) {
+			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
+				crash_size);
+			return;
+		}
+	} else {
+		/* User specifies base address explicitly. */
+		if (!memblock_is_region_memory(crash_base, crash_size)) {
+			pr_warn("cannot reserve crashkernel: region is not memory\n");
+			return;
+		}
+
+		if (memblock_is_region_reserved(crash_base, crash_size)) {
+			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
+			return;
+		}
+
+		if (!IS_ALIGNED(crash_base, SZ_2M)) {
+			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
+			return;
+		}
+	}
+	memblock_reserve(crash_base, crash_size);
+
+	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
+		crash_base, crash_base + crash_size, crash_size >> 20);
+
+	crashk_res.start = crash_base;
+	crashk_res.end = crash_base + crash_size - 1;
+}
+#else
+static void __init reserve_crashkernel(void)
+{
+}
+#endif /* CONFIG_KEXEC_CORE */
+
+#ifdef CONFIG_CRASH_DUMP
+static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
+		const char *uname, int depth, void *data)
+{
+	const __be32 *reg;
+	int len;
+
+	if (depth != 1 || strcmp(uname, "chosen") != 0)
+		return 0;
+
+	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
+	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
+		return 1;
+
+	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
+	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
+
+	return 1;
+}
+
+/*
+ * reserve_elfcorehdr() - reserves memory for elf core header
+ *
+ * This function reserves the memory occupied by an elf core header
+ * described in the device tree. This region contains all the
+ * information about primary kernel's core image and is used by a dump
+ * capture kernel to access the system memory on primary kernel.
+ */
+static void __init reserve_elfcorehdr(void)
+{
+	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
+
+	if (!elfcorehdr_size)
+		return;
+
+	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
+		pr_warn("elfcorehdr is overlapped\n");
+		return;
+	}
+
+	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
+
+	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
+		elfcorehdr_size >> 10, elfcorehdr_addr);
+}
+#else
+static void __init reserve_elfcorehdr(void)
+{
+}
+#endif /* CONFIG_CRASH_DUMP */
+/*
+ * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
+ * currently assumes that for memory starting above 4G, 32-bit devices will
+ * use a DMA offset.
+ */
+static phys_addr_t __init max_zone_dma_phys(void)
+{
+	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
+	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
+}
+
+#ifdef CONFIG_NUMA
+
+static void __init zone_sizes_init(unsigned long min, unsigned long max)
+{
+	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
+
+#ifdef CONFIG_ZONE_DMA32
+	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
+#endif
+	max_zone_pfns[ZONE_NORMAL] = max;
+
+	free_area_init_nodes(max_zone_pfns);
+}
+
+#else
+
+static void __init zone_sizes_init(unsigned long min, unsigned long max)
+{
+	struct memblock_region *reg;
+	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
+	unsigned long max_dma = min;
+
+	memset(zone_size, 0, sizeof(zone_size));
+
+	/* 4GB maximum for 32-bit only capable devices */
+#ifdef CONFIG_ZONE_DMA32
+	max_dma = PFN_DOWN(arm64_dma_phys_limit);
+	zone_size[ZONE_DMA32] = max_dma - min;
+#endif
+	zone_size[ZONE_NORMAL] = max - max_dma;
+
+	memcpy(zhole_size, zone_size, sizeof(zhole_size));
+
+	for_each_memblock(memory, reg) {
+		unsigned long start = memblock_region_memory_base_pfn(reg);
+		unsigned long end = memblock_region_memory_end_pfn(reg);
+
+		if (start >= max)
+			continue;
+
+#ifdef CONFIG_ZONE_DMA32
+		if (start < max_dma) {
+			unsigned long dma_end = min(end, max_dma);
+			zhole_size[ZONE_DMA32] -= dma_end - start;
+		}
+#endif
+		if (end > max_dma) {
+			unsigned long normal_end = min(end, max);
+			unsigned long normal_start = max(start, max_dma);
+			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
+		}
+	}
+
+	free_area_init_node(0, zone_size, min, zhole_size);
+}
+
+#endif /* CONFIG_NUMA */
+
+int pfn_valid(unsigned long pfn)
+{
+	phys_addr_t addr = pfn << PAGE_SHIFT;
+
+	if ((addr >> PAGE_SHIFT) != pfn)
+		return 0;
+
+#ifdef CONFIG_SPARSEMEM
+	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
+		return 0;
+
+	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
+		return 0;
+
+	/*
+	 * ZONE_DEVICE memory does not have the memblock entries.
+	 * memblock_is_map_memory() check for ZONE_DEVICE based
+	 * addresses will always fail. Even the normal hotplugged
+	 * memory will never have MEMBLOCK_NOMAP flag set in their
+	 * memblock entries. Skip memblock search for all non early
+	 * memory sections covering all of hotplug memory including
+	 * both normal and ZONE_DEVICE based.
+	 */
+	if (!early_section(__pfn_to_section(pfn)))
+		return pfn_section_valid(__pfn_to_section(pfn), pfn);
+#endif
+	return memblock_is_map_memory(addr);
+}
+EXPORT_SYMBOL(pfn_valid);
+
+static phys_addr_t memory_limit = PHYS_ADDR_MAX;
+
+/*
+ * Limit the memory size that was specified via FDT.
+ */
+static int __init early_mem(char *p)
+{
+	if (!p)
+		return 1;
+
+	memory_limit = memparse(p, &p) & PAGE_MASK;
+	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
+
+	return 0;
+}
+early_param("mem", early_mem);
+
+static int __init early_init_dt_scan_usablemem(unsigned long node,
+		const char *uname, int depth, void *data)
+{
+	struct memblock_region *usablemem = data;
+	const __be32 *reg;
+	int len;
+
+	if (depth != 1 || strcmp(uname, "chosen") != 0)
+		return 0;
+
+	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
+	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
+		return 1;
+
+	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
+	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
+
+	return 1;
+}
+
+static void __init fdt_enforce_memory_region(void)
+{
+	struct memblock_region reg = {
+		.size = 0,
+	};
+
+	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
+
+	if (reg.size)
+		memblock_cap_memory_range(reg.base, reg.size);
+}
+
+void __init arm64_memblock_init(void)
+{
+	const s64 linear_region_size = BIT(vabits_actual - 1);
+
+	/* Handle linux,usable-memory-range property */
+	fdt_enforce_memory_region();
+
+	/* Remove memory above our supported physical address size */
+	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
+
+	/*
+	 * Select a suitable value for the base of physical memory.
+	 */
+	memstart_addr = round_down(memblock_start_of_DRAM(),
+				   ARM64_MEMSTART_ALIGN);
+
+	/*
+	 * Remove the memory that we will not be able to cover with the
+	 * linear mapping. Take care not to clip the kernel which may be
+	 * high in memory.
+	 */
+	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
+			__pa_symbol(_end)), ULLONG_MAX);
+	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
+		/* ensure that memstart_addr remains sufficiently aligned */
+		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
+					 ARM64_MEMSTART_ALIGN);
+		memblock_remove(0, memstart_addr);
+	}
+
+	/*
+	 * If we are running with a 52-bit kernel VA config on a system that
+	 * does not support it, we have to place the available physical
+	 * memory in the 48-bit addressable part of the linear region, i.e.,
+	 * we have to move it upward. Since memstart_addr represents the
+	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
+	 */
+	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
+		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
+
+	/*
+	 * Apply the memory limit if it was set. Since the kernel may be loaded
+	 * high up in memory, add back the kernel region that must be accessible
+	 * via the linear mapping.
+	 */
+	if (memory_limit != PHYS_ADDR_MAX) {
+		memblock_mem_limit_remove_map(memory_limit);
+		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
+	}
+
+	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
+		/*
+		 * Add back the memory we just removed if it results in the
+		 * initrd to become inaccessible via the linear mapping.
+		 * Otherwise, this is a no-op
+		 */
+		u64 base = phys_initrd_start & PAGE_MASK;
+		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
+
+		/*
+		 * We can only add back the initrd memory if we don't end up
+		 * with more memory than we can address via the linear mapping.
+		 * It is up to the bootloader to position the kernel and the
+		 * initrd reasonably close to each other (i.e., within 32 GB of
+		 * each other) so that all granule/#levels combinations can
+		 * always access both.
+		 */
+		if (WARN(base < memblock_start_of_DRAM() ||
+			 base + size > memblock_start_of_DRAM() +
+				       linear_region_size,
+			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
+			phys_initrd_size = 0;
+		} else {
+			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
+			memblock_add(base, size);
+			memblock_reserve(base, size);
+		}
+	}
+
+	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
+		extern u16 memstart_offset_seed;
+		u64 range = linear_region_size -
+			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
+
+		/*
+		 * If the size of the linear region exceeds, by a sufficient
+		 * margin, the size of the region that the available physical
+		 * memory spans, randomize the linear region as well.
+		 */
+		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
+			range /= ARM64_MEMSTART_ALIGN;
+			memstart_addr -= ARM64_MEMSTART_ALIGN *
+					 ((range * memstart_offset_seed) >> 16);
+		}
+	}
+
+	/*
+	 * Register the kernel text, kernel data, initrd, and initial
+	 * pagetables with memblock.
+	 */
+	memblock_reserve(__pa_symbol(_text), _end - _text);
+	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
+		/* the generic initrd code expects virtual addresses */
+		initrd_start = __phys_to_virt(phys_initrd_start);
+		initrd_end = initrd_start + phys_initrd_size;
+	}
+
+	early_init_fdt_scan_reserved_mem();
+
+	/* 4GB maximum for 32-bit only capable devices */
+	if (IS_ENABLED(CONFIG_ZONE_DMA32))
+		arm64_dma_phys_limit = max_zone_dma_phys();
+	else
+		arm64_dma_phys_limit = PHYS_MASK + 1;
+
+	reserve_crashkernel();
+
+	reserve_elfcorehdr();
+
+	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
+
+	dma_contiguous_reserve(arm64_dma_phys_limit);
+}
+
+void __init bootmem_init(void)
+{
+	unsigned long min, max;
+
+	min = PFN_UP(memblock_start_of_DRAM());
+	max = PFN_DOWN(memblock_end_of_DRAM());
+
+	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
+
+	max_pfn = max_low_pfn = max;
+	min_low_pfn = min;
+
+	arm64_numa_init();
+	/*
+	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
+	 * done after the fixed reservations.
+	 */
+	memblocks_present();
+
+	sparse_init();
+	zone_sizes_init(min, max);
+
+	memblock_dump_all();
+}
+
+#ifndef CONFIG_SPARSEMEM_VMEMMAP
+static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
+{
+	struct page *start_pg, *end_pg;
+	unsigned long pg, pgend;
+
+	/*
+	 * Convert start_pfn/end_pfn to a struct page pointer.
+	 */
+	start_pg = pfn_to_page(start_pfn - 1) + 1;
+	end_pg = pfn_to_page(end_pfn - 1) + 1;
+
+	/*
+	 * Convert to physical addresses, and round start upwards and end
+	 * downwards.
+	 */
+	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
+	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
+
+	/*
+	 * If there are free pages between these, free the section of the
+	 * memmap array.
+	 */
+	if (pg < pgend)
+		memblock_free(pg, pgend - pg);
+}
+
+/*
+ * The mem_map array can get very big. Free the unused area of the memory map.
+ */
+static void __init free_unused_memmap(void)
+{
+	unsigned long start, prev_end = 0;
+	struct memblock_region *reg;
+
+	for_each_memblock(memory, reg) {
+		start = __phys_to_pfn(reg->base);
+
+#ifdef CONFIG_SPARSEMEM
+		/*
+		 * Take care not to free memmap entries that don't exist due
+		 * to SPARSEMEM sections which aren't present.
+		 */
+		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
+#endif
+		/*
+		 * If we had a previous bank, and there is a space between the
+		 * current bank and the previous, free it.
+		 */
+		if (prev_end && prev_end < start)
+			free_memmap(prev_end, start);
+
+		/*
+		 * Align up here since the VM subsystem insists that the
+		 * memmap entries are valid from the bank end aligned to
+		 * MAX_ORDER_NR_PAGES.
+		 */
+		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
+				 MAX_ORDER_NR_PAGES);
+	}
+
+#ifdef CONFIG_SPARSEMEM
+	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
+		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
+#endif
+}
+#endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
+
+/*
+ * mem_init() marks the free areas in the mem_map and tells us how much memory
+ * is free.  This is done after various parts of the system have claimed their
+ * memory after the kernel image.
+ */
+void __init mem_init(void)
+{
+	if (swiotlb_force == SWIOTLB_FORCE ||
+	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
+		swiotlb_init(1);
+	else
+		swiotlb_force = SWIOTLB_NO_FORCE;
+
+	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
+
+#ifndef CONFIG_SPARSEMEM_VMEMMAP
+	free_unused_memmap();
+#endif
+	/* this will put all unused low memory onto the freelists */
+	memblock_free_all();
+
+	mem_init_print_info(NULL);
+
+	/*
+	 * Check boundaries twice: Some fundamental inconsistencies can be
+	 * detected at build time already.
+	 */
+#ifdef CONFIG_COMPAT
+	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
+#endif
+
+	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
+		extern int sysctl_overcommit_memory;
+		/*
+		 * On a machine this small we won't get anywhere without
+		 * overcommit, so turn it on by default.
+		 */
+		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
+	}
+}
+
+void free_initmem(void)
+{
+	free_reserved_area(lm_alias(__init_begin),
+			   lm_alias(__init_end),
+			   0, "unused kernel");
+	/*
+	 * Unmap the __init region but leave the VM area in place. This
+	 * prevents the region from being reused for kernel modules, which
+	 * is not supported by kallsyms.
+	 */
+	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
+}
+
+#ifdef CONFIG_BLK_DEV_INITRD
+void __init free_initrd_mem(unsigned long start, unsigned long end)
+{
+	unsigned long aligned_start, aligned_end;
+
+	aligned_start = __virt_to_phys(start) & PAGE_MASK;
+	aligned_end = PAGE_ALIGN(__virt_to_phys(end));
+	memblock_free(aligned_start, aligned_end - aligned_start);
+	free_reserved_area((void *)start, (void *)end, 0, "initrd");
+}
+#endif
+
+/*
+ * Dump out memory limit information on panic.
+ */
+static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
+{
+	if (memory_limit != PHYS_ADDR_MAX) {
+		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
+	} else {
+		pr_emerg("Memory Limit: none\n");
+	}
+	return 0;
+}
+
+static struct notifier_block mem_limit_notifier = {
+	.notifier_call = dump_mem_limit,
+};
+
+static int __init register_mem_limit_dumper(void)
+{
+	atomic_notifier_chain_register(&panic_notifier_list,
+				       &mem_limit_notifier);
+	return 0;
+}
+__initcall(register_mem_limit_dumper);