ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/arch/x86/mm/fault.c b/marvell/linux/arch/x86/mm/fault.c
new file mode 100644
index 0000000..21383ef
--- /dev/null
+++ b/marvell/linux/arch/x86/mm/fault.c
@@ -0,0 +1,1530 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  Copyright (C) 1995  Linus Torvalds
+ *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
+ *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
+ */
+#include <linux/sched.h>		/* test_thread_flag(), ...	*/
+#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
+#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
+#include <linux/extable.h>		/* search_exception_tables	*/
+#include <linux/memblock.h>		/* max_low_pfn			*/
+#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
+#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
+#include <linux/perf_event.h>		/* perf_sw_event		*/
+#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
+#include <linux/prefetch.h>		/* prefetchw			*/
+#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
+#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
+#include <linux/efi.h>			/* efi_recover_from_page_fault()*/
+#include <linux/mm_types.h>
+
+#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
+#include <asm/traps.h>			/* dotraplinkage, ...		*/
+#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
+#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
+#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
+#include <asm/vm86.h>			/* struct vm86			*/
+#include <asm/mmu_context.h>		/* vma_pkey()			*/
+#include <asm/efi.h>			/* efi_recover_from_page_fault()*/
+#include <asm/desc.h>			/* store_idt(), ...		*/
+#include <asm/cpu_entry_area.h>		/* exception stack		*/
+
+#define CREATE_TRACE_POINTS
+#include <asm/trace/exceptions.h>
+
+/*
+ * Returns 0 if mmiotrace is disabled, or if the fault is not
+ * handled by mmiotrace:
+ */
+static nokprobe_inline int
+kmmio_fault(struct pt_regs *regs, unsigned long addr)
+{
+	if (unlikely(is_kmmio_active()))
+		if (kmmio_handler(regs, addr) == 1)
+			return -1;
+	return 0;
+}
+
+/*
+ * Prefetch quirks:
+ *
+ * 32-bit mode:
+ *
+ *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
+ *   Check that here and ignore it.
+ *
+ * 64-bit mode:
+ *
+ *   Sometimes the CPU reports invalid exceptions on prefetch.
+ *   Check that here and ignore it.
+ *
+ * Opcode checker based on code by Richard Brunner.
+ */
+static inline int
+check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
+		      unsigned char opcode, int *prefetch)
+{
+	unsigned char instr_hi = opcode & 0xf0;
+	unsigned char instr_lo = opcode & 0x0f;
+
+	switch (instr_hi) {
+	case 0x20:
+	case 0x30:
+		/*
+		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
+		 * In X86_64 long mode, the CPU will signal invalid
+		 * opcode if some of these prefixes are present so
+		 * X86_64 will never get here anyway
+		 */
+		return ((instr_lo & 7) == 0x6);
+#ifdef CONFIG_X86_64
+	case 0x40:
+		/*
+		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
+		 * Need to figure out under what instruction mode the
+		 * instruction was issued. Could check the LDT for lm,
+		 * but for now it's good enough to assume that long
+		 * mode only uses well known segments or kernel.
+		 */
+		return (!user_mode(regs) || user_64bit_mode(regs));
+#endif
+	case 0x60:
+		/* 0x64 thru 0x67 are valid prefixes in all modes. */
+		return (instr_lo & 0xC) == 0x4;
+	case 0xF0:
+		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
+		return !instr_lo || (instr_lo>>1) == 1;
+	case 0x00:
+		/* Prefetch instruction is 0x0F0D or 0x0F18 */
+		if (probe_kernel_address(instr, opcode))
+			return 0;
+
+		*prefetch = (instr_lo == 0xF) &&
+			(opcode == 0x0D || opcode == 0x18);
+		return 0;
+	default:
+		return 0;
+	}
+}
+
+static int
+is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
+{
+	unsigned char *max_instr;
+	unsigned char *instr;
+	int prefetch = 0;
+
+	/*
+	 * If it was a exec (instruction fetch) fault on NX page, then
+	 * do not ignore the fault:
+	 */
+	if (error_code & X86_PF_INSTR)
+		return 0;
+
+	instr = (void *)convert_ip_to_linear(current, regs);
+	max_instr = instr + 15;
+
+	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
+		return 0;
+
+	while (instr < max_instr) {
+		unsigned char opcode;
+
+		if (probe_kernel_address(instr, opcode))
+			break;
+
+		instr++;
+
+		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
+			break;
+	}
+	return prefetch;
+}
+
+DEFINE_SPINLOCK(pgd_lock);
+LIST_HEAD(pgd_list);
+
+#ifdef CONFIG_X86_32
+static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
+{
+	unsigned index = pgd_index(address);
+	pgd_t *pgd_k;
+	p4d_t *p4d, *p4d_k;
+	pud_t *pud, *pud_k;
+	pmd_t *pmd, *pmd_k;
+
+	pgd += index;
+	pgd_k = init_mm.pgd + index;
+
+	if (!pgd_present(*pgd_k))
+		return NULL;
+
+	/*
+	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
+	 * and redundant with the set_pmd() on non-PAE. As would
+	 * set_p4d/set_pud.
+	 */
+	p4d = p4d_offset(pgd, address);
+	p4d_k = p4d_offset(pgd_k, address);
+	if (!p4d_present(*p4d_k))
+		return NULL;
+
+	pud = pud_offset(p4d, address);
+	pud_k = pud_offset(p4d_k, address);
+	if (!pud_present(*pud_k))
+		return NULL;
+
+	pmd = pmd_offset(pud, address);
+	pmd_k = pmd_offset(pud_k, address);
+
+	if (pmd_present(*pmd) != pmd_present(*pmd_k))
+		set_pmd(pmd, *pmd_k);
+
+	if (!pmd_present(*pmd_k))
+		return NULL;
+	else
+		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
+
+	return pmd_k;
+}
+
+static void vmalloc_sync(void)
+{
+	unsigned long address;
+
+	if (SHARED_KERNEL_PMD)
+		return;
+
+	for (address = VMALLOC_START & PMD_MASK;
+	     address >= TASK_SIZE_MAX && address < VMALLOC_END;
+	     address += PMD_SIZE) {
+		struct page *page;
+
+		spin_lock(&pgd_lock);
+		list_for_each_entry(page, &pgd_list, lru) {
+			spinlock_t *pgt_lock;
+
+			/* the pgt_lock only for Xen */
+			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
+
+			spin_lock(pgt_lock);
+			vmalloc_sync_one(page_address(page), address);
+			spin_unlock(pgt_lock);
+		}
+		spin_unlock(&pgd_lock);
+	}
+}
+
+void vmalloc_sync_mappings(void)
+{
+	vmalloc_sync();
+}
+
+void vmalloc_sync_unmappings(void)
+{
+	vmalloc_sync();
+}
+
+/*
+ * 32-bit:
+ *
+ *   Handle a fault on the vmalloc or module mapping area
+ */
+static noinline int vmalloc_fault(unsigned long address)
+{
+	unsigned long pgd_paddr;
+	pmd_t *pmd_k;
+	pte_t *pte_k;
+
+	/* Make sure we are in vmalloc area: */
+	if (!(address >= VMALLOC_START && address < VMALLOC_END))
+		return -1;
+
+	/*
+	 * Synchronize this task's top level page-table
+	 * with the 'reference' page table.
+	 *
+	 * Do _not_ use "current" here. We might be inside
+	 * an interrupt in the middle of a task switch..
+	 */
+	pgd_paddr = read_cr3_pa();
+	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
+	if (!pmd_k)
+		return -1;
+
+	if (pmd_large(*pmd_k))
+		return 0;
+
+	pte_k = pte_offset_kernel(pmd_k, address);
+	if (!pte_present(*pte_k))
+		return -1;
+
+	return 0;
+}
+NOKPROBE_SYMBOL(vmalloc_fault);
+
+/*
+ * Did it hit the DOS screen memory VA from vm86 mode?
+ */
+static inline void
+check_v8086_mode(struct pt_regs *regs, unsigned long address,
+		 struct task_struct *tsk)
+{
+#ifdef CONFIG_VM86
+	unsigned long bit;
+
+	if (!v8086_mode(regs) || !tsk->thread.vm86)
+		return;
+
+	bit = (address - 0xA0000) >> PAGE_SHIFT;
+	if (bit < 32)
+		tsk->thread.vm86->screen_bitmap |= 1 << bit;
+#endif
+}
+
+static bool low_pfn(unsigned long pfn)
+{
+	return pfn < max_low_pfn;
+}
+
+static void dump_pagetable(unsigned long address)
+{
+	pgd_t *base = __va(read_cr3_pa());
+	pgd_t *pgd = &base[pgd_index(address)];
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+
+#ifdef CONFIG_X86_PAE
+	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
+	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
+		goto out;
+#define pr_pde pr_cont
+#else
+#define pr_pde pr_info
+#endif
+	p4d = p4d_offset(pgd, address);
+	pud = pud_offset(p4d, address);
+	pmd = pmd_offset(pud, address);
+	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
+#undef pr_pde
+
+	/*
+	 * We must not directly access the pte in the highpte
+	 * case if the page table is located in highmem.
+	 * And let's rather not kmap-atomic the pte, just in case
+	 * it's allocated already:
+	 */
+	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
+		goto out;
+
+	pte = pte_offset_kernel(pmd, address);
+	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
+out:
+	pr_cont("\n");
+}
+
+#else /* CONFIG_X86_64: */
+
+void vmalloc_sync_mappings(void)
+{
+	/*
+	 * 64-bit mappings might allocate new p4d/pud pages
+	 * that need to be propagated to all tasks' PGDs.
+	 */
+	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
+}
+
+void vmalloc_sync_unmappings(void)
+{
+	/*
+	 * Unmappings never allocate or free p4d/pud pages.
+	 * No work is required here.
+	 */
+}
+
+/*
+ * 64-bit:
+ *
+ *   Handle a fault on the vmalloc area
+ */
+static noinline int vmalloc_fault(unsigned long address)
+{
+	pgd_t *pgd, *pgd_k;
+	p4d_t *p4d, *p4d_k;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+
+	/* Make sure we are in vmalloc area: */
+	if (!(address >= VMALLOC_START && address < VMALLOC_END))
+		return -1;
+
+	/*
+	 * Copy kernel mappings over when needed. This can also
+	 * happen within a race in page table update. In the later
+	 * case just flush:
+	 */
+	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
+	pgd_k = pgd_offset_k(address);
+	if (pgd_none(*pgd_k))
+		return -1;
+
+	if (pgtable_l5_enabled()) {
+		if (pgd_none(*pgd)) {
+			set_pgd(pgd, *pgd_k);
+			arch_flush_lazy_mmu_mode();
+		} else {
+			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
+		}
+	}
+
+	/* With 4-level paging, copying happens on the p4d level. */
+	p4d = p4d_offset(pgd, address);
+	p4d_k = p4d_offset(pgd_k, address);
+	if (p4d_none(*p4d_k))
+		return -1;
+
+	if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
+		set_p4d(p4d, *p4d_k);
+		arch_flush_lazy_mmu_mode();
+	} else {
+		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
+	}
+
+	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
+
+	pud = pud_offset(p4d, address);
+	if (pud_none(*pud))
+		return -1;
+
+	if (pud_large(*pud))
+		return 0;
+
+	pmd = pmd_offset(pud, address);
+	if (pmd_none(*pmd))
+		return -1;
+
+	if (pmd_large(*pmd))
+		return 0;
+
+	pte = pte_offset_kernel(pmd, address);
+	if (!pte_present(*pte))
+		return -1;
+
+	return 0;
+}
+NOKPROBE_SYMBOL(vmalloc_fault);
+
+#ifdef CONFIG_CPU_SUP_AMD
+static const char errata93_warning[] =
+KERN_ERR 
+"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
+"******* Working around it, but it may cause SEGVs or burn power.\n"
+"******* Please consider a BIOS update.\n"
+"******* Disabling USB legacy in the BIOS may also help.\n";
+#endif
+
+/*
+ * No vm86 mode in 64-bit mode:
+ */
+static inline void
+check_v8086_mode(struct pt_regs *regs, unsigned long address,
+		 struct task_struct *tsk)
+{
+}
+
+static int bad_address(void *p)
+{
+	unsigned long dummy;
+
+	return probe_kernel_address((unsigned long *)p, dummy);
+}
+
+static void dump_pagetable(unsigned long address)
+{
+	pgd_t *base = __va(read_cr3_pa());
+	pgd_t *pgd = base + pgd_index(address);
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+
+	if (bad_address(pgd))
+		goto bad;
+
+	pr_info("PGD %lx ", pgd_val(*pgd));
+
+	if (!pgd_present(*pgd))
+		goto out;
+
+	p4d = p4d_offset(pgd, address);
+	if (bad_address(p4d))
+		goto bad;
+
+	pr_cont("P4D %lx ", p4d_val(*p4d));
+	if (!p4d_present(*p4d) || p4d_large(*p4d))
+		goto out;
+
+	pud = pud_offset(p4d, address);
+	if (bad_address(pud))
+		goto bad;
+
+	pr_cont("PUD %lx ", pud_val(*pud));
+	if (!pud_present(*pud) || pud_large(*pud))
+		goto out;
+
+	pmd = pmd_offset(pud, address);
+	if (bad_address(pmd))
+		goto bad;
+
+	pr_cont("PMD %lx ", pmd_val(*pmd));
+	if (!pmd_present(*pmd) || pmd_large(*pmd))
+		goto out;
+
+	pte = pte_offset_kernel(pmd, address);
+	if (bad_address(pte))
+		goto bad;
+
+	pr_cont("PTE %lx", pte_val(*pte));
+out:
+	pr_cont("\n");
+	return;
+bad:
+	pr_info("BAD\n");
+}
+
+#endif /* CONFIG_X86_64 */
+
+/*
+ * Workaround for K8 erratum #93 & buggy BIOS.
+ *
+ * BIOS SMM functions are required to use a specific workaround
+ * to avoid corruption of the 64bit RIP register on C stepping K8.
+ *
+ * A lot of BIOS that didn't get tested properly miss this.
+ *
+ * The OS sees this as a page fault with the upper 32bits of RIP cleared.
+ * Try to work around it here.
+ *
+ * Note we only handle faults in kernel here.
+ * Does nothing on 32-bit.
+ */
+static int is_errata93(struct pt_regs *regs, unsigned long address)
+{
+#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
+	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
+	    || boot_cpu_data.x86 != 0xf)
+		return 0;
+
+	if (address != regs->ip)
+		return 0;
+
+	if ((address >> 32) != 0)
+		return 0;
+
+	address |= 0xffffffffUL << 32;
+	if ((address >= (u64)_stext && address <= (u64)_etext) ||
+	    (address >= MODULES_VADDR && address <= MODULES_END)) {
+		printk_once(errata93_warning);
+		regs->ip = address;
+		return 1;
+	}
+#endif
+	return 0;
+}
+
+/*
+ * Work around K8 erratum #100 K8 in compat mode occasionally jumps
+ * to illegal addresses >4GB.
+ *
+ * We catch this in the page fault handler because these addresses
+ * are not reachable. Just detect this case and return.  Any code
+ * segment in LDT is compatibility mode.
+ */
+static int is_errata100(struct pt_regs *regs, unsigned long address)
+{
+#ifdef CONFIG_X86_64
+	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
+		return 1;
+#endif
+	return 0;
+}
+
+static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
+{
+#ifdef CONFIG_X86_F00F_BUG
+	unsigned long nr;
+
+	/*
+	 * Pentium F0 0F C7 C8 bug workaround:
+	 */
+	if (boot_cpu_has_bug(X86_BUG_F00F)) {
+		nr = (address - idt_descr.address) >> 3;
+
+		if (nr == 6) {
+			do_invalid_op(regs, 0);
+			return 1;
+		}
+	}
+#endif
+	return 0;
+}
+
+static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
+{
+	u32 offset = (index >> 3) * sizeof(struct desc_struct);
+	unsigned long addr;
+	struct ldttss_desc desc;
+
+	if (index == 0) {
+		pr_alert("%s: NULL\n", name);
+		return;
+	}
+
+	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
+		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
+		return;
+	}
+
+	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
+			      sizeof(struct ldttss_desc))) {
+		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
+			 name, index);
+		return;
+	}
+
+	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
+#ifdef CONFIG_X86_64
+	addr |= ((u64)desc.base3 << 32);
+#endif
+	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
+		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
+}
+
+static void
+show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
+{
+	if (!oops_may_print())
+		return;
+
+	if (error_code & X86_PF_INSTR) {
+		unsigned int level;
+		pgd_t *pgd;
+		pte_t *pte;
+
+		pgd = __va(read_cr3_pa());
+		pgd += pgd_index(address);
+
+		pte = lookup_address_in_pgd(pgd, address, &level);
+
+		if (pte && pte_present(*pte) && !pte_exec(*pte))
+			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
+				from_kuid(&init_user_ns, current_uid()));
+		if (pte && pte_present(*pte) && pte_exec(*pte) &&
+				(pgd_flags(*pgd) & _PAGE_USER) &&
+				(__read_cr4() & X86_CR4_SMEP))
+			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
+				from_kuid(&init_user_ns, current_uid()));
+	}
+
+	if (address < PAGE_SIZE && !user_mode(regs))
+		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
+			(void *)address);
+	else
+		pr_alert("BUG: unable to handle page fault for address: %px\n",
+			(void *)address);
+
+	pr_alert("#PF: %s %s in %s mode\n",
+		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
+		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
+		 (error_code & X86_PF_WRITE) ? "write access" :
+					       "read access",
+			     user_mode(regs) ? "user" : "kernel");
+	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
+		 !(error_code & X86_PF_PROT) ? "not-present page" :
+		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
+		 (error_code & X86_PF_PK)    ? "protection keys violation" :
+					       "permissions violation");
+
+	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
+		struct desc_ptr idt, gdt;
+		u16 ldtr, tr;
+
+		/*
+		 * This can happen for quite a few reasons.  The more obvious
+		 * ones are faults accessing the GDT, or LDT.  Perhaps
+		 * surprisingly, if the CPU tries to deliver a benign or
+		 * contributory exception from user code and gets a page fault
+		 * during delivery, the page fault can be delivered as though
+		 * it originated directly from user code.  This could happen
+		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
+		 * kernel or IST stack.
+		 */
+		store_idt(&idt);
+
+		/* Usable even on Xen PV -- it's just slow. */
+		native_store_gdt(&gdt);
+
+		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
+			 idt.address, idt.size, gdt.address, gdt.size);
+
+		store_ldt(ldtr);
+		show_ldttss(&gdt, "LDTR", ldtr);
+
+		store_tr(tr);
+		show_ldttss(&gdt, "TR", tr);
+	}
+
+	dump_pagetable(address);
+}
+
+static noinline void
+pgtable_bad(struct pt_regs *regs, unsigned long error_code,
+	    unsigned long address)
+{
+	struct task_struct *tsk;
+	unsigned long flags;
+	int sig;
+
+	flags = oops_begin();
+	tsk = current;
+	sig = SIGKILL;
+
+	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
+	       tsk->comm, address);
+	dump_pagetable(address);
+
+	if (__die("Bad pagetable", regs, error_code))
+		sig = 0;
+
+	oops_end(flags, regs, sig);
+}
+
+static void set_signal_archinfo(unsigned long address,
+				unsigned long error_code)
+{
+	struct task_struct *tsk = current;
+
+	/*
+	 * To avoid leaking information about the kernel page
+	 * table layout, pretend that user-mode accesses to
+	 * kernel addresses are always protection faults.
+	 *
+	 * NB: This means that failed vsyscalls with vsyscall=none
+	 * will have the PROT bit.  This doesn't leak any
+	 * information and does not appear to cause any problems.
+	 */
+	if (address >= TASK_SIZE_MAX)
+		error_code |= X86_PF_PROT;
+
+	tsk->thread.trap_nr = X86_TRAP_PF;
+	tsk->thread.error_code = error_code | X86_PF_USER;
+	tsk->thread.cr2 = address;
+}
+
+static noinline void
+no_context(struct pt_regs *regs, unsigned long error_code,
+	   unsigned long address, int signal, int si_code)
+{
+	struct task_struct *tsk = current;
+	unsigned long flags;
+	int sig;
+
+	if (user_mode(regs)) {
+		/*
+		 * This is an implicit supervisor-mode access from user
+		 * mode.  Bypass all the kernel-mode recovery code and just
+		 * OOPS.
+		 */
+		goto oops;
+	}
+
+	/* Are we prepared to handle this kernel fault? */
+	if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
+		return;
+
+#ifdef CONFIG_VMAP_STACK
+	/*
+	 * Stack overflow?  During boot, we can fault near the initial
+	 * stack in the direct map, but that's not an overflow -- check
+	 * that we're in vmalloc space to avoid this.
+	 */
+	if (is_vmalloc_addr((void *)address) &&
+	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
+	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
+		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
+		/*
+		 * We're likely to be running with very little stack space
+		 * left.  It's plausible that we'd hit this condition but
+		 * double-fault even before we get this far, in which case
+		 * we're fine: the double-fault handler will deal with it.
+		 *
+		 * We don't want to make it all the way into the oops code
+		 * and then double-fault, though, because we're likely to
+		 * break the console driver and lose most of the stack dump.
+		 */
+		asm volatile ("movq %[stack], %%rsp\n\t"
+			      "call handle_stack_overflow\n\t"
+			      "1: jmp 1b"
+			      : ASM_CALL_CONSTRAINT
+			      : "D" ("kernel stack overflow (page fault)"),
+				"S" (regs), "d" (address),
+				[stack] "rm" (stack));
+		unreachable();
+	}
+#endif
+
+	/*
+	 * 32-bit:
+	 *
+	 *   Valid to do another page fault here, because if this fault
+	 *   had been triggered by is_prefetch fixup_exception would have
+	 *   handled it.
+	 *
+	 * 64-bit:
+	 *
+	 *   Hall of shame of CPU/BIOS bugs.
+	 */
+	if (is_prefetch(regs, error_code, address))
+		return;
+
+	if (is_errata93(regs, address))
+		return;
+
+	/*
+	 * Buggy firmware could access regions which might page fault, try to
+	 * recover from such faults.
+	 */
+	if (IS_ENABLED(CONFIG_EFI))
+		efi_recover_from_page_fault(address);
+
+oops:
+	/*
+	 * Oops. The kernel tried to access some bad page. We'll have to
+	 * terminate things with extreme prejudice:
+	 */
+	flags = oops_begin();
+
+	show_fault_oops(regs, error_code, address);
+
+	if (task_stack_end_corrupted(tsk))
+		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
+
+	sig = SIGKILL;
+	if (__die("Oops", regs, error_code))
+		sig = 0;
+
+	/* Executive summary in case the body of the oops scrolled away */
+	printk(KERN_DEFAULT "CR2: %016lx\n", address);
+
+	oops_end(flags, regs, sig);
+}
+
+/*
+ * Print out info about fatal segfaults, if the show_unhandled_signals
+ * sysctl is set:
+ */
+static inline void
+show_signal_msg(struct pt_regs *regs, unsigned long error_code,
+		unsigned long address, struct task_struct *tsk)
+{
+	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
+
+	if (!unhandled_signal(tsk, SIGSEGV))
+		return;
+
+	if (!printk_ratelimit())
+		return;
+
+	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
+		loglvl, tsk->comm, task_pid_nr(tsk), address,
+		(void *)regs->ip, (void *)regs->sp, error_code);
+
+	print_vma_addr(KERN_CONT " in ", regs->ip);
+
+	printk(KERN_CONT "\n");
+
+	show_opcodes(regs, loglvl);
+}
+
+/*
+ * The (legacy) vsyscall page is the long page in the kernel portion
+ * of the address space that has user-accessible permissions.
+ */
+static bool is_vsyscall_vaddr(unsigned long vaddr)
+{
+	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
+}
+
+static void
+__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
+		       unsigned long address, u32 pkey, int si_code)
+{
+	struct task_struct *tsk = current;
+
+	/* User mode accesses just cause a SIGSEGV */
+	if (user_mode(regs) && (error_code & X86_PF_USER)) {
+		/*
+		 * It's possible to have interrupts off here:
+		 */
+		local_irq_enable();
+
+		/*
+		 * Valid to do another page fault here because this one came
+		 * from user space:
+		 */
+		if (is_prefetch(regs, error_code, address))
+			return;
+
+		if (is_errata100(regs, address))
+			return;
+
+		/*
+		 * To avoid leaking information about the kernel page table
+		 * layout, pretend that user-mode accesses to kernel addresses
+		 * are always protection faults.
+		 */
+		if (address >= TASK_SIZE_MAX)
+			error_code |= X86_PF_PROT;
+
+		if (likely(show_unhandled_signals))
+			show_signal_msg(regs, error_code, address, tsk);
+
+		set_signal_archinfo(address, error_code);
+
+		if (si_code == SEGV_PKUERR)
+			force_sig_pkuerr((void __user *)address, pkey);
+
+		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
+
+		return;
+	}
+
+	if (is_f00f_bug(regs, address))
+		return;
+
+	no_context(regs, error_code, address, SIGSEGV, si_code);
+}
+
+static noinline void
+bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
+		     unsigned long address)
+{
+	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
+}
+
+static void
+__bad_area(struct pt_regs *regs, unsigned long error_code,
+	   unsigned long address, u32 pkey, int si_code)
+{
+	struct mm_struct *mm = current->mm;
+	/*
+	 * Something tried to access memory that isn't in our memory map..
+	 * Fix it, but check if it's kernel or user first..
+	 */
+	up_read(&mm->mmap_sem);
+
+	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
+}
+
+static noinline void
+bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
+{
+	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
+}
+
+static inline bool bad_area_access_from_pkeys(unsigned long error_code,
+		struct vm_area_struct *vma)
+{
+	/* This code is always called on the current mm */
+	bool foreign = false;
+
+	if (!boot_cpu_has(X86_FEATURE_OSPKE))
+		return false;
+	if (error_code & X86_PF_PK)
+		return true;
+	/* this checks permission keys on the VMA: */
+	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
+				       (error_code & X86_PF_INSTR), foreign))
+		return true;
+	return false;
+}
+
+static noinline void
+bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
+		      unsigned long address, struct vm_area_struct *vma)
+{
+	/*
+	 * This OSPKE check is not strictly necessary at runtime.
+	 * But, doing it this way allows compiler optimizations
+	 * if pkeys are compiled out.
+	 */
+	if (bad_area_access_from_pkeys(error_code, vma)) {
+		/*
+		 * A protection key fault means that the PKRU value did not allow
+		 * access to some PTE.  Userspace can figure out what PKRU was
+		 * from the XSAVE state.  This function captures the pkey from
+		 * the vma and passes it to userspace so userspace can discover
+		 * which protection key was set on the PTE.
+		 *
+		 * If we get here, we know that the hardware signaled a X86_PF_PK
+		 * fault and that there was a VMA once we got in the fault
+		 * handler.  It does *not* guarantee that the VMA we find here
+		 * was the one that we faulted on.
+		 *
+		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
+		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
+		 * 3. T1   : faults...
+		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
+		 * 5. T1   : enters fault handler, takes mmap_sem, etc...
+		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
+		 *	     faulted on a pte with its pkey=4.
+		 */
+		u32 pkey = vma_pkey(vma);
+
+		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
+	} else {
+		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
+	}
+}
+
+static void
+do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
+	  vm_fault_t fault)
+{
+	/* Kernel mode? Handle exceptions or die: */
+	if (!(error_code & X86_PF_USER)) {
+		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
+		return;
+	}
+
+	/* User-space => ok to do another page fault: */
+	if (is_prefetch(regs, error_code, address))
+		return;
+
+	set_signal_archinfo(address, error_code);
+
+#ifdef CONFIG_MEMORY_FAILURE
+	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
+		struct task_struct *tsk = current;
+		unsigned lsb = 0;
+
+		pr_err(
+	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
+			tsk->comm, tsk->pid, address);
+		if (fault & VM_FAULT_HWPOISON_LARGE)
+			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
+		if (fault & VM_FAULT_HWPOISON)
+			lsb = PAGE_SHIFT;
+		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
+		return;
+	}
+#endif
+	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
+}
+
+static noinline void
+mm_fault_error(struct pt_regs *regs, unsigned long error_code,
+	       unsigned long address, vm_fault_t fault)
+{
+	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
+		no_context(regs, error_code, address, 0, 0);
+		return;
+	}
+
+	if (fault & VM_FAULT_OOM) {
+		/* Kernel mode? Handle exceptions or die: */
+		if (!(error_code & X86_PF_USER)) {
+			no_context(regs, error_code, address,
+				   SIGSEGV, SEGV_MAPERR);
+			return;
+		}
+
+		/*
+		 * We ran out of memory, call the OOM killer, and return the
+		 * userspace (which will retry the fault, or kill us if we got
+		 * oom-killed):
+		 */
+		pagefault_out_of_memory();
+	} else {
+		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
+			     VM_FAULT_HWPOISON_LARGE))
+			do_sigbus(regs, error_code, address, fault);
+		else if (fault & VM_FAULT_SIGSEGV)
+			bad_area_nosemaphore(regs, error_code, address);
+		else
+			BUG();
+	}
+}
+
+static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
+{
+	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
+		return 0;
+
+	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
+		return 0;
+
+	return 1;
+}
+
+/*
+ * Handle a spurious fault caused by a stale TLB entry.
+ *
+ * This allows us to lazily refresh the TLB when increasing the
+ * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
+ * eagerly is very expensive since that implies doing a full
+ * cross-processor TLB flush, even if no stale TLB entries exist
+ * on other processors.
+ *
+ * Spurious faults may only occur if the TLB contains an entry with
+ * fewer permission than the page table entry.  Non-present (P = 0)
+ * and reserved bit (R = 1) faults are never spurious.
+ *
+ * There are no security implications to leaving a stale TLB when
+ * increasing the permissions on a page.
+ *
+ * Returns non-zero if a spurious fault was handled, zero otherwise.
+ *
+ * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
+ * (Optional Invalidation).
+ */
+static noinline int
+spurious_kernel_fault(unsigned long error_code, unsigned long address)
+{
+	pgd_t *pgd;
+	p4d_t *p4d;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+	int ret;
+
+	/*
+	 * Only writes to RO or instruction fetches from NX may cause
+	 * spurious faults.
+	 *
+	 * These could be from user or supervisor accesses but the TLB
+	 * is only lazily flushed after a kernel mapping protection
+	 * change, so user accesses are not expected to cause spurious
+	 * faults.
+	 */
+	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
+	    error_code != (X86_PF_INSTR | X86_PF_PROT))
+		return 0;
+
+	pgd = init_mm.pgd + pgd_index(address);
+	if (!pgd_present(*pgd))
+		return 0;
+
+	p4d = p4d_offset(pgd, address);
+	if (!p4d_present(*p4d))
+		return 0;
+
+	if (p4d_large(*p4d))
+		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
+
+	pud = pud_offset(p4d, address);
+	if (!pud_present(*pud))
+		return 0;
+
+	if (pud_large(*pud))
+		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
+
+	pmd = pmd_offset(pud, address);
+	if (!pmd_present(*pmd))
+		return 0;
+
+	if (pmd_large(*pmd))
+		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
+
+	pte = pte_offset_kernel(pmd, address);
+	if (!pte_present(*pte))
+		return 0;
+
+	ret = spurious_kernel_fault_check(error_code, pte);
+	if (!ret)
+		return 0;
+
+	/*
+	 * Make sure we have permissions in PMD.
+	 * If not, then there's a bug in the page tables:
+	 */
+	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
+	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
+
+	return ret;
+}
+NOKPROBE_SYMBOL(spurious_kernel_fault);
+
+int show_unhandled_signals = 1;
+
+static inline int
+access_error(unsigned long error_code, struct vm_area_struct *vma)
+{
+	/* This is only called for the current mm, so: */
+	bool foreign = false;
+
+	/*
+	 * Read or write was blocked by protection keys.  This is
+	 * always an unconditional error and can never result in
+	 * a follow-up action to resolve the fault, like a COW.
+	 */
+	if (error_code & X86_PF_PK)
+		return 1;
+
+	/*
+	 * Make sure to check the VMA so that we do not perform
+	 * faults just to hit a X86_PF_PK as soon as we fill in a
+	 * page.
+	 */
+	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
+				       (error_code & X86_PF_INSTR), foreign))
+		return 1;
+
+	if (error_code & X86_PF_WRITE) {
+		/* write, present and write, not present: */
+		if (unlikely(!(vma->vm_flags & VM_WRITE)))
+			return 1;
+		return 0;
+	}
+
+	/* read, present: */
+	if (unlikely(error_code & X86_PF_PROT))
+		return 1;
+
+	/* read, not present: */
+	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
+		return 1;
+
+	return 0;
+}
+
+static int fault_in_kernel_space(unsigned long address)
+{
+	/*
+	 * On 64-bit systems, the vsyscall page is at an address above
+	 * TASK_SIZE_MAX, but is not considered part of the kernel
+	 * address space.
+	 */
+	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
+		return false;
+
+	return address >= TASK_SIZE_MAX;
+}
+
+/*
+ * Called for all faults where 'address' is part of the kernel address
+ * space.  Might get called for faults that originate from *code* that
+ * ran in userspace or the kernel.
+ */
+static void
+do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
+		   unsigned long address)
+{
+	/*
+	 * Protection keys exceptions only happen on user pages.  We
+	 * have no user pages in the kernel portion of the address
+	 * space, so do not expect them here.
+	 */
+	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
+
+	/*
+	 * We can fault-in kernel-space virtual memory on-demand. The
+	 * 'reference' page table is init_mm.pgd.
+	 *
+	 * NOTE! We MUST NOT take any locks for this case. We may
+	 * be in an interrupt or a critical region, and should
+	 * only copy the information from the master page table,
+	 * nothing more.
+	 *
+	 * Before doing this on-demand faulting, ensure that the
+	 * fault is not any of the following:
+	 * 1. A fault on a PTE with a reserved bit set.
+	 * 2. A fault caused by a user-mode access.  (Do not demand-
+	 *    fault kernel memory due to user-mode accesses).
+	 * 3. A fault caused by a page-level protection violation.
+	 *    (A demand fault would be on a non-present page which
+	 *     would have X86_PF_PROT==0).
+	 */
+	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
+		if (vmalloc_fault(address) >= 0)
+			return;
+	}
+
+	/* Was the fault spurious, caused by lazy TLB invalidation? */
+	if (spurious_kernel_fault(hw_error_code, address))
+		return;
+
+	/* kprobes don't want to hook the spurious faults: */
+	if (kprobe_page_fault(regs, X86_TRAP_PF))
+		return;
+
+	/*
+	 * Note, despite being a "bad area", there are quite a few
+	 * acceptable reasons to get here, such as erratum fixups
+	 * and handling kernel code that can fault, like get_user().
+	 *
+	 * Don't take the mm semaphore here. If we fixup a prefetch
+	 * fault we could otherwise deadlock:
+	 */
+	bad_area_nosemaphore(regs, hw_error_code, address);
+}
+NOKPROBE_SYMBOL(do_kern_addr_fault);
+
+/* Handle faults in the user portion of the address space */
+static inline
+void do_user_addr_fault(struct pt_regs *regs,
+			unsigned long hw_error_code,
+			unsigned long address)
+{
+	struct vm_area_struct *vma;
+	struct task_struct *tsk;
+	struct mm_struct *mm;
+	vm_fault_t fault, major = 0;
+	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
+
+	tsk = current;
+	mm = tsk->mm;
+
+	/* kprobes don't want to hook the spurious faults: */
+	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
+		return;
+
+	/*
+	 * Reserved bits are never expected to be set on
+	 * entries in the user portion of the page tables.
+	 */
+	if (unlikely(hw_error_code & X86_PF_RSVD))
+		pgtable_bad(regs, hw_error_code, address);
+
+	/*
+	 * If SMAP is on, check for invalid kernel (supervisor) access to user
+	 * pages in the user address space.  The odd case here is WRUSS,
+	 * which, according to the preliminary documentation, does not respect
+	 * SMAP and will have the USER bit set so, in all cases, SMAP
+	 * enforcement appears to be consistent with the USER bit.
+	 */
+	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
+		     !(hw_error_code & X86_PF_USER) &&
+		     !(regs->flags & X86_EFLAGS_AC)))
+	{
+		bad_area_nosemaphore(regs, hw_error_code, address);
+		return;
+	}
+
+	/*
+	 * If we're in an interrupt, have no user context or are running
+	 * in a region with pagefaults disabled then we must not take the fault
+	 */
+	if (unlikely(faulthandler_disabled() || !mm)) {
+		bad_area_nosemaphore(regs, hw_error_code, address);
+		return;
+	}
+
+	/*
+	 * It's safe to allow irq's after cr2 has been saved and the
+	 * vmalloc fault has been handled.
+	 *
+	 * User-mode registers count as a user access even for any
+	 * potential system fault or CPU buglet:
+	 */
+	if (user_mode(regs)) {
+		local_irq_enable();
+		flags |= FAULT_FLAG_USER;
+	} else {
+		if (regs->flags & X86_EFLAGS_IF)
+			local_irq_enable();
+	}
+
+	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
+
+	if (hw_error_code & X86_PF_WRITE)
+		flags |= FAULT_FLAG_WRITE;
+	if (hw_error_code & X86_PF_INSTR)
+		flags |= FAULT_FLAG_INSTRUCTION;
+
+#ifdef CONFIG_X86_64
+	/*
+	 * Faults in the vsyscall page might need emulation.  The
+	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
+	 * considered to be part of the user address space.
+	 *
+	 * The vsyscall page does not have a "real" VMA, so do this
+	 * emulation before we go searching for VMAs.
+	 *
+	 * PKRU never rejects instruction fetches, so we don't need
+	 * to consider the PF_PK bit.
+	 */
+	if (is_vsyscall_vaddr(address)) {
+		if (emulate_vsyscall(hw_error_code, regs, address))
+			return;
+	}
+#endif
+
+	/*
+	 * Kernel-mode access to the user address space should only occur
+	 * on well-defined single instructions listed in the exception
+	 * tables.  But, an erroneous kernel fault occurring outside one of
+	 * those areas which also holds mmap_sem might deadlock attempting
+	 * to validate the fault against the address space.
+	 *
+	 * Only do the expensive exception table search when we might be at
+	 * risk of a deadlock.  This happens if we
+	 * 1. Failed to acquire mmap_sem, and
+	 * 2. The access did not originate in userspace.
+	 */
+	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
+		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
+			/*
+			 * Fault from code in kernel from
+			 * which we do not expect faults.
+			 */
+			bad_area_nosemaphore(regs, hw_error_code, address);
+			return;
+		}
+retry:
+		down_read(&mm->mmap_sem);
+	} else {
+		/*
+		 * The above down_read_trylock() might have succeeded in
+		 * which case we'll have missed the might_sleep() from
+		 * down_read():
+		 */
+		might_sleep();
+	}
+
+	vma = find_vma(mm, address);
+	if (unlikely(!vma)) {
+		bad_area(regs, hw_error_code, address);
+		return;
+	}
+	if (likely(vma->vm_start <= address))
+		goto good_area;
+	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
+		bad_area(regs, hw_error_code, address);
+		return;
+	}
+	if (unlikely(expand_stack(vma, address))) {
+		bad_area(regs, hw_error_code, address);
+		return;
+	}
+
+	/*
+	 * Ok, we have a good vm_area for this memory access, so
+	 * we can handle it..
+	 */
+good_area:
+	if (unlikely(access_error(hw_error_code, vma))) {
+		bad_area_access_error(regs, hw_error_code, address, vma);
+		return;
+	}
+
+	/*
+	 * If for any reason at all we couldn't handle the fault,
+	 * make sure we exit gracefully rather than endlessly redo
+	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
+	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
+	 *
+	 * Note that handle_userfault() may also release and reacquire mmap_sem
+	 * (and not return with VM_FAULT_RETRY), when returning to userland to
+	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
+	 * (potentially after handling any pending signal during the return to
+	 * userland). The return to userland is identified whenever
+	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
+	 */
+	fault = handle_mm_fault(vma, address, flags);
+	major |= fault & VM_FAULT_MAJOR;
+
+	/*
+	 * If we need to retry the mmap_sem has already been released,
+	 * and if there is a fatal signal pending there is no guarantee
+	 * that we made any progress. Handle this case first.
+	 */
+	if (unlikely(fault & VM_FAULT_RETRY)) {
+		/* Retry at most once */
+		if (flags & FAULT_FLAG_ALLOW_RETRY) {
+			flags &= ~FAULT_FLAG_ALLOW_RETRY;
+			flags |= FAULT_FLAG_TRIED;
+			if (!fatal_signal_pending(tsk))
+				goto retry;
+		}
+
+		/* User mode? Just return to handle the fatal exception */
+		if (flags & FAULT_FLAG_USER)
+			return;
+
+		/* Not returning to user mode? Handle exceptions or die: */
+		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
+		return;
+	}
+
+	up_read(&mm->mmap_sem);
+	if (unlikely(fault & VM_FAULT_ERROR)) {
+		mm_fault_error(regs, hw_error_code, address, fault);
+		return;
+	}
+
+	/*
+	 * Major/minor page fault accounting. If any of the events
+	 * returned VM_FAULT_MAJOR, we account it as a major fault.
+	 */
+	if (major) {
+		tsk->maj_flt++;
+		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
+	} else {
+		tsk->min_flt++;
+		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
+	}
+
+	check_v8086_mode(regs, address, tsk);
+}
+NOKPROBE_SYMBOL(do_user_addr_fault);
+
+/*
+ * Explicitly marked noinline such that the function tracer sees this as the
+ * page_fault entry point.
+ */
+static noinline void
+__do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
+		unsigned long address)
+{
+	prefetchw(&current->mm->mmap_sem);
+
+	if (unlikely(kmmio_fault(regs, address)))
+		return;
+
+	/* Was the fault on kernel-controlled part of the address space? */
+	if (unlikely(fault_in_kernel_space(address)))
+		do_kern_addr_fault(regs, hw_error_code, address);
+	else
+		do_user_addr_fault(regs, hw_error_code, address);
+}
+NOKPROBE_SYMBOL(__do_page_fault);
+
+static __always_inline void
+trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
+			 unsigned long address)
+{
+	if (!trace_pagefault_enabled())
+		return;
+
+	if (user_mode(regs))
+		trace_page_fault_user(address, regs, error_code);
+	else
+		trace_page_fault_kernel(address, regs, error_code);
+}
+
+dotraplinkage void
+do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
+{
+	enum ctx_state prev_state;
+
+	prev_state = exception_enter();
+	trace_page_fault_entries(regs, error_code, address);
+	__do_page_fault(regs, error_code, address);
+	exception_exit(prev_state);
+}
+NOKPROBE_SYMBOL(do_page_fault);