ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/mips/include/asm/octeon/cvmx-wqe.h b/marvell/linux/arch/mips/include/asm/octeon/cvmx-wqe.h
new file mode 100644
index 0000000..0d697aa
--- /dev/null
+++ b/marvell/linux/arch/mips/include/asm/octeon/cvmx-wqe.h
@@ -0,0 +1,658 @@
+/***********************license start***************
+ * Author: Cavium Networks
+ *
+ * Contact: support@caviumnetworks.com
+ * This file is part of the OCTEON SDK
+ *
+ * Copyright (c) 2003-2008 Cavium Networks
+ *
+ * This file is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, Version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful, but
+ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
+ * NONINFRINGEMENT.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this file; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * or visit http://www.gnu.org/licenses/.
+ *
+ * This file may also be available under a different license from Cavium.
+ * Contact Cavium Networks for more information
+ ***********************license end**************************************/
+
+/**
+ *
+ * This header file defines the work queue entry (wqe) data structure.
+ * Since this is a commonly used structure that depends on structures
+ * from several hardware blocks, those definitions have been placed
+ * in this file to create a single point of definition of the wqe
+ * format.
+ * Data structures are still named according to the block that they
+ * relate to.
+ *
+ */
+
+#ifndef __CVMX_WQE_H__
+#define __CVMX_WQE_H__
+
+#include <asm/octeon/cvmx-packet.h>
+
+
+#define OCT_TAG_TYPE_STRING(x)						\
+	(((x) == CVMX_POW_TAG_TYPE_ORDERED) ?  "ORDERED" :		\
+		(((x) == CVMX_POW_TAG_TYPE_ATOMIC) ?  "ATOMIC" :	\
+			(((x) == CVMX_POW_TAG_TYPE_NULL) ?  "NULL" :	\
+				"NULL_NULL")))
+
+/**
+ * HW decode / err_code in work queue entry
+ */
+typedef union {
+	uint64_t u64;
+
+	/* Use this struct if the hardware determines that the packet is IP */
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		/* HW sets this to the number of buffers used by this packet */
+		uint64_t bufs:8;
+		/* HW sets to the number of L2 bytes prior to the IP */
+		uint64_t ip_offset:8;
+		/* set to 1 if we found DSA/VLAN in the L2 */
+		uint64_t vlan_valid:1;
+		/* Set to 1 if the DSA/VLAN tag is stacked */
+		uint64_t vlan_stacked:1;
+		uint64_t unassigned:1;
+		/* HW sets to the DSA/VLAN CFI flag (valid when vlan_valid) */
+		uint64_t vlan_cfi:1;
+		/* HW sets to the DSA/VLAN_ID field (valid when vlan_valid) */
+		uint64_t vlan_id:12;
+		/* Ring Identifier (if PCIe). Requires PIP_GBL_CTL[RING_EN]=1 */
+		uint64_t pr:4;
+		uint64_t unassigned2:8;
+		/* the packet needs to be decompressed */
+		uint64_t dec_ipcomp:1;
+		/* the packet is either TCP or UDP */
+		uint64_t tcp_or_udp:1;
+		/* the packet needs to be decrypted (ESP or AH) */
+		uint64_t dec_ipsec:1;
+		/* the packet is IPv6 */
+		uint64_t is_v6:1;
+
+		/*
+		 * (rcv_error, not_IP, IP_exc, is_frag, L4_error,
+		 * software, etc.).
+		 */
+
+		/*
+		 * reserved for software use, hardware will clear on
+		 * packet creation.
+		 */
+		uint64_t software:1;
+		/* exceptional conditions below */
+		/* the receive interface hardware detected an L4 error
+		 * (only applies if !is_frag) (only applies if
+		 * !rcv_error && !not_IP && !IP_exc && !is_frag)
+		 * failure indicated in err_code below, decode:
+		 *
+		 * - 1 = Malformed L4
+		 * - 2 = L4 Checksum Error: the L4 checksum value is
+		 * - 3 = UDP Length Error: The UDP length field would
+		 *	 make the UDP data longer than what remains in
+		 *	 the IP packet (as defined by the IP header
+		 *	 length field).
+		 * - 4 = Bad L4 Port: either the source or destination
+		 *	 TCP/UDP port is 0.
+		 * - 8 = TCP FIN Only: the packet is TCP and only the
+		 *	 FIN flag set.
+		 * - 9 = TCP No Flags: the packet is TCP and no flags
+		 *	 are set.
+		 * - 10 = TCP FIN RST: the packet is TCP and both FIN
+		 *	  and RST are set.
+		 * - 11 = TCP SYN URG: the packet is TCP and both SYN
+		 *	  and URG are set.
+		 * - 12 = TCP SYN RST: the packet is TCP and both SYN
+		 *	  and RST are set.
+		 * - 13 = TCP SYN FIN: the packet is TCP and both SYN
+		 *	  and FIN are set.
+		 */
+		uint64_t L4_error:1;
+		/* set if the packet is a fragment */
+		uint64_t is_frag:1;
+		/* the receive interface hardware detected an IP error
+		 * / exception (only applies if !rcv_error && !not_IP)
+		 * failure indicated in err_code below, decode:
+		 *
+		 * - 1 = Not IP: the IP version field is neither 4 nor
+		 *	 6.
+		 * - 2 = IPv4 Header Checksum Error: the IPv4 header
+		 *	 has a checksum violation.
+		 * - 3 = IP Malformed Header: the packet is not long
+		 *	 enough to contain the IP header.
+		 * - 4 = IP Malformed: the packet is not long enough
+		 *	 to contain the bytes indicated by the IP
+		 *	 header. Pad is allowed.
+		 * - 5 = IP TTL Hop: the IPv4 TTL field or the IPv6
+		 *	 Hop Count field are zero.
+		 * - 6 = IP Options
+		 */
+		uint64_t IP_exc:1;
+		/*
+		 * Set if the hardware determined that the packet is a
+		 * broadcast.
+		 */
+		uint64_t is_bcast:1;
+		/*
+		 * St if the hardware determined that the packet is a
+		 * multi-cast.
+		 */
+		uint64_t is_mcast:1;
+		/*
+		 * Set if the packet may not be IP (must be zero in
+		 * this case).
+		 */
+		uint64_t not_IP:1;
+		/*
+		 * The receive interface hardware detected a receive
+		 * error (must be zero in this case).
+		 */
+		uint64_t rcv_error:1;
+		/* lower err_code = first-level descriptor of the
+		 * work */
+		/* zero for packet submitted by hardware that isn't on
+		 * the slow path */
+		/* type is cvmx_pip_err_t */
+		uint64_t err_code:8;
+#else
+	        uint64_t err_code:8;
+	        uint64_t rcv_error:1;
+	        uint64_t not_IP:1;
+	        uint64_t is_mcast:1;
+	        uint64_t is_bcast:1;
+	        uint64_t IP_exc:1;
+	        uint64_t is_frag:1;
+	        uint64_t L4_error:1;
+	        uint64_t software:1;
+	        uint64_t is_v6:1;
+	        uint64_t dec_ipsec:1;
+	        uint64_t tcp_or_udp:1;
+	        uint64_t dec_ipcomp:1;
+	        uint64_t unassigned2:4;
+	        uint64_t unassigned2a:4;
+	        uint64_t pr:4;
+	        uint64_t vlan_id:12;
+	        uint64_t vlan_cfi:1;
+	        uint64_t unassigned:1;
+	        uint64_t vlan_stacked:1;
+	        uint64_t vlan_valid:1;
+	        uint64_t ip_offset:8;
+	        uint64_t bufs:8;
+#endif
+	} s;
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		uint64_t bufs:8;
+		uint64_t ip_offset:8;
+		uint64_t vlan_valid:1;
+		uint64_t vlan_stacked:1;
+		uint64_t unassigned:1;
+		uint64_t vlan_cfi:1;
+		uint64_t vlan_id:12;
+		uint64_t port:12;		/* MAC/PIP port number. */
+		uint64_t dec_ipcomp:1;
+		uint64_t tcp_or_udp:1;
+		uint64_t dec_ipsec:1;
+		uint64_t is_v6:1;
+		uint64_t software:1;
+		uint64_t L4_error:1;
+		uint64_t is_frag:1;
+		uint64_t IP_exc:1;
+		uint64_t is_bcast:1;
+		uint64_t is_mcast:1;
+		uint64_t not_IP:1;
+		uint64_t rcv_error:1;
+		uint64_t err_code:8;
+#else
+		uint64_t err_code:8;
+		uint64_t rcv_error:1;
+		uint64_t not_IP:1;
+		uint64_t is_mcast:1;
+		uint64_t is_bcast:1;
+		uint64_t IP_exc:1;
+		uint64_t is_frag:1;
+		uint64_t L4_error:1;
+		uint64_t software:1;
+		uint64_t is_v6:1;
+		uint64_t dec_ipsec:1;
+		uint64_t tcp_or_udp:1;
+		uint64_t dec_ipcomp:1;
+		uint64_t port:12;
+		uint64_t vlan_id:12;
+		uint64_t vlan_cfi:1;
+		uint64_t unassigned:1;
+		uint64_t vlan_stacked:1;
+		uint64_t vlan_valid:1;
+		uint64_t ip_offset:8;
+		uint64_t bufs:8;
+#endif
+	} s_cn68xx;
+
+	/* use this to get at the 16 vlan bits */
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		uint64_t unused1:16;
+		uint64_t vlan:16;
+		uint64_t unused2:32;
+#else
+	        uint64_t unused2:32;
+	        uint64_t vlan:16;
+	        uint64_t unused1:16;
+
+#endif
+	} svlan;
+
+	/*
+	 * use this struct if the hardware could not determine that
+	 * the packet is ip.
+	 */
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		/*
+		 * HW sets this to the number of buffers used by this
+		 * packet.
+		 */
+		uint64_t bufs:8;
+		uint64_t unused:8;
+		/* set to 1 if we found DSA/VLAN in the L2 */
+		uint64_t vlan_valid:1;
+		/* Set to 1 if the DSA/VLAN tag is stacked */
+		uint64_t vlan_stacked:1;
+		uint64_t unassigned:1;
+		/*
+		 * HW sets to the DSA/VLAN CFI flag (valid when
+		 * vlan_valid)
+		 */
+		uint64_t vlan_cfi:1;
+		/*
+		 * HW sets to the DSA/VLAN_ID field (valid when
+		 * vlan_valid).
+		 */
+		uint64_t vlan_id:12;
+		/*
+		 * Ring Identifier (if PCIe). Requires
+		 * PIP_GBL_CTL[RING_EN]=1
+		 */
+		uint64_t pr:4;
+		uint64_t unassigned2:12;
+		/*
+		 * reserved for software use, hardware will clear on
+		 * packet creation.
+		 */
+		uint64_t software:1;
+		uint64_t unassigned3:1;
+		/*
+		 * set if the hardware determined that the packet is
+		 * rarp.
+		 */
+		uint64_t is_rarp:1;
+		/*
+		 * set if the hardware determined that the packet is
+		 * arp
+		 */
+		uint64_t is_arp:1;
+		/*
+		 * set if the hardware determined that the packet is a
+		 * broadcast.
+		 */
+		uint64_t is_bcast:1;
+		/*
+		 * set if the hardware determined that the packet is a
+		 * multi-cast
+		 */
+		uint64_t is_mcast:1;
+		/*
+		 * set if the packet may not be IP (must be one in
+		 * this case)
+		 */
+		uint64_t not_IP:1;
+		/* The receive interface hardware detected a receive
+		 * error.  Failure indicated in err_code below,
+		 * decode:
+		 *
+		 * - 1 = partial error: a packet was partially
+		 *	 received, but internal buffering / bandwidth
+		 *	 was not adequate to receive the entire
+		 *	 packet.
+		 * - 2 = jabber error: the RGMII packet was too large
+		 *	 and is truncated.
+		 * - 3 = overrun error: the RGMII packet is longer
+		 *	 than allowed and had an FCS error.
+		 * - 4 = oversize error: the RGMII packet is longer
+		 *	 than allowed.
+		 * - 5 = alignment error: the RGMII packet is not an
+		 *	 integer number of bytes
+		 *	 and had an FCS error (100M and 10M only).
+		 * - 6 = fragment error: the RGMII packet is shorter
+		 *	 than allowed and had an FCS error.
+		 * - 7 = GMX FCS error: the RGMII packet had an FCS
+		 *	 error.
+		 * - 8 = undersize error: the RGMII packet is shorter
+		 *	 than allowed.
+		 * - 9 = extend error: the RGMII packet had an extend
+		 *	 error.
+		 * - 10 = length mismatch error: the RGMII packet had
+		 *	  a length that did not match the length field
+		 *	  in the L2 HDR.
+		 * - 11 = RGMII RX error/SPI4 DIP4 Error: the RGMII
+		 *	  packet had one or more data reception errors
+		 *	  (RXERR) or the SPI4 packet had one or more
+		 *	  DIP4 errors.
+		 * - 12 = RGMII skip error/SPI4 Abort Error: the RGMII
+		 *	  packet was not large enough to cover the
+		 *	  skipped bytes or the SPI4 packet was
+		 *	  terminated with an About EOPS.
+		 * - 13 = RGMII nibble error/SPI4 Port NXA Error: the
+		 *	  RGMII packet had a studder error (data not
+		 *	  repeated - 10/100M only) or the SPI4 packet
+		 *	  was sent to an NXA.
+		 * - 16 = FCS error: a SPI4.2 packet had an FCS error.
+		 * - 17 = Skip error: a packet was not large enough to
+		 *	  cover the skipped bytes.
+		 * - 18 = L2 header malformed: the packet is not long
+		 *	  enough to contain the L2.
+		 */
+
+		uint64_t rcv_error:1;
+		/*
+		 * lower err_code = first-level descriptor of the
+		 * work
+		 */
+		/*
+		 * zero for packet submitted by hardware that isn't on
+		 * the slow path
+		 */
+		/* type is cvmx_pip_err_t (union, so can't use directly */
+		uint64_t err_code:8;
+#else
+	        uint64_t err_code:8;
+	        uint64_t rcv_error:1;
+	        uint64_t not_IP:1;
+	        uint64_t is_mcast:1;
+	        uint64_t is_bcast:1;
+	        uint64_t is_arp:1;
+	        uint64_t is_rarp:1;
+	        uint64_t unassigned3:1;
+	        uint64_t software:1;
+	        uint64_t unassigned2:4;
+	        uint64_t unassigned2a:8;
+	        uint64_t pr:4;
+	        uint64_t vlan_id:12;
+	        uint64_t vlan_cfi:1;
+	        uint64_t unassigned:1;
+	        uint64_t vlan_stacked:1;
+	        uint64_t vlan_valid:1;
+	        uint64_t unused:8;
+	        uint64_t bufs:8;
+#endif
+	} snoip;
+
+} cvmx_pip_wqe_word2;
+
+union cvmx_pip_wqe_word0 {
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		/**
+		 * raw chksum result generated by the HW
+		 */
+		uint16_t hw_chksum;
+		/**
+		 * Field unused by hardware - available for software
+		 */
+		uint8_t unused;
+		/**
+		 * Next pointer used by hardware for list maintenance.
+		 * May be written/read by HW before the work queue
+		 * entry is scheduled to a PP (Only 36 bits used in
+		 * Octeon 1)
+		 */
+		uint64_t next_ptr:40;
+#else
+		uint64_t next_ptr:40;
+		uint8_t unused;
+		uint16_t hw_chksum;
+#endif
+	} cn38xx;
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		uint64_t l4ptr:8;       /* 56..63 */
+		uint64_t unused0:8;     /* 48..55 */
+		uint64_t l3ptr:8;       /* 40..47 */
+		uint64_t l2ptr:8;       /* 32..39 */
+		uint64_t unused1:18;    /* 14..31 */
+		uint64_t bpid:6;        /* 8..13 */
+		uint64_t unused2:2;     /* 6..7 */
+		uint64_t pknd:6;        /* 0..5 */
+#else
+		uint64_t pknd:6;        /* 0..5 */
+		uint64_t unused2:2;     /* 6..7 */
+		uint64_t bpid:6;        /* 8..13 */
+		uint64_t unused1:18;    /* 14..31 */
+		uint64_t l2ptr:8;       /* 32..39 */
+		uint64_t l3ptr:8;       /* 40..47 */
+		uint64_t unused0:8;     /* 48..55 */
+		uint64_t l4ptr:8;       /* 56..63 */
+#endif
+	} cn68xx;
+};
+
+union cvmx_wqe_word0 {
+	uint64_t u64;
+	union cvmx_pip_wqe_word0 pip;
+};
+
+union cvmx_wqe_word1 {
+	uint64_t u64;
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		uint64_t len:16;
+		uint64_t varies:14;
+		/**
+		 * the type of the tag (ORDERED, ATOMIC, NULL)
+		 */
+		uint64_t tag_type:2;
+		uint64_t tag:32;
+#else
+		uint64_t tag:32;
+		uint64_t tag_type:2;
+		uint64_t varies:14;
+		uint64_t len:16;
+#endif
+	};
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		uint64_t len:16;
+		uint64_t zero_0:1;
+		/**
+		 * HW sets this to what it thought the priority of
+		 * the input packet was
+		 */
+		uint64_t qos:3;
+
+		uint64_t zero_1:1;
+		/**
+		 * the group that the work queue entry will be scheduled to
+		 */
+		uint64_t grp:6;
+		uint64_t zero_2:3;
+		uint64_t tag_type:2;
+		uint64_t tag:32;
+#else
+		uint64_t tag:32;
+		uint64_t tag_type:2;
+		uint64_t zero_2:3;
+		uint64_t grp:6;
+		uint64_t zero_1:1;
+		uint64_t qos:3;
+		uint64_t zero_0:1;
+		uint64_t len:16;
+#endif
+	} cn68xx;
+	struct {
+#ifdef __BIG_ENDIAN_BITFIELD
+		/**
+		 * HW sets to the total number of bytes in the packet
+		 */
+		uint64_t len:16;
+		/**
+		 * HW sets this to input physical port
+		 */
+		uint64_t ipprt:6;
+
+		/**
+		 * HW sets this to what it thought the priority of
+		 * the input packet was
+		 */
+		uint64_t qos:3;
+
+		/**
+		 * the group that the work queue entry will be scheduled to
+		 */
+		uint64_t grp:4;
+		/**
+		 * the type of the tag (ORDERED, ATOMIC, NULL)
+		 */
+		uint64_t tag_type:3;
+		/**
+		 * the synchronization/ordering tag
+		 */
+		uint64_t tag:32;
+#else
+		uint64_t tag:32;
+		uint64_t tag_type:2;
+		uint64_t zero_2:1;
+		uint64_t grp:4;
+		uint64_t qos:3;
+		uint64_t ipprt:6;
+		uint64_t len:16;
+#endif
+	} cn38xx;
+};
+
+/**
+ * Work queue entry format
+ *
+ * must be 8-byte aligned
+ */
+typedef struct {
+
+    /*****************************************************************
+     * WORD 0
+     *	HW WRITE: the following 64 bits are filled by HW when a packet arrives
+     */
+	union cvmx_wqe_word0 word0;
+
+    /*****************************************************************
+     * WORD 1
+     *	HW WRITE: the following 64 bits are filled by HW when a packet arrives
+     */
+	union cvmx_wqe_word1 word1;
+
+    /**
+     * WORD 2 HW WRITE: the following 64-bits are filled in by
+     *	 hardware when a packet arrives This indicates a variety of
+     *	 status and error conditions.
+     */
+	cvmx_pip_wqe_word2 word2;
+
+    /**
+     * Pointer to the first segment of the packet.
+     */
+	union cvmx_buf_ptr packet_ptr;
+
+    /**
+     *	 HW WRITE: octeon will fill in a programmable amount from the
+     *		   packet, up to (at most, but perhaps less) the amount
+     *		   needed to fill the work queue entry to 128 bytes
+     *
+     *	 If the packet is recognized to be IP, the hardware starts
+     *	 (except that the IPv4 header is padded for appropriate
+     *	 alignment) writing here where the IP header starts.  If the
+     *	 packet is not recognized to be IP, the hardware starts
+     *	 writing the beginning of the packet here.
+     */
+	uint8_t packet_data[96];
+
+    /**
+     * If desired, SW can make the work Q entry any length. For the
+     * purposes of discussion here, Assume 128B always, as this is all that
+     * the hardware deals with.
+     *
+     */
+
+} CVMX_CACHE_LINE_ALIGNED cvmx_wqe_t;
+
+static inline int cvmx_wqe_get_port(cvmx_wqe_t *work)
+{
+	int port;
+
+	if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE))
+		port = work->word2.s_cn68xx.port;
+	else
+		port = work->word1.cn38xx.ipprt;
+
+	return port;
+}
+
+static inline void cvmx_wqe_set_port(cvmx_wqe_t *work, int port)
+{
+	if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE))
+		work->word2.s_cn68xx.port = port;
+	else
+		work->word1.cn38xx.ipprt = port;
+}
+
+static inline int cvmx_wqe_get_grp(cvmx_wqe_t *work)
+{
+	int grp;
+
+	if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE))
+		grp = work->word1.cn68xx.grp;
+	else
+		grp = work->word1.cn38xx.grp;
+
+	return grp;
+}
+
+static inline void cvmx_wqe_set_grp(cvmx_wqe_t *work, int grp)
+{
+	if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE))
+		work->word1.cn68xx.grp = grp;
+	else
+		work->word1.cn38xx.grp = grp;
+}
+
+static inline int cvmx_wqe_get_qos(cvmx_wqe_t *work)
+{
+	int qos;
+
+	if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE))
+		qos = work->word1.cn68xx.qos;
+	else
+		qos = work->word1.cn38xx.qos;
+
+	return qos;
+}
+
+static inline void cvmx_wqe_set_qos(cvmx_wqe_t *work, int qos)
+{
+	if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE))
+		work->word1.cn68xx.qos = qos;
+	else
+		work->word1.cn38xx.qos = qos;
+}
+
+#endif /* __CVMX_WQE_H__ */