ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/x86/math-emu/poly_sin.c b/marvell/linux/arch/x86/math-emu/poly_sin.c
new file mode 100644
index 0000000..c192fba
--- /dev/null
+++ b/marvell/linux/arch/x86/math-emu/poly_sin.c
@@ -0,0 +1,379 @@
+// SPDX-License-Identifier: GPL-2.0
+/*---------------------------------------------------------------------------+
+ |  poly_sin.c                                                               |
+ |                                                                           |
+ |  Computation of an approximation of the sin function and the cosine       |
+ |  function by a polynomial.                                                |
+ |                                                                           |
+ | Copyright (C) 1992,1993,1994,1997,1999                                    |
+ |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
+ |                  E-mail   billm@melbpc.org.au                             |
+ |                                                                           |
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+
+#include "exception.h"
+#include "reg_constant.h"
+#include "fpu_emu.h"
+#include "fpu_system.h"
+#include "control_w.h"
+#include "poly.h"
+
+#define	N_COEFF_P	4
+#define	N_COEFF_N	4
+
+static const unsigned long long pos_terms_l[N_COEFF_P] = {
+	0xaaaaaaaaaaaaaaabLL,
+	0x00d00d00d00cf906LL,
+	0x000006b99159a8bbLL,
+	0x000000000d7392e6LL
+};
+
+static const unsigned long long neg_terms_l[N_COEFF_N] = {
+	0x2222222222222167LL,
+	0x0002e3bc74aab624LL,
+	0x0000000b09229062LL,
+	0x00000000000c7973LL
+};
+
+#define	N_COEFF_PH	4
+#define	N_COEFF_NH	4
+static const unsigned long long pos_terms_h[N_COEFF_PH] = {
+	0x0000000000000000LL,
+	0x05b05b05b05b0406LL,
+	0x000049f93edd91a9LL,
+	0x00000000c9c9ed62LL
+};
+
+static const unsigned long long neg_terms_h[N_COEFF_NH] = {
+	0xaaaaaaaaaaaaaa98LL,
+	0x001a01a01a019064LL,
+	0x0000008f76c68a77LL,
+	0x0000000000d58f5eLL
+};
+
+/*--- poly_sine() -----------------------------------------------------------+
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+void poly_sine(FPU_REG *st0_ptr)
+{
+	int exponent, echange;
+	Xsig accumulator, argSqrd, argTo4;
+	unsigned long fix_up, adj;
+	unsigned long long fixed_arg;
+	FPU_REG result;
+
+	exponent = exponent(st0_ptr);
+
+	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
+
+	/* Split into two ranges, for arguments below and above 1.0 */
+	/* The boundary between upper and lower is approx 0.88309101259 */
+	if ((exponent < -1)
+	    || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
+		/* The argument is <= 0.88309101259 */
+
+		argSqrd.msw = st0_ptr->sigh;
+		argSqrd.midw = st0_ptr->sigl;
+		argSqrd.lsw = 0;
+		mul64_Xsig(&argSqrd, &significand(st0_ptr));
+		shr_Xsig(&argSqrd, 2 * (-1 - exponent));
+		argTo4.msw = argSqrd.msw;
+		argTo4.midw = argSqrd.midw;
+		argTo4.lsw = argSqrd.lsw;
+		mul_Xsig_Xsig(&argTo4, &argTo4);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
+				N_COEFF_N - 1);
+		mul_Xsig_Xsig(&accumulator, &argSqrd);
+		negate_Xsig(&accumulator);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
+				N_COEFF_P - 1);
+
+		shr_Xsig(&accumulator, 2);	/* Divide by four */
+		accumulator.msw |= 0x80000000;	/* Add 1.0 */
+
+		mul64_Xsig(&accumulator, &significand(st0_ptr));
+		mul64_Xsig(&accumulator, &significand(st0_ptr));
+		mul64_Xsig(&accumulator, &significand(st0_ptr));
+
+		/* Divide by four, FPU_REG compatible, etc */
+		exponent = 3 * exponent;
+
+		/* The minimum exponent difference is 3 */
+		shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
+
+		negate_Xsig(&accumulator);
+		XSIG_LL(accumulator) += significand(st0_ptr);
+
+		echange = round_Xsig(&accumulator);
+
+		setexponentpos(&result, exponent(st0_ptr) + echange);
+	} else {
+		/* The argument is > 0.88309101259 */
+		/* We use sin(st(0)) = cos(pi/2-st(0)) */
+
+		fixed_arg = significand(st0_ptr);
+
+		if (exponent == 0) {
+			/* The argument is >= 1.0 */
+
+			/* Put the binary point at the left. */
+			fixed_arg <<= 1;
+		}
+		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
+		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
+		/* There is a special case which arises due to rounding, to fix here. */
+		if (fixed_arg == 0xffffffffffffffffLL)
+			fixed_arg = 0;
+
+		XSIG_LL(argSqrd) = fixed_arg;
+		argSqrd.lsw = 0;
+		mul64_Xsig(&argSqrd, &fixed_arg);
+
+		XSIG_LL(argTo4) = XSIG_LL(argSqrd);
+		argTo4.lsw = argSqrd.lsw;
+		mul_Xsig_Xsig(&argTo4, &argTo4);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
+				N_COEFF_NH - 1);
+		mul_Xsig_Xsig(&accumulator, &argSqrd);
+		negate_Xsig(&accumulator);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
+				N_COEFF_PH - 1);
+		negate_Xsig(&accumulator);
+
+		mul64_Xsig(&accumulator, &fixed_arg);
+		mul64_Xsig(&accumulator, &fixed_arg);
+
+		shr_Xsig(&accumulator, 3);
+		negate_Xsig(&accumulator);
+
+		add_Xsig_Xsig(&accumulator, &argSqrd);
+
+		shr_Xsig(&accumulator, 1);
+
+		accumulator.lsw |= 1;	/* A zero accumulator here would cause problems */
+		negate_Xsig(&accumulator);
+
+		/* The basic computation is complete. Now fix the answer to
+		   compensate for the error due to the approximation used for
+		   pi/2
+		 */
+
+		/* This has an exponent of -65 */
+		fix_up = 0x898cc517;
+		/* The fix-up needs to be improved for larger args */
+		if (argSqrd.msw & 0xffc00000) {
+			/* Get about 32 bit precision in these: */
+			fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
+		}
+		fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
+
+		adj = accumulator.lsw;	/* temp save */
+		accumulator.lsw -= fix_up;
+		if (accumulator.lsw > adj)
+			XSIG_LL(accumulator)--;
+
+		echange = round_Xsig(&accumulator);
+
+		setexponentpos(&result, echange - 1);
+	}
+
+	significand(&result) = XSIG_LL(accumulator);
+	setsign(&result, getsign(st0_ptr));
+	FPU_copy_to_reg0(&result, TAG_Valid);
+
+#ifdef PARANOID
+	if ((exponent(&result) >= 0)
+	    && (significand(&result) > 0x8000000000000000LL)) {
+		EXCEPTION(EX_INTERNAL | 0x150);
+	}
+#endif /* PARANOID */
+
+}
+
+/*--- poly_cos() ------------------------------------------------------------+
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+void poly_cos(FPU_REG *st0_ptr)
+{
+	FPU_REG result;
+	long int exponent, exp2, echange;
+	Xsig accumulator, argSqrd, fix_up, argTo4;
+	unsigned long long fixed_arg;
+
+#ifdef PARANOID
+	if ((exponent(st0_ptr) > 0)
+	    || ((exponent(st0_ptr) == 0)
+		&& (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
+		EXCEPTION(EX_Invalid);
+		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
+		return;
+	}
+#endif /* PARANOID */
+
+	exponent = exponent(st0_ptr);
+
+	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
+
+	if ((exponent < -1)
+	    || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
+		/* arg is < 0.687705 */
+
+		argSqrd.msw = st0_ptr->sigh;
+		argSqrd.midw = st0_ptr->sigl;
+		argSqrd.lsw = 0;
+		mul64_Xsig(&argSqrd, &significand(st0_ptr));
+
+		if (exponent < -1) {
+			/* shift the argument right by the required places */
+			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
+		}
+
+		argTo4.msw = argSqrd.msw;
+		argTo4.midw = argSqrd.midw;
+		argTo4.lsw = argSqrd.lsw;
+		mul_Xsig_Xsig(&argTo4, &argTo4);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
+				N_COEFF_NH - 1);
+		mul_Xsig_Xsig(&accumulator, &argSqrd);
+		negate_Xsig(&accumulator);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
+				N_COEFF_PH - 1);
+		negate_Xsig(&accumulator);
+
+		mul64_Xsig(&accumulator, &significand(st0_ptr));
+		mul64_Xsig(&accumulator, &significand(st0_ptr));
+		shr_Xsig(&accumulator, -2 * (1 + exponent));
+
+		shr_Xsig(&accumulator, 3);
+		negate_Xsig(&accumulator);
+
+		add_Xsig_Xsig(&accumulator, &argSqrd);
+
+		shr_Xsig(&accumulator, 1);
+
+		/* It doesn't matter if accumulator is all zero here, the
+		   following code will work ok */
+		negate_Xsig(&accumulator);
+
+		if (accumulator.lsw & 0x80000000)
+			XSIG_LL(accumulator)++;
+		if (accumulator.msw == 0) {
+			/* The result is 1.0 */
+			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
+			return;
+		} else {
+			significand(&result) = XSIG_LL(accumulator);
+
+			/* will be a valid positive nr with expon = -1 */
+			setexponentpos(&result, -1);
+		}
+	} else {
+		fixed_arg = significand(st0_ptr);
+
+		if (exponent == 0) {
+			/* The argument is >= 1.0 */
+
+			/* Put the binary point at the left. */
+			fixed_arg <<= 1;
+		}
+		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
+		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
+		/* There is a special case which arises due to rounding, to fix here. */
+		if (fixed_arg == 0xffffffffffffffffLL)
+			fixed_arg = 0;
+
+		exponent = -1;
+		exp2 = -1;
+
+		/* A shift is needed here only for a narrow range of arguments,
+		   i.e. for fixed_arg approx 2^-32, but we pick up more... */
+		if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
+			fixed_arg <<= 16;
+			exponent -= 16;
+			exp2 -= 16;
+		}
+
+		XSIG_LL(argSqrd) = fixed_arg;
+		argSqrd.lsw = 0;
+		mul64_Xsig(&argSqrd, &fixed_arg);
+
+		if (exponent < -1) {
+			/* shift the argument right by the required places */
+			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
+		}
+
+		argTo4.msw = argSqrd.msw;
+		argTo4.midw = argSqrd.midw;
+		argTo4.lsw = argSqrd.lsw;
+		mul_Xsig_Xsig(&argTo4, &argTo4);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
+				N_COEFF_N - 1);
+		mul_Xsig_Xsig(&accumulator, &argSqrd);
+		negate_Xsig(&accumulator);
+
+		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
+				N_COEFF_P - 1);
+
+		shr_Xsig(&accumulator, 2);	/* Divide by four */
+		accumulator.msw |= 0x80000000;	/* Add 1.0 */
+
+		mul64_Xsig(&accumulator, &fixed_arg);
+		mul64_Xsig(&accumulator, &fixed_arg);
+		mul64_Xsig(&accumulator, &fixed_arg);
+
+		/* Divide by four, FPU_REG compatible, etc */
+		exponent = 3 * exponent;
+
+		/* The minimum exponent difference is 3 */
+		shr_Xsig(&accumulator, exp2 - exponent);
+
+		negate_Xsig(&accumulator);
+		XSIG_LL(accumulator) += fixed_arg;
+
+		/* The basic computation is complete. Now fix the answer to
+		   compensate for the error due to the approximation used for
+		   pi/2
+		 */
+
+		/* This has an exponent of -65 */
+		XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
+		fix_up.lsw = 0;
+
+		/* The fix-up needs to be improved for larger args */
+		if (argSqrd.msw & 0xffc00000) {
+			/* Get about 32 bit precision in these: */
+			fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
+			fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
+		}
+
+		exp2 += norm_Xsig(&accumulator);
+		shr_Xsig(&accumulator, 1);	/* Prevent overflow */
+		exp2++;
+		shr_Xsig(&fix_up, 65 + exp2);
+
+		add_Xsig_Xsig(&accumulator, &fix_up);
+
+		echange = round_Xsig(&accumulator);
+
+		setexponentpos(&result, exp2 + echange);
+		significand(&result) = XSIG_LL(accumulator);
+	}
+
+	FPU_copy_to_reg0(&result, TAG_Valid);
+
+#ifdef PARANOID
+	if ((exponent(&result) >= 0)
+	    && (significand(&result) > 0x8000000000000000LL)) {
+		EXCEPTION(EX_INTERNAL | 0x151);
+	}
+#endif /* PARANOID */
+
+}