ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/x86/kernel/cpu/common.c b/marvell/linux/arch/x86/kernel/cpu/common.c
new file mode 100644
index 0000000..ae9d8aa
--- /dev/null
+++ b/marvell/linux/arch/x86/kernel/cpu/common.c
@@ -0,0 +1,2248 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* cpu_feature_enabled() cannot be used this early */
+#define USE_EARLY_PGTABLE_L5
+
+#include <linux/memblock.h>
+#include <linux/linkage.h>
+#include <linux/bitops.h>
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/percpu.h>
+#include <linux/string.h>
+#include <linux/ctype.h>
+#include <linux/delay.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/clock.h>
+#include <linux/sched/task.h>
+#include <linux/init.h>
+#include <linux/kprobes.h>
+#include <linux/kgdb.h>
+#include <linux/mem_encrypt.h>
+#include <linux/smp.h>
+#include <linux/cpu.h>
+#include <linux/io.h>
+#include <linux/syscore_ops.h>
+
+#include <asm/stackprotector.h>
+#include <linux/utsname.h>
+
+#include <asm/alternative.h>
+#include <asm/perf_event.h>
+#include <asm/mmu_context.h>
+#include <asm/archrandom.h>
+#include <asm/hypervisor.h>
+#include <asm/processor.h>
+#include <asm/tlbflush.h>
+#include <asm/debugreg.h>
+#include <asm/sections.h>
+#include <asm/vsyscall.h>
+#include <linux/topology.h>
+#include <linux/cpumask.h>
+#include <asm/pgtable.h>
+#include <linux/atomic.h>
+#include <asm/proto.h>
+#include <asm/setup.h>
+#include <asm/apic.h>
+#include <asm/desc.h>
+#include <asm/fpu/internal.h>
+#include <asm/mtrr.h>
+#include <asm/hwcap2.h>
+#include <linux/numa.h>
+#include <asm/asm.h>
+#include <asm/bugs.h>
+#include <asm/cpu.h>
+#include <asm/mce.h>
+#include <asm/msr.h>
+#include <asm/pat.h>
+#include <asm/microcode.h>
+#include <asm/microcode_intel.h>
+#include <asm/intel-family.h>
+#include <asm/cpu_device_id.h>
+
+#ifdef CONFIG_X86_LOCAL_APIC
+#include <asm/uv/uv.h>
+#endif
+#include <asm/set_memory.h>
+
+#include "cpu.h"
+
+u32 elf_hwcap2 __read_mostly;
+
+/* all of these masks are initialized in setup_cpu_local_masks() */
+cpumask_var_t cpu_initialized_mask;
+cpumask_var_t cpu_callout_mask;
+cpumask_var_t cpu_callin_mask;
+
+/* representing cpus for which sibling maps can be computed */
+cpumask_var_t cpu_sibling_setup_mask;
+
+/* Number of siblings per CPU package */
+int smp_num_siblings = 1;
+EXPORT_SYMBOL(smp_num_siblings);
+
+/* Last level cache ID of each logical CPU */
+DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
+
+/* correctly size the local cpu masks */
+void __init setup_cpu_local_masks(void)
+{
+	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
+	alloc_bootmem_cpumask_var(&cpu_callin_mask);
+	alloc_bootmem_cpumask_var(&cpu_callout_mask);
+	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
+}
+
+static void default_init(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_X86_64
+	cpu_detect_cache_sizes(c);
+#else
+	/* Not much we can do here... */
+	/* Check if at least it has cpuid */
+	if (c->cpuid_level == -1) {
+		/* No cpuid. It must be an ancient CPU */
+		if (c->x86 == 4)
+			strcpy(c->x86_model_id, "486");
+		else if (c->x86 == 3)
+			strcpy(c->x86_model_id, "386");
+	}
+#endif
+}
+
+static const struct cpu_dev default_cpu = {
+	.c_init		= default_init,
+	.c_vendor	= "Unknown",
+	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
+};
+
+static const struct cpu_dev *this_cpu = &default_cpu;
+
+DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
+#ifdef CONFIG_X86_64
+	/*
+	 * We need valid kernel segments for data and code in long mode too
+	 * IRET will check the segment types  kkeil 2000/10/28
+	 * Also sysret mandates a special GDT layout
+	 *
+	 * TLS descriptors are currently at a different place compared to i386.
+	 * Hopefully nobody expects them at a fixed place (Wine?)
+	 */
+	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
+	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
+	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
+	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
+	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
+	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
+#else
+	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
+	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
+	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
+	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
+	/*
+	 * Segments used for calling PnP BIOS have byte granularity.
+	 * They code segments and data segments have fixed 64k limits,
+	 * the transfer segment sizes are set at run time.
+	 */
+	/* 32-bit code */
+	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
+	/* 16-bit code */
+	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
+	/* 16-bit data */
+	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
+	/* 16-bit data */
+	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
+	/* 16-bit data */
+	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
+	/*
+	 * The APM segments have byte granularity and their bases
+	 * are set at run time.  All have 64k limits.
+	 */
+	/* 32-bit code */
+	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
+	/* 16-bit code */
+	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
+	/* data */
+	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
+
+	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
+	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
+	GDT_STACK_CANARY_INIT
+#endif
+} };
+EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
+
+static int __init x86_mpx_setup(char *s)
+{
+	/* require an exact match without trailing characters */
+	if (strlen(s))
+		return 0;
+
+	/* do not emit a message if the feature is not present */
+	if (!boot_cpu_has(X86_FEATURE_MPX))
+		return 1;
+
+	setup_clear_cpu_cap(X86_FEATURE_MPX);
+	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
+	return 1;
+}
+__setup("nompx", x86_mpx_setup);
+
+#ifdef CONFIG_X86_64
+static int __init x86_nopcid_setup(char *s)
+{
+	/* nopcid doesn't accept parameters */
+	if (s)
+		return -EINVAL;
+
+	/* do not emit a message if the feature is not present */
+	if (!boot_cpu_has(X86_FEATURE_PCID))
+		return 0;
+
+	setup_clear_cpu_cap(X86_FEATURE_PCID);
+	pr_info("nopcid: PCID feature disabled\n");
+	return 0;
+}
+early_param("nopcid", x86_nopcid_setup);
+#endif
+
+static int __init x86_noinvpcid_setup(char *s)
+{
+	/* noinvpcid doesn't accept parameters */
+	if (s)
+		return -EINVAL;
+
+	/* do not emit a message if the feature is not present */
+	if (!boot_cpu_has(X86_FEATURE_INVPCID))
+		return 0;
+
+	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
+	pr_info("noinvpcid: INVPCID feature disabled\n");
+	return 0;
+}
+early_param("noinvpcid", x86_noinvpcid_setup);
+
+#ifdef CONFIG_X86_32
+static int cachesize_override = -1;
+static int disable_x86_serial_nr = 1;
+
+static int __init cachesize_setup(char *str)
+{
+	get_option(&str, &cachesize_override);
+	return 1;
+}
+__setup("cachesize=", cachesize_setup);
+
+static int __init x86_sep_setup(char *s)
+{
+	setup_clear_cpu_cap(X86_FEATURE_SEP);
+	return 1;
+}
+__setup("nosep", x86_sep_setup);
+
+/* Standard macro to see if a specific flag is changeable */
+static inline int flag_is_changeable_p(u32 flag)
+{
+	u32 f1, f2;
+
+	/*
+	 * Cyrix and IDT cpus allow disabling of CPUID
+	 * so the code below may return different results
+	 * when it is executed before and after enabling
+	 * the CPUID. Add "volatile" to not allow gcc to
+	 * optimize the subsequent calls to this function.
+	 */
+	asm volatile ("pushfl		\n\t"
+		      "pushfl		\n\t"
+		      "popl %0		\n\t"
+		      "movl %0, %1	\n\t"
+		      "xorl %2, %0	\n\t"
+		      "pushl %0		\n\t"
+		      "popfl		\n\t"
+		      "pushfl		\n\t"
+		      "popl %0		\n\t"
+		      "popfl		\n\t"
+
+		      : "=&r" (f1), "=&r" (f2)
+		      : "ir" (flag));
+
+	return ((f1^f2) & flag) != 0;
+}
+
+/* Probe for the CPUID instruction */
+int have_cpuid_p(void)
+{
+	return flag_is_changeable_p(X86_EFLAGS_ID);
+}
+
+static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
+{
+	unsigned long lo, hi;
+
+	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
+		return;
+
+	/* Disable processor serial number: */
+
+	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
+	lo |= 0x200000;
+	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
+
+	pr_notice("CPU serial number disabled.\n");
+	clear_cpu_cap(c, X86_FEATURE_PN);
+
+	/* Disabling the serial number may affect the cpuid level */
+	c->cpuid_level = cpuid_eax(0);
+}
+
+static int __init x86_serial_nr_setup(char *s)
+{
+	disable_x86_serial_nr = 0;
+	return 1;
+}
+__setup("serialnumber", x86_serial_nr_setup);
+#else
+static inline int flag_is_changeable_p(u32 flag)
+{
+	return 1;
+}
+static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
+{
+}
+#endif
+
+static __init int setup_disable_smep(char *arg)
+{
+	setup_clear_cpu_cap(X86_FEATURE_SMEP);
+	/* Check for things that depend on SMEP being enabled: */
+	check_mpx_erratum(&boot_cpu_data);
+	return 1;
+}
+__setup("nosmep", setup_disable_smep);
+
+static __always_inline void setup_smep(struct cpuinfo_x86 *c)
+{
+	if (cpu_has(c, X86_FEATURE_SMEP))
+		cr4_set_bits(X86_CR4_SMEP);
+}
+
+static __init int setup_disable_smap(char *arg)
+{
+	setup_clear_cpu_cap(X86_FEATURE_SMAP);
+	return 1;
+}
+__setup("nosmap", setup_disable_smap);
+
+static __always_inline void setup_smap(struct cpuinfo_x86 *c)
+{
+	unsigned long eflags = native_save_fl();
+
+	/* This should have been cleared long ago */
+	BUG_ON(eflags & X86_EFLAGS_AC);
+
+	if (cpu_has(c, X86_FEATURE_SMAP)) {
+#ifdef CONFIG_X86_SMAP
+		cr4_set_bits(X86_CR4_SMAP);
+#else
+		cr4_clear_bits(X86_CR4_SMAP);
+#endif
+	}
+}
+
+static __always_inline void setup_umip(struct cpuinfo_x86 *c)
+{
+	/* Check the boot processor, plus build option for UMIP. */
+	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
+		goto out;
+
+	/* Check the current processor's cpuid bits. */
+	if (!cpu_has(c, X86_FEATURE_UMIP))
+		goto out;
+
+	cr4_set_bits(X86_CR4_UMIP);
+
+	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
+
+	return;
+
+out:
+	/*
+	 * Make sure UMIP is disabled in case it was enabled in a
+	 * previous boot (e.g., via kexec).
+	 */
+	cr4_clear_bits(X86_CR4_UMIP);
+}
+
+/* These bits should not change their value after CPU init is finished. */
+static const unsigned long cr4_pinned_mask =
+	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
+static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
+static unsigned long cr4_pinned_bits __ro_after_init;
+
+void native_write_cr0(unsigned long val)
+{
+	unsigned long bits_missing = 0;
+
+set_register:
+	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
+
+	if (static_branch_likely(&cr_pinning)) {
+		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
+			bits_missing = X86_CR0_WP;
+			val |= bits_missing;
+			goto set_register;
+		}
+		/* Warn after we've set the missing bits. */
+		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
+	}
+}
+EXPORT_SYMBOL(native_write_cr0);
+
+void native_write_cr4(unsigned long val)
+{
+	unsigned long bits_changed = 0;
+
+set_register:
+	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
+
+	if (static_branch_likely(&cr_pinning)) {
+		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
+			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
+			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
+			goto set_register;
+		}
+		/* Warn after we've corrected the changed bits. */
+		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
+			  bits_changed);
+	}
+}
+EXPORT_SYMBOL(native_write_cr4);
+
+void cr4_init(void)
+{
+	unsigned long cr4 = __read_cr4();
+
+	if (boot_cpu_has(X86_FEATURE_PCID))
+		cr4 |= X86_CR4_PCIDE;
+	if (static_branch_likely(&cr_pinning))
+		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
+
+	__write_cr4(cr4);
+
+	/* Initialize cr4 shadow for this CPU. */
+	this_cpu_write(cpu_tlbstate.cr4, cr4);
+}
+
+/*
+ * Once CPU feature detection is finished (and boot params have been
+ * parsed), record any of the sensitive CR bits that are set, and
+ * enable CR pinning.
+ */
+static void __init setup_cr_pinning(void)
+{
+	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
+	static_key_enable(&cr_pinning.key);
+}
+
+/*
+ * Protection Keys are not available in 32-bit mode.
+ */
+static bool pku_disabled;
+
+static __always_inline void setup_pku(struct cpuinfo_x86 *c)
+{
+	/* check the boot processor, plus compile options for PKU: */
+	if (!cpu_feature_enabled(X86_FEATURE_PKU))
+		return;
+	/* checks the actual processor's cpuid bits: */
+	if (!cpu_has(c, X86_FEATURE_PKU))
+		return;
+	if (pku_disabled)
+		return;
+
+	cr4_set_bits(X86_CR4_PKE);
+	/*
+	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
+	 * cpuid bit to be set.  We need to ensure that we
+	 * update that bit in this CPU's "cpu_info".
+	 */
+	set_cpu_cap(c, X86_FEATURE_OSPKE);
+}
+
+#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
+static __init int setup_disable_pku(char *arg)
+{
+	/*
+	 * Do not clear the X86_FEATURE_PKU bit.  All of the
+	 * runtime checks are against OSPKE so clearing the
+	 * bit does nothing.
+	 *
+	 * This way, we will see "pku" in cpuinfo, but not
+	 * "ospke", which is exactly what we want.  It shows
+	 * that the CPU has PKU, but the OS has not enabled it.
+	 * This happens to be exactly how a system would look
+	 * if we disabled the config option.
+	 */
+	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
+	pku_disabled = true;
+	return 1;
+}
+__setup("nopku", setup_disable_pku);
+#endif /* CONFIG_X86_64 */
+
+/*
+ * Some CPU features depend on higher CPUID levels, which may not always
+ * be available due to CPUID level capping or broken virtualization
+ * software.  Add those features to this table to auto-disable them.
+ */
+struct cpuid_dependent_feature {
+	u32 feature;
+	u32 level;
+};
+
+static const struct cpuid_dependent_feature
+cpuid_dependent_features[] = {
+	{ X86_FEATURE_MWAIT,		0x00000005 },
+	{ X86_FEATURE_DCA,		0x00000009 },
+	{ X86_FEATURE_XSAVE,		0x0000000d },
+	{ 0, 0 }
+};
+
+static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
+{
+	const struct cpuid_dependent_feature *df;
+
+	for (df = cpuid_dependent_features; df->feature; df++) {
+
+		if (!cpu_has(c, df->feature))
+			continue;
+		/*
+		 * Note: cpuid_level is set to -1 if unavailable, but
+		 * extended_extended_level is set to 0 if unavailable
+		 * and the legitimate extended levels are all negative
+		 * when signed; hence the weird messing around with
+		 * signs here...
+		 */
+		if (!((s32)df->level < 0 ?
+		     (u32)df->level > (u32)c->extended_cpuid_level :
+		     (s32)df->level > (s32)c->cpuid_level))
+			continue;
+
+		clear_cpu_cap(c, df->feature);
+		if (!warn)
+			continue;
+
+		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
+			x86_cap_flag(df->feature), df->level);
+	}
+}
+
+/*
+ * Naming convention should be: <Name> [(<Codename>)]
+ * This table only is used unless init_<vendor>() below doesn't set it;
+ * in particular, if CPUID levels 0x80000002..4 are supported, this
+ * isn't used
+ */
+
+/* Look up CPU names by table lookup. */
+static const char *table_lookup_model(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_X86_32
+	const struct legacy_cpu_model_info *info;
+
+	if (c->x86_model >= 16)
+		return NULL;	/* Range check */
+
+	if (!this_cpu)
+		return NULL;
+
+	info = this_cpu->legacy_models;
+
+	while (info->family) {
+		if (info->family == c->x86)
+			return info->model_names[c->x86_model];
+		info++;
+	}
+#endif
+	return NULL;		/* Not found */
+}
+
+__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
+__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
+
+void load_percpu_segment(int cpu)
+{
+#ifdef CONFIG_X86_32
+	loadsegment(fs, __KERNEL_PERCPU);
+#else
+	__loadsegment_simple(gs, 0);
+	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
+#endif
+	load_stack_canary_segment();
+}
+
+#ifdef CONFIG_X86_32
+/* The 32-bit entry code needs to find cpu_entry_area. */
+DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
+#endif
+
+/* Load the original GDT from the per-cpu structure */
+void load_direct_gdt(int cpu)
+{
+	struct desc_ptr gdt_descr;
+
+	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
+	gdt_descr.size = GDT_SIZE - 1;
+	load_gdt(&gdt_descr);
+}
+EXPORT_SYMBOL_GPL(load_direct_gdt);
+
+/* Load a fixmap remapping of the per-cpu GDT */
+void load_fixmap_gdt(int cpu)
+{
+	struct desc_ptr gdt_descr;
+
+	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
+	gdt_descr.size = GDT_SIZE - 1;
+	load_gdt(&gdt_descr);
+}
+EXPORT_SYMBOL_GPL(load_fixmap_gdt);
+
+/*
+ * Current gdt points %fs at the "master" per-cpu area: after this,
+ * it's on the real one.
+ */
+void switch_to_new_gdt(int cpu)
+{
+	/* Load the original GDT */
+	load_direct_gdt(cpu);
+	/* Reload the per-cpu base */
+	load_percpu_segment(cpu);
+}
+
+static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
+
+static void get_model_name(struct cpuinfo_x86 *c)
+{
+	unsigned int *v;
+	char *p, *q, *s;
+
+	if (c->extended_cpuid_level < 0x80000004)
+		return;
+
+	v = (unsigned int *)c->x86_model_id;
+	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
+	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
+	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
+	c->x86_model_id[48] = 0;
+
+	/* Trim whitespace */
+	p = q = s = &c->x86_model_id[0];
+
+	while (*p == ' ')
+		p++;
+
+	while (*p) {
+		/* Note the last non-whitespace index */
+		if (!isspace(*p))
+			s = q;
+
+		*q++ = *p++;
+	}
+
+	*(s + 1) = '\0';
+}
+
+void detect_num_cpu_cores(struct cpuinfo_x86 *c)
+{
+	unsigned int eax, ebx, ecx, edx;
+
+	c->x86_max_cores = 1;
+	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
+		return;
+
+	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
+	if (eax & 0x1f)
+		c->x86_max_cores = (eax >> 26) + 1;
+}
+
+void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
+{
+	unsigned int n, dummy, ebx, ecx, edx, l2size;
+
+	n = c->extended_cpuid_level;
+
+	if (n >= 0x80000005) {
+		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
+		c->x86_cache_size = (ecx>>24) + (edx>>24);
+#ifdef CONFIG_X86_64
+		/* On K8 L1 TLB is inclusive, so don't count it */
+		c->x86_tlbsize = 0;
+#endif
+	}
+
+	if (n < 0x80000006)	/* Some chips just has a large L1. */
+		return;
+
+	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
+	l2size = ecx >> 16;
+
+#ifdef CONFIG_X86_64
+	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
+#else
+	/* do processor-specific cache resizing */
+	if (this_cpu->legacy_cache_size)
+		l2size = this_cpu->legacy_cache_size(c, l2size);
+
+	/* Allow user to override all this if necessary. */
+	if (cachesize_override != -1)
+		l2size = cachesize_override;
+
+	if (l2size == 0)
+		return;		/* Again, no L2 cache is possible */
+#endif
+
+	c->x86_cache_size = l2size;
+}
+
+u16 __read_mostly tlb_lli_4k[NR_INFO];
+u16 __read_mostly tlb_lli_2m[NR_INFO];
+u16 __read_mostly tlb_lli_4m[NR_INFO];
+u16 __read_mostly tlb_lld_4k[NR_INFO];
+u16 __read_mostly tlb_lld_2m[NR_INFO];
+u16 __read_mostly tlb_lld_4m[NR_INFO];
+u16 __read_mostly tlb_lld_1g[NR_INFO];
+
+static void cpu_detect_tlb(struct cpuinfo_x86 *c)
+{
+	if (this_cpu->c_detect_tlb)
+		this_cpu->c_detect_tlb(c);
+
+	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
+		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
+		tlb_lli_4m[ENTRIES]);
+
+	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
+		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
+		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
+}
+
+int detect_ht_early(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_SMP
+	u32 eax, ebx, ecx, edx;
+
+	if (!cpu_has(c, X86_FEATURE_HT))
+		return -1;
+
+	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
+		return -1;
+
+	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
+		return -1;
+
+	cpuid(1, &eax, &ebx, &ecx, &edx);
+
+	smp_num_siblings = (ebx & 0xff0000) >> 16;
+	if (smp_num_siblings == 1)
+		pr_info_once("CPU0: Hyper-Threading is disabled\n");
+#endif
+	return 0;
+}
+
+void detect_ht(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_SMP
+	int index_msb, core_bits;
+
+	if (detect_ht_early(c) < 0)
+		return;
+
+	index_msb = get_count_order(smp_num_siblings);
+	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
+
+	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
+
+	index_msb = get_count_order(smp_num_siblings);
+
+	core_bits = get_count_order(c->x86_max_cores);
+
+	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
+				       ((1 << core_bits) - 1);
+#endif
+}
+
+static void get_cpu_vendor(struct cpuinfo_x86 *c)
+{
+	char *v = c->x86_vendor_id;
+	int i;
+
+	for (i = 0; i < X86_VENDOR_NUM; i++) {
+		if (!cpu_devs[i])
+			break;
+
+		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
+		    (cpu_devs[i]->c_ident[1] &&
+		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
+
+			this_cpu = cpu_devs[i];
+			c->x86_vendor = this_cpu->c_x86_vendor;
+			return;
+		}
+	}
+
+	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
+		    "CPU: Your system may be unstable.\n", v);
+
+	c->x86_vendor = X86_VENDOR_UNKNOWN;
+	this_cpu = &default_cpu;
+}
+
+void cpu_detect(struct cpuinfo_x86 *c)
+{
+	/* Get vendor name */
+	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
+	      (unsigned int *)&c->x86_vendor_id[0],
+	      (unsigned int *)&c->x86_vendor_id[8],
+	      (unsigned int *)&c->x86_vendor_id[4]);
+
+	c->x86 = 4;
+	/* Intel-defined flags: level 0x00000001 */
+	if (c->cpuid_level >= 0x00000001) {
+		u32 junk, tfms, cap0, misc;
+
+		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
+		c->x86		= x86_family(tfms);
+		c->x86_model	= x86_model(tfms);
+		c->x86_stepping	= x86_stepping(tfms);
+
+		if (cap0 & (1<<19)) {
+			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
+			c->x86_cache_alignment = c->x86_clflush_size;
+		}
+	}
+}
+
+static void apply_forced_caps(struct cpuinfo_x86 *c)
+{
+	int i;
+
+	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
+		c->x86_capability[i] &= ~cpu_caps_cleared[i];
+		c->x86_capability[i] |= cpu_caps_set[i];
+	}
+}
+
+static void init_speculation_control(struct cpuinfo_x86 *c)
+{
+	/*
+	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
+	 * and they also have a different bit for STIBP support. Also,
+	 * a hypervisor might have set the individual AMD bits even on
+	 * Intel CPUs, for finer-grained selection of what's available.
+	 */
+	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
+		set_cpu_cap(c, X86_FEATURE_IBRS);
+		set_cpu_cap(c, X86_FEATURE_IBPB);
+		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
+	}
+
+	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
+		set_cpu_cap(c, X86_FEATURE_STIBP);
+
+	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
+	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
+		set_cpu_cap(c, X86_FEATURE_SSBD);
+
+	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
+		set_cpu_cap(c, X86_FEATURE_IBRS);
+		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
+	}
+
+	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
+		set_cpu_cap(c, X86_FEATURE_IBPB);
+
+	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
+		set_cpu_cap(c, X86_FEATURE_STIBP);
+		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
+	}
+
+	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
+		set_cpu_cap(c, X86_FEATURE_SSBD);
+		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
+		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
+	}
+}
+
+static void init_cqm(struct cpuinfo_x86 *c)
+{
+	if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
+		c->x86_cache_max_rmid  = -1;
+		c->x86_cache_occ_scale = -1;
+		return;
+	}
+
+	/* will be overridden if occupancy monitoring exists */
+	c->x86_cache_max_rmid = cpuid_ebx(0xf);
+
+	if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
+	    cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
+	    cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
+		u32 eax, ebx, ecx, edx;
+
+		/* QoS sub-leaf, EAX=0Fh, ECX=1 */
+		cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
+
+		c->x86_cache_max_rmid  = ecx;
+		c->x86_cache_occ_scale = ebx;
+	}
+}
+
+void get_cpu_cap(struct cpuinfo_x86 *c)
+{
+	u32 eax, ebx, ecx, edx;
+
+	/* Intel-defined flags: level 0x00000001 */
+	if (c->cpuid_level >= 0x00000001) {
+		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
+
+		c->x86_capability[CPUID_1_ECX] = ecx;
+		c->x86_capability[CPUID_1_EDX] = edx;
+	}
+
+	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
+	if (c->cpuid_level >= 0x00000006)
+		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
+
+	/* Additional Intel-defined flags: level 0x00000007 */
+	if (c->cpuid_level >= 0x00000007) {
+		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
+		c->x86_capability[CPUID_7_0_EBX] = ebx;
+		c->x86_capability[CPUID_7_ECX] = ecx;
+		c->x86_capability[CPUID_7_EDX] = edx;
+
+		/* Check valid sub-leaf index before accessing it */
+		if (eax >= 1) {
+			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
+			c->x86_capability[CPUID_7_1_EAX] = eax;
+		}
+	}
+
+	/* Extended state features: level 0x0000000d */
+	if (c->cpuid_level >= 0x0000000d) {
+		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
+
+		c->x86_capability[CPUID_D_1_EAX] = eax;
+	}
+
+	/* AMD-defined flags: level 0x80000001 */
+	eax = cpuid_eax(0x80000000);
+	c->extended_cpuid_level = eax;
+
+	if ((eax & 0xffff0000) == 0x80000000) {
+		if (eax >= 0x80000001) {
+			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
+
+			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
+			c->x86_capability[CPUID_8000_0001_EDX] = edx;
+		}
+	}
+
+	if (c->extended_cpuid_level >= 0x80000007) {
+		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
+
+		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
+		c->x86_power = edx;
+	}
+
+	if (c->extended_cpuid_level >= 0x80000008) {
+		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
+		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
+	}
+
+	if (c->extended_cpuid_level >= 0x8000000a)
+		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
+
+	if (c->extended_cpuid_level >= 0x8000001f)
+		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
+
+	if (c->extended_cpuid_level >= 0x80000021)
+		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
+
+	init_scattered_cpuid_features(c);
+	init_speculation_control(c);
+	init_cqm(c);
+
+	/*
+	 * Clear/Set all flags overridden by options, after probe.
+	 * This needs to happen each time we re-probe, which may happen
+	 * several times during CPU initialization.
+	 */
+	apply_forced_caps(c);
+}
+
+void get_cpu_address_sizes(struct cpuinfo_x86 *c)
+{
+	u32 eax, ebx, ecx, edx;
+
+	if (c->extended_cpuid_level >= 0x80000008) {
+		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
+
+		c->x86_virt_bits = (eax >> 8) & 0xff;
+		c->x86_phys_bits = eax & 0xff;
+	}
+#ifdef CONFIG_X86_32
+	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
+		c->x86_phys_bits = 36;
+#endif
+	c->x86_cache_bits = c->x86_phys_bits;
+}
+
+static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_X86_32
+	int i;
+
+	/*
+	 * First of all, decide if this is a 486 or higher
+	 * It's a 486 if we can modify the AC flag
+	 */
+	if (flag_is_changeable_p(X86_EFLAGS_AC))
+		c->x86 = 4;
+	else
+		c->x86 = 3;
+
+	for (i = 0; i < X86_VENDOR_NUM; i++)
+		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
+			c->x86_vendor_id[0] = 0;
+			cpu_devs[i]->c_identify(c);
+			if (c->x86_vendor_id[0]) {
+				get_cpu_vendor(c);
+				break;
+			}
+		}
+#endif
+}
+
+#define NO_SPECULATION		BIT(0)
+#define NO_MELTDOWN		BIT(1)
+#define NO_SSB			BIT(2)
+#define NO_L1TF			BIT(3)
+#define NO_MDS			BIT(4)
+#define MSBDS_ONLY		BIT(5)
+#define NO_SWAPGS		BIT(6)
+#define NO_ITLB_MULTIHIT	BIT(7)
+#define NO_SPECTRE_V2		BIT(8)
+#define NO_EIBRS_PBRSB		BIT(9)
+#define NO_MMIO			BIT(10)
+
+#define VULNWL(_vendor, _family, _model, _whitelist)	\
+	{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
+
+#define VULNWL_INTEL(model, whitelist)		\
+	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
+
+#define VULNWL_AMD(family, whitelist)		\
+	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
+
+#define VULNWL_HYGON(family, whitelist)		\
+	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
+
+static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
+	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
+	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
+	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
+	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
+
+	/* Intel Family 6 */
+	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
+	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
+	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
+	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
+
+	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
+
+	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+
+	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
+
+	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
+	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
+
+	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
+	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
+	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
+
+	/*
+	 * Technically, swapgs isn't serializing on AMD (despite it previously
+	 * being documented as such in the APM).  But according to AMD, %gs is
+	 * updated non-speculatively, and the issuing of %gs-relative memory
+	 * operands will be blocked until the %gs update completes, which is
+	 * good enough for our purposes.
+	 */
+
+	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
+	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
+	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
+
+	/* AMD Family 0xf - 0x12 */
+	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
+	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
+	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
+	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
+
+	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
+	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
+	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
+
+	/* Zhaoxin Family 7 */
+	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_MMIO),
+	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_MMIO),
+	{}
+};
+
+#define VULNBL(vendor, family, model, blacklist)	\
+	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
+
+#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
+	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
+					    INTEL_FAM6_##model, steppings, \
+					    X86_FEATURE_ANY, issues)
+
+#define VULNBL_AMD(family, blacklist)		\
+	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
+
+#define VULNBL_HYGON(family, blacklist)		\
+	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
+
+#define SRBDS		BIT(0)
+/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
+#define MMIO		BIT(1)
+/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
+#define MMIO_SBDS	BIT(2)
+/* CPU is affected by RETbleed, speculating where you would not expect it */
+#define RETBLEED	BIT(3)
+/* CPU is affected by SMT (cross-thread) return predictions */
+#define SMT_RSB		BIT(4)
+/* CPU is affected by SRSO */
+#define SRSO		BIT(5)
+/* CPU is affected by GDS */
+#define GDS		BIT(6)
+
+static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
+	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
+	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
+	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
+	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
+	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
+	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
+	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
+	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
+	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
+	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
+	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
+	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
+	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
+	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
+	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
+	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
+	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
+	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
+	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
+	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
+	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
+	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
+	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
+	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
+	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
+	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
+	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
+	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
+
+	VULNBL_AMD(0x15, RETBLEED),
+	VULNBL_AMD(0x16, RETBLEED),
+	VULNBL_AMD(0x17, RETBLEED),
+	VULNBL_HYGON(0x18, RETBLEED),
+	{}
+};
+
+static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
+{
+	const struct x86_cpu_id *m = x86_match_cpu(table);
+
+	return m && !!(m->driver_data & which);
+}
+
+u64 x86_read_arch_cap_msr(void)
+{
+	u64 ia32_cap = 0;
+
+	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
+		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
+
+	return ia32_cap;
+}
+
+static bool arch_cap_mmio_immune(u64 ia32_cap)
+{
+	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
+		ia32_cap & ARCH_CAP_PSDP_NO &&
+		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
+}
+
+static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
+{
+	u64 ia32_cap = x86_read_arch_cap_msr();
+
+	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
+	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
+	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
+		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
+
+	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
+		return;
+
+	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
+
+	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
+		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
+
+	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
+	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
+	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
+		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
+
+	/*
+	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
+	 * flag and protect from vendor-specific bugs via the whitelist.
+	 */
+	if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
+		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
+		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
+		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
+			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
+	}
+
+	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
+	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
+		setup_force_cpu_bug(X86_BUG_MDS);
+		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
+			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
+	}
+
+	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
+		setup_force_cpu_bug(X86_BUG_SWAPGS);
+
+	/*
+	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
+	 *	- TSX is supported or
+	 *	- TSX_CTRL is present
+	 *
+	 * TSX_CTRL check is needed for cases when TSX could be disabled before
+	 * the kernel boot e.g. kexec.
+	 * TSX_CTRL check alone is not sufficient for cases when the microcode
+	 * update is not present or running as guest that don't get TSX_CTRL.
+	 */
+	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
+	    (cpu_has(c, X86_FEATURE_RTM) ||
+	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
+		setup_force_cpu_bug(X86_BUG_TAA);
+
+	/*
+	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
+	 * in the vulnerability blacklist.
+	 *
+	 * Some of the implications and mitigation of Shared Buffers Data
+	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
+	 * SRBDS.
+	 */
+	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
+	     cpu_has(c, X86_FEATURE_RDSEED)) &&
+	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
+		    setup_force_cpu_bug(X86_BUG_SRBDS);
+
+	/*
+	 * Processor MMIO Stale Data bug enumeration
+	 *
+	 * Affected CPU list is generally enough to enumerate the vulnerability,
+	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
+	 * not want the guest to enumerate the bug.
+	 *
+	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
+	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
+	 */
+	if (!arch_cap_mmio_immune(ia32_cap)) {
+		if (cpu_matches(cpu_vuln_blacklist, MMIO))
+			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
+		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
+			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
+	}
+
+	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
+		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
+			setup_force_cpu_bug(X86_BUG_RETBLEED);
+	}
+
+	/*
+	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
+	 * an affected processor, the VMM may have disabled the use of GATHER by
+	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
+	 * which means that AVX will be disabled.
+	 */
+	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
+	    boot_cpu_has(X86_FEATURE_AVX))
+		setup_force_cpu_bug(X86_BUG_GDS);
+
+	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
+		return;
+
+	/* Rogue Data Cache Load? No! */
+	if (ia32_cap & ARCH_CAP_RDCL_NO)
+		return;
+
+	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
+
+	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
+		return;
+
+	setup_force_cpu_bug(X86_BUG_L1TF);
+}
+
+/*
+ * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
+ * unfortunately, that's not true in practice because of early VIA
+ * chips and (more importantly) broken virtualizers that are not easy
+ * to detect. In the latter case it doesn't even *fail* reliably, so
+ * probing for it doesn't even work. Disable it completely on 32-bit
+ * unless we can find a reliable way to detect all the broken cases.
+ * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
+ */
+static void detect_nopl(void)
+{
+#ifdef CONFIG_X86_32
+	setup_clear_cpu_cap(X86_FEATURE_NOPL);
+#else
+	setup_force_cpu_cap(X86_FEATURE_NOPL);
+#endif
+}
+
+/*
+ * Do minimum CPU detection early.
+ * Fields really needed: vendor, cpuid_level, family, model, mask,
+ * cache alignment.
+ * The others are not touched to avoid unwanted side effects.
+ *
+ * WARNING: this function is only called on the boot CPU.  Don't add code
+ * here that is supposed to run on all CPUs.
+ */
+static void __init early_identify_cpu(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_X86_64
+	c->x86_clflush_size = 64;
+	c->x86_phys_bits = 36;
+	c->x86_virt_bits = 48;
+#else
+	c->x86_clflush_size = 32;
+	c->x86_phys_bits = 32;
+	c->x86_virt_bits = 32;
+#endif
+	c->x86_cache_alignment = c->x86_clflush_size;
+
+	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
+	c->extended_cpuid_level = 0;
+
+	if (!have_cpuid_p())
+		identify_cpu_without_cpuid(c);
+
+	/* cyrix could have cpuid enabled via c_identify()*/
+	if (have_cpuid_p()) {
+		cpu_detect(c);
+		get_cpu_vendor(c);
+		get_cpu_cap(c);
+		get_cpu_address_sizes(c);
+		setup_force_cpu_cap(X86_FEATURE_CPUID);
+
+		if (this_cpu->c_early_init)
+			this_cpu->c_early_init(c);
+
+		c->cpu_index = 0;
+		filter_cpuid_features(c, false);
+
+		if (this_cpu->c_bsp_init)
+			this_cpu->c_bsp_init(c);
+	} else {
+		setup_clear_cpu_cap(X86_FEATURE_CPUID);
+	}
+
+	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
+
+	cpu_set_bug_bits(c);
+
+#ifdef CONFIG_X86_32
+	/*
+	 * Regardless of whether PCID is enumerated, the SDM says
+	 * that it can't be enabled in 32-bit mode.
+	 */
+	setup_clear_cpu_cap(X86_FEATURE_PCID);
+#endif
+
+	/*
+	 * Later in the boot process pgtable_l5_enabled() relies on
+	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
+	 * enabled by this point we need to clear the feature bit to avoid
+	 * false-positives at the later stage.
+	 *
+	 * pgtable_l5_enabled() can be false here for several reasons:
+	 *  - 5-level paging is disabled compile-time;
+	 *  - it's 32-bit kernel;
+	 *  - machine doesn't support 5-level paging;
+	 *  - user specified 'no5lvl' in kernel command line.
+	 */
+	if (!pgtable_l5_enabled())
+		setup_clear_cpu_cap(X86_FEATURE_LA57);
+
+	detect_nopl();
+}
+
+void __init early_cpu_init(void)
+{
+	const struct cpu_dev *const *cdev;
+	int count = 0;
+
+#ifdef CONFIG_PROCESSOR_SELECT
+	pr_info("KERNEL supported cpus:\n");
+#endif
+
+	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
+		const struct cpu_dev *cpudev = *cdev;
+
+		if (count >= X86_VENDOR_NUM)
+			break;
+		cpu_devs[count] = cpudev;
+		count++;
+
+#ifdef CONFIG_PROCESSOR_SELECT
+		{
+			unsigned int j;
+
+			for (j = 0; j < 2; j++) {
+				if (!cpudev->c_ident[j])
+					continue;
+				pr_info("  %s %s\n", cpudev->c_vendor,
+					cpudev->c_ident[j]);
+			}
+		}
+#endif
+	}
+	early_identify_cpu(&boot_cpu_data);
+}
+
+static bool detect_null_seg_behavior(void)
+{
+	/*
+	 * Empirically, writing zero to a segment selector on AMD does
+	 * not clear the base, whereas writing zero to a segment
+	 * selector on Intel does clear the base.  Intel's behavior
+	 * allows slightly faster context switches in the common case
+	 * where GS is unused by the prev and next threads.
+	 *
+	 * Since neither vendor documents this anywhere that I can see,
+	 * detect it directly instead of hardcoding the choice by
+	 * vendor.
+	 *
+	 * I've designated AMD's behavior as the "bug" because it's
+	 * counterintuitive and less friendly.
+	 */
+
+	unsigned long old_base, tmp;
+	rdmsrl(MSR_FS_BASE, old_base);
+	wrmsrl(MSR_FS_BASE, 1);
+	loadsegment(fs, 0);
+	rdmsrl(MSR_FS_BASE, tmp);
+	wrmsrl(MSR_FS_BASE, old_base);
+	return tmp == 0;
+}
+
+void check_null_seg_clears_base(struct cpuinfo_x86 *c)
+{
+	/* BUG_NULL_SEG is only relevant with 64bit userspace */
+	if (!IS_ENABLED(CONFIG_X86_64))
+		return;
+
+	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
+	if (c->extended_cpuid_level >= 0x80000021 &&
+	    cpuid_eax(0x80000021) & BIT(6))
+		return;
+
+	/*
+	 * CPUID bit above wasn't set. If this kernel is still running
+	 * as a HV guest, then the HV has decided not to advertize
+	 * that CPUID bit for whatever reason.	For example, one
+	 * member of the migration pool might be vulnerable.  Which
+	 * means, the bug is present: set the BUG flag and return.
+	 */
+	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
+		set_cpu_bug(c, X86_BUG_NULL_SEG);
+		return;
+	}
+
+	/*
+	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
+	 * 0x18 is the respective family for Hygon.
+	 */
+	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
+	    detect_null_seg_behavior())
+		return;
+
+	/* All the remaining ones are affected */
+	set_cpu_bug(c, X86_BUG_NULL_SEG);
+}
+
+static void generic_identify(struct cpuinfo_x86 *c)
+{
+	c->extended_cpuid_level = 0;
+
+	if (!have_cpuid_p())
+		identify_cpu_without_cpuid(c);
+
+	/* cyrix could have cpuid enabled via c_identify()*/
+	if (!have_cpuid_p())
+		return;
+
+	cpu_detect(c);
+
+	get_cpu_vendor(c);
+
+	get_cpu_cap(c);
+
+	get_cpu_address_sizes(c);
+
+	if (c->cpuid_level >= 0x00000001) {
+		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
+#ifdef CONFIG_X86_32
+# ifdef CONFIG_SMP
+		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
+# else
+		c->apicid = c->initial_apicid;
+# endif
+#endif
+		c->phys_proc_id = c->initial_apicid;
+	}
+
+	get_model_name(c); /* Default name */
+
+	/*
+	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
+	 * systems that run Linux at CPL > 0 may or may not have the
+	 * issue, but, even if they have the issue, there's absolutely
+	 * nothing we can do about it because we can't use the real IRET
+	 * instruction.
+	 *
+	 * NB: For the time being, only 32-bit kernels support
+	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
+	 * whether to apply espfix using paravirt hooks.  If any
+	 * non-paravirt system ever shows up that does *not* have the
+	 * ESPFIX issue, we can change this.
+	 */
+#ifdef CONFIG_X86_32
+# ifdef CONFIG_PARAVIRT_XXL
+	do {
+		extern void native_iret(void);
+		if (pv_ops.cpu.iret == native_iret)
+			set_cpu_bug(c, X86_BUG_ESPFIX);
+	} while (0);
+# else
+	set_cpu_bug(c, X86_BUG_ESPFIX);
+# endif
+#endif
+}
+
+static void x86_init_cache_qos(struct cpuinfo_x86 *c)
+{
+	/*
+	 * The heavy lifting of max_rmid and cache_occ_scale are handled
+	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
+	 * in case CQM bits really aren't there in this CPU.
+	 */
+	if (c != &boot_cpu_data) {
+		boot_cpu_data.x86_cache_max_rmid =
+			min(boot_cpu_data.x86_cache_max_rmid,
+			    c->x86_cache_max_rmid);
+	}
+}
+
+/*
+ * Validate that ACPI/mptables have the same information about the
+ * effective APIC id and update the package map.
+ */
+static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
+{
+#ifdef CONFIG_SMP
+	unsigned int apicid, cpu = smp_processor_id();
+
+	apicid = apic->cpu_present_to_apicid(cpu);
+
+	if (apicid != c->apicid) {
+		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
+		       cpu, apicid, c->initial_apicid);
+	}
+	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
+	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
+#else
+	c->logical_proc_id = 0;
+#endif
+}
+
+/*
+ * This does the hard work of actually picking apart the CPU stuff...
+ */
+static void identify_cpu(struct cpuinfo_x86 *c)
+{
+	int i;
+
+	c->loops_per_jiffy = loops_per_jiffy;
+	c->x86_cache_size = 0;
+	c->x86_vendor = X86_VENDOR_UNKNOWN;
+	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
+	c->x86_vendor_id[0] = '\0'; /* Unset */
+	c->x86_model_id[0] = '\0';  /* Unset */
+	c->x86_max_cores = 1;
+	c->x86_coreid_bits = 0;
+	c->cu_id = 0xff;
+#ifdef CONFIG_X86_64
+	c->x86_clflush_size = 64;
+	c->x86_phys_bits = 36;
+	c->x86_virt_bits = 48;
+#else
+	c->cpuid_level = -1;	/* CPUID not detected */
+	c->x86_clflush_size = 32;
+	c->x86_phys_bits = 32;
+	c->x86_virt_bits = 32;
+#endif
+	c->x86_cache_alignment = c->x86_clflush_size;
+	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
+
+	generic_identify(c);
+
+	if (this_cpu->c_identify)
+		this_cpu->c_identify(c);
+
+	/* Clear/Set all flags overridden by options, after probe */
+	apply_forced_caps(c);
+
+#ifdef CONFIG_X86_64
+	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
+#endif
+
+	/*
+	 * Vendor-specific initialization.  In this section we
+	 * canonicalize the feature flags, meaning if there are
+	 * features a certain CPU supports which CPUID doesn't
+	 * tell us, CPUID claiming incorrect flags, or other bugs,
+	 * we handle them here.
+	 *
+	 * At the end of this section, c->x86_capability better
+	 * indicate the features this CPU genuinely supports!
+	 */
+	if (this_cpu->c_init)
+		this_cpu->c_init(c);
+
+	/* Disable the PN if appropriate */
+	squash_the_stupid_serial_number(c);
+
+	/* Set up SMEP/SMAP/UMIP */
+	setup_smep(c);
+	setup_smap(c);
+	setup_umip(c);
+
+	/*
+	 * The vendor-specific functions might have changed features.
+	 * Now we do "generic changes."
+	 */
+
+	/* Filter out anything that depends on CPUID levels we don't have */
+	filter_cpuid_features(c, true);
+
+	/* If the model name is still unset, do table lookup. */
+	if (!c->x86_model_id[0]) {
+		const char *p;
+		p = table_lookup_model(c);
+		if (p)
+			strcpy(c->x86_model_id, p);
+		else
+			/* Last resort... */
+			sprintf(c->x86_model_id, "%02x/%02x",
+				c->x86, c->x86_model);
+	}
+
+#ifdef CONFIG_X86_64
+	detect_ht(c);
+#endif
+
+	x86_init_rdrand(c);
+	x86_init_cache_qos(c);
+	setup_pku(c);
+
+	/*
+	 * Clear/Set all flags overridden by options, need do it
+	 * before following smp all cpus cap AND.
+	 */
+	apply_forced_caps(c);
+
+	/*
+	 * On SMP, boot_cpu_data holds the common feature set between
+	 * all CPUs; so make sure that we indicate which features are
+	 * common between the CPUs.  The first time this routine gets
+	 * executed, c == &boot_cpu_data.
+	 */
+	if (c != &boot_cpu_data) {
+		/* AND the already accumulated flags with these */
+		for (i = 0; i < NCAPINTS; i++)
+			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
+
+		/* OR, i.e. replicate the bug flags */
+		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
+			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
+	}
+
+	/* Init Machine Check Exception if available. */
+	mcheck_cpu_init(c);
+
+	select_idle_routine(c);
+
+#ifdef CONFIG_NUMA
+	numa_add_cpu(smp_processor_id());
+#endif
+}
+
+/*
+ * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
+ * on 32-bit kernels:
+ */
+#ifdef CONFIG_X86_32
+void enable_sep_cpu(void)
+{
+	struct tss_struct *tss;
+	int cpu;
+
+	if (!boot_cpu_has(X86_FEATURE_SEP))
+		return;
+
+	cpu = get_cpu();
+	tss = &per_cpu(cpu_tss_rw, cpu);
+
+	/*
+	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
+	 * see the big comment in struct x86_hw_tss's definition.
+	 */
+
+	tss->x86_tss.ss1 = __KERNEL_CS;
+	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
+	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
+	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
+
+	put_cpu();
+}
+#endif
+
+void __init identify_boot_cpu(void)
+{
+	identify_cpu(&boot_cpu_data);
+#ifdef CONFIG_X86_32
+	sysenter_setup();
+	enable_sep_cpu();
+#endif
+	cpu_detect_tlb(&boot_cpu_data);
+	setup_cr_pinning();
+
+	tsx_init();
+}
+
+void identify_secondary_cpu(struct cpuinfo_x86 *c)
+{
+	BUG_ON(c == &boot_cpu_data);
+	identify_cpu(c);
+#ifdef CONFIG_X86_32
+	enable_sep_cpu();
+#endif
+	mtrr_ap_init();
+	validate_apic_and_package_id(c);
+	x86_spec_ctrl_setup_ap();
+	update_srbds_msr();
+	if (boot_cpu_has_bug(X86_BUG_GDS))
+		update_gds_msr();
+}
+
+static __init int setup_noclflush(char *arg)
+{
+	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
+	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
+	return 1;
+}
+__setup("noclflush", setup_noclflush);
+
+void print_cpu_info(struct cpuinfo_x86 *c)
+{
+	const char *vendor = NULL;
+
+	if (c->x86_vendor < X86_VENDOR_NUM) {
+		vendor = this_cpu->c_vendor;
+	} else {
+		if (c->cpuid_level >= 0)
+			vendor = c->x86_vendor_id;
+	}
+
+	if (vendor && !strstr(c->x86_model_id, vendor))
+		pr_cont("%s ", vendor);
+
+	if (c->x86_model_id[0])
+		pr_cont("%s", c->x86_model_id);
+	else
+		pr_cont("%d86", c->x86);
+
+	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
+
+	if (c->x86_stepping || c->cpuid_level >= 0)
+		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
+	else
+		pr_cont(")\n");
+}
+
+/*
+ * clearcpuid= was already parsed in fpu__init_parse_early_param.
+ * But we need to keep a dummy __setup around otherwise it would
+ * show up as an environment variable for init.
+ */
+static __init int setup_clearcpuid(char *arg)
+{
+	return 1;
+}
+__setup("clearcpuid=", setup_clearcpuid);
+
+#ifdef CONFIG_X86_64
+DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
+		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
+EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
+
+/*
+ * The following percpu variables are hot.  Align current_task to
+ * cacheline size such that they fall in the same cacheline.
+ */
+DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
+	&init_task;
+EXPORT_PER_CPU_SYMBOL(current_task);
+
+DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
+DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
+
+DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
+EXPORT_PER_CPU_SYMBOL(__preempt_count);
+
+/* May not be marked __init: used by software suspend */
+void syscall_init(void)
+{
+	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
+	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
+
+#ifdef CONFIG_IA32_EMULATION
+	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
+	/*
+	 * This only works on Intel CPUs.
+	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
+	 * This does not cause SYSENTER to jump to the wrong location, because
+	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
+	 */
+	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
+	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
+		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
+	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
+#else
+	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
+	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
+	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
+	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
+#endif
+
+	/* Flags to clear on syscall */
+	wrmsrl(MSR_SYSCALL_MASK,
+	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
+	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
+}
+
+DEFINE_PER_CPU(int, debug_stack_usage);
+DEFINE_PER_CPU(u32, debug_idt_ctr);
+
+void debug_stack_set_zero(void)
+{
+	this_cpu_inc(debug_idt_ctr);
+	load_current_idt();
+}
+NOKPROBE_SYMBOL(debug_stack_set_zero);
+
+void debug_stack_reset(void)
+{
+	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
+		return;
+	if (this_cpu_dec_return(debug_idt_ctr) == 0)
+		load_current_idt();
+}
+NOKPROBE_SYMBOL(debug_stack_reset);
+
+#else	/* CONFIG_X86_64 */
+
+DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
+EXPORT_PER_CPU_SYMBOL(current_task);
+DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
+EXPORT_PER_CPU_SYMBOL(__preempt_count);
+
+/*
+ * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
+ * the top of the kernel stack.  Use an extra percpu variable to track the
+ * top of the kernel stack directly.
+ */
+DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
+	(unsigned long)&init_thread_union + THREAD_SIZE;
+EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
+
+#ifdef CONFIG_STACKPROTECTOR
+DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
+#endif
+
+#endif	/* CONFIG_X86_64 */
+
+/*
+ * Clear all 6 debug registers:
+ */
+static void clear_all_debug_regs(void)
+{
+	int i;
+
+	for (i = 0; i < 8; i++) {
+		/* Ignore db4, db5 */
+		if ((i == 4) || (i == 5))
+			continue;
+
+		set_debugreg(0, i);
+	}
+}
+
+#ifdef CONFIG_KGDB
+/*
+ * Restore debug regs if using kgdbwait and you have a kernel debugger
+ * connection established.
+ */
+static void dbg_restore_debug_regs(void)
+{
+	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
+		arch_kgdb_ops.correct_hw_break();
+}
+#else /* ! CONFIG_KGDB */
+#define dbg_restore_debug_regs()
+#endif /* ! CONFIG_KGDB */
+
+static void wait_for_master_cpu(int cpu)
+{
+#ifdef CONFIG_SMP
+	/*
+	 * wait for ACK from master CPU before continuing
+	 * with AP initialization
+	 */
+	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
+	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
+		cpu_relax();
+#endif
+}
+
+#ifdef CONFIG_X86_64
+static void setup_getcpu(int cpu)
+{
+	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
+	struct desc_struct d = { };
+
+	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
+		write_rdtscp_aux(cpudata);
+
+	/* Store CPU and node number in limit. */
+	d.limit0 = cpudata;
+	d.limit1 = cpudata >> 16;
+
+	d.type = 5;		/* RO data, expand down, accessed */
+	d.dpl = 3;		/* Visible to user code */
+	d.s = 1;		/* Not a system segment */
+	d.p = 1;		/* Present */
+	d.d = 1;		/* 32-bit */
+
+	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
+}
+#endif
+
+/*
+ * cpu_init() initializes state that is per-CPU. Some data is already
+ * initialized (naturally) in the bootstrap process, such as the GDT
+ * and IDT. We reload them nevertheless, this function acts as a
+ * 'CPU state barrier', nothing should get across.
+ */
+#ifdef CONFIG_X86_64
+
+void cpu_init(void)
+{
+	int cpu = raw_smp_processor_id();
+	struct task_struct *me;
+	struct tss_struct *t;
+	int i;
+
+	wait_for_master_cpu(cpu);
+
+	if (cpu)
+		load_ucode_ap();
+
+	t = &per_cpu(cpu_tss_rw, cpu);
+
+#ifdef CONFIG_NUMA
+	if (this_cpu_read(numa_node) == 0 &&
+	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
+		set_numa_node(early_cpu_to_node(cpu));
+#endif
+	setup_getcpu(cpu);
+
+	me = current;
+
+	pr_debug("Initializing CPU#%d\n", cpu);
+
+	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
+
+	/*
+	 * Initialize the per-CPU GDT with the boot GDT,
+	 * and set up the GDT descriptor:
+	 */
+
+	switch_to_new_gdt(cpu);
+	loadsegment(fs, 0);
+
+	load_current_idt();
+
+	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
+	syscall_init();
+
+	wrmsrl(MSR_FS_BASE, 0);
+	wrmsrl(MSR_KERNEL_GS_BASE, 0);
+	barrier();
+
+	x86_configure_nx();
+	x2apic_setup();
+
+	/*
+	 * set up and load the per-CPU TSS
+	 */
+	if (!t->x86_tss.ist[0]) {
+		t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
+		t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
+		t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
+		t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
+	}
+
+	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
+
+	/*
+	 * <= is required because the CPU will access up to
+	 * 8 bits beyond the end of the IO permission bitmap.
+	 */
+	for (i = 0; i <= IO_BITMAP_LONGS; i++)
+		t->io_bitmap[i] = ~0UL;
+
+	mmgrab(&init_mm);
+	me->active_mm = &init_mm;
+	BUG_ON(me->mm);
+	initialize_tlbstate_and_flush();
+	enter_lazy_tlb(&init_mm, me);
+
+	/*
+	 * Initialize the TSS.  sp0 points to the entry trampoline stack
+	 * regardless of what task is running.
+	 */
+	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
+	load_TR_desc();
+	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
+
+	load_mm_ldt(&init_mm);
+
+	clear_all_debug_regs();
+	dbg_restore_debug_regs();
+
+	if (is_uv_system())
+		uv_cpu_init();
+
+	load_fixmap_gdt(cpu);
+}
+
+#else
+
+void cpu_init(void)
+{
+	int cpu = smp_processor_id();
+	struct task_struct *curr = current;
+	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
+
+	wait_for_master_cpu(cpu);
+
+	show_ucode_info_early();
+
+	pr_info("Initializing CPU#%d\n", cpu);
+
+	if (cpu_feature_enabled(X86_FEATURE_VME) ||
+	    boot_cpu_has(X86_FEATURE_TSC) ||
+	    boot_cpu_has(X86_FEATURE_DE))
+		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
+
+	load_current_idt();
+	switch_to_new_gdt(cpu);
+
+	/*
+	 * Set up and load the per-CPU TSS and LDT
+	 */
+	mmgrab(&init_mm);
+	curr->active_mm = &init_mm;
+	BUG_ON(curr->mm);
+	initialize_tlbstate_and_flush();
+	enter_lazy_tlb(&init_mm, curr);
+
+	/*
+	 * Initialize the TSS.  sp0 points to the entry trampoline stack
+	 * regardless of what task is running.
+	 */
+	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
+	load_TR_desc();
+	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
+
+	load_mm_ldt(&init_mm);
+
+	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
+
+#ifdef CONFIG_DOUBLEFAULT
+	/* Set up doublefault TSS pointer in the GDT */
+	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
+#endif
+
+	clear_all_debug_regs();
+	dbg_restore_debug_regs();
+
+	load_fixmap_gdt(cpu);
+}
+#endif
+
+/*
+ * The microcode loader calls this upon late microcode load to recheck features,
+ * only when microcode has been updated. Caller holds microcode_mutex and CPU
+ * hotplug lock.
+ */
+void microcode_check(void)
+{
+	struct cpuinfo_x86 info;
+
+	perf_check_microcode();
+
+	amd_check_microcode();
+
+	/* Reload CPUID max function as it might've changed. */
+	info.cpuid_level = cpuid_eax(0);
+
+	/*
+	 * Copy all capability leafs to pick up the synthetic ones so that
+	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
+	 * get overwritten in get_cpu_cap().
+	 */
+	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
+
+	get_cpu_cap(&info);
+
+	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
+		return;
+
+	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
+	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
+}
+
+/*
+ * Invoked from core CPU hotplug code after hotplug operations
+ */
+void arch_smt_update(void)
+{
+	/* Handle the speculative execution misfeatures */
+	cpu_bugs_smt_update();
+	/* Check whether IPI broadcasting can be enabled */
+	apic_smt_update();
+}
+
+void __init arch_cpu_finalize_init(void)
+{
+	identify_boot_cpu();
+
+	/*
+	 * identify_boot_cpu() initialized SMT support information, let the
+	 * core code know.
+	 */
+	cpu_smt_check_topology();
+
+	if (!IS_ENABLED(CONFIG_SMP)) {
+		pr_info("CPU: ");
+		print_cpu_info(&boot_cpu_data);
+	}
+
+	cpu_select_mitigations();
+
+	arch_smt_update();
+
+	if (IS_ENABLED(CONFIG_X86_32)) {
+		/*
+		 * Check whether this is a real i386 which is not longer
+		 * supported and fixup the utsname.
+		 */
+		if (boot_cpu_data.x86 < 4)
+			panic("Kernel requires i486+ for 'invlpg' and other features");
+
+		init_utsname()->machine[1] =
+			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
+	}
+
+	/*
+	 * Must be before alternatives because it might set or clear
+	 * feature bits.
+	 */
+	fpu__init_system();
+	fpu__init_cpu();
+
+	alternative_instructions();
+
+	if (IS_ENABLED(CONFIG_X86_64)) {
+		/*
+		 * Make sure the first 2MB area is not mapped by huge pages
+		 * There are typically fixed size MTRRs in there and overlapping
+		 * MTRRs into large pages causes slow downs.
+		 *
+		 * Right now we don't do that with gbpages because there seems
+		 * very little benefit for that case.
+		 */
+		if (!direct_gbpages)
+			set_memory_4k((unsigned long)__va(0), 1);
+	} else {
+		fpu__init_check_bugs();
+	}
+
+	/*
+	 * This needs to be called before any devices perform DMA
+	 * operations that might use the SWIOTLB bounce buffers. It will
+	 * mark the bounce buffers as decrypted so that their usage will
+	 * not cause "plain-text" data to be decrypted when accessed. It
+	 * must be called after late_time_init() so that Hyper-V x86/x64
+	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
+	 */
+	mem_encrypt_init();
+}