ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/drivers/gpu/drm/vc4/vc4_crtc.c b/marvell/linux/drivers/gpu/drm/vc4/vc4_crtc.c
new file mode 100644
index 0000000..f1f0a7c
--- /dev/null
+++ b/marvell/linux/drivers/gpu/drm/vc4/vc4_crtc.c
@@ -0,0 +1,1277 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 Broadcom
+ */
+
+/**
+ * DOC: VC4 CRTC module
+ *
+ * In VC4, the Pixel Valve is what most closely corresponds to the
+ * DRM's concept of a CRTC.  The PV generates video timings from the
+ * encoder's clock plus its configuration.  It pulls scaled pixels from
+ * the HVS at that timing, and feeds it to the encoder.
+ *
+ * However, the DRM CRTC also collects the configuration of all the
+ * DRM planes attached to it.  As a result, the CRTC is also
+ * responsible for writing the display list for the HVS channel that
+ * the CRTC will use.
+ *
+ * The 2835 has 3 different pixel valves.  pv0 in the audio power
+ * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
+ * image domain can feed either HDMI or the SDTV controller.  The
+ * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
+ * SDTV, etc.) according to which output type is chosen in the mux.
+ *
+ * For power management, the pixel valve's registers are all clocked
+ * by the AXI clock, while the timings and FIFOs make use of the
+ * output-specific clock.  Since the encoders also directly consume
+ * the CPRMAN clocks, and know what timings they need, they are the
+ * ones that set the clock.
+ */
+
+#include <linux/clk.h>
+#include <linux/component.h>
+#include <linux/of_device.h>
+
+#include <drm/drm_atomic.h>
+#include <drm/drm_atomic_helper.h>
+#include <drm/drm_atomic_uapi.h>
+#include <drm/drm_fb_cma_helper.h>
+#include <drm/drm_print.h>
+#include <drm/drm_probe_helper.h>
+#include <drm/drm_vblank.h>
+
+#include "vc4_drv.h"
+#include "vc4_regs.h"
+
+struct vc4_crtc_state {
+	struct drm_crtc_state base;
+	/* Dlist area for this CRTC configuration. */
+	struct drm_mm_node mm;
+	bool feed_txp;
+	bool txp_armed;
+
+	struct {
+		unsigned int left;
+		unsigned int right;
+		unsigned int top;
+		unsigned int bottom;
+	} margins;
+};
+
+static inline struct vc4_crtc_state *
+to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
+{
+	return (struct vc4_crtc_state *)crtc_state;
+}
+
+#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
+#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
+
+static const struct debugfs_reg32 crtc_regs[] = {
+	VC4_REG32(PV_CONTROL),
+	VC4_REG32(PV_V_CONTROL),
+	VC4_REG32(PV_VSYNCD_EVEN),
+	VC4_REG32(PV_HORZA),
+	VC4_REG32(PV_HORZB),
+	VC4_REG32(PV_VERTA),
+	VC4_REG32(PV_VERTB),
+	VC4_REG32(PV_VERTA_EVEN),
+	VC4_REG32(PV_VERTB_EVEN),
+	VC4_REG32(PV_INTEN),
+	VC4_REG32(PV_INTSTAT),
+	VC4_REG32(PV_STAT),
+	VC4_REG32(PV_HACT_ACT),
+};
+
+bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
+			     bool in_vblank_irq, int *vpos, int *hpos,
+			     ktime_t *stime, ktime_t *etime,
+			     const struct drm_display_mode *mode)
+{
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	u32 val;
+	int fifo_lines;
+	int vblank_lines;
+	bool ret = false;
+
+	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
+
+	/* Get optional system timestamp before query. */
+	if (stime)
+		*stime = ktime_get();
+
+	/*
+	 * Read vertical scanline which is currently composed for our
+	 * pixelvalve by the HVS, and also the scaler status.
+	 */
+	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
+
+	/* Get optional system timestamp after query. */
+	if (etime)
+		*etime = ktime_get();
+
+	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
+
+	/* Vertical position of hvs composed scanline. */
+	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
+	*hpos = 0;
+
+	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
+		*vpos /= 2;
+
+		/* Use hpos to correct for field offset in interlaced mode. */
+		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
+			*hpos += mode->crtc_htotal / 2;
+	}
+
+	/* This is the offset we need for translating hvs -> pv scanout pos. */
+	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
+
+	if (fifo_lines > 0)
+		ret = true;
+
+	/* HVS more than fifo_lines into frame for compositing? */
+	if (*vpos > fifo_lines) {
+		/*
+		 * We are in active scanout and can get some meaningful results
+		 * from HVS. The actual PV scanout can not trail behind more
+		 * than fifo_lines as that is the fifo's capacity. Assume that
+		 * in active scanout the HVS and PV work in lockstep wrt. HVS
+		 * refilling the fifo and PV consuming from the fifo, ie.
+		 * whenever the PV consumes and frees up a scanline in the
+		 * fifo, the HVS will immediately refill it, therefore
+		 * incrementing vpos. Therefore we choose HVS read position -
+		 * fifo size in scanlines as a estimate of the real scanout
+		 * position of the PV.
+		 */
+		*vpos -= fifo_lines + 1;
+
+		return ret;
+	}
+
+	/*
+	 * Less: This happens when we are in vblank and the HVS, after getting
+	 * the VSTART restart signal from the PV, just started refilling its
+	 * fifo with new lines from the top-most lines of the new framebuffers.
+	 * The PV does not scan out in vblank, so does not remove lines from
+	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
+	 * We can't get meaningful readings wrt. scanline position of the PV
+	 * and need to make things up in a approximative but consistent way.
+	 */
+	vblank_lines = mode->vtotal - mode->vdisplay;
+
+	if (in_vblank_irq) {
+		/*
+		 * Assume the irq handler got called close to first
+		 * line of vblank, so PV has about a full vblank
+		 * scanlines to go, and as a base timestamp use the
+		 * one taken at entry into vblank irq handler, so it
+		 * is not affected by random delays due to lock
+		 * contention on event_lock or vblank_time lock in
+		 * the core.
+		 */
+		*vpos = -vblank_lines;
+
+		if (stime)
+			*stime = vc4_crtc->t_vblank;
+		if (etime)
+			*etime = vc4_crtc->t_vblank;
+
+		/*
+		 * If the HVS fifo is not yet full then we know for certain
+		 * we are at the very beginning of vblank, as the hvs just
+		 * started refilling, and the stime and etime timestamps
+		 * truly correspond to start of vblank.
+		 *
+		 * Unfortunately there's no way to report this to upper levels
+		 * and make it more useful.
+		 */
+	} else {
+		/*
+		 * No clue where we are inside vblank. Return a vpos of zero,
+		 * which will cause calling code to just return the etime
+		 * timestamp uncorrected. At least this is no worse than the
+		 * standard fallback.
+		 */
+		*vpos = 0;
+	}
+
+	return ret;
+}
+
+static void vc4_crtc_destroy(struct drm_crtc *crtc)
+{
+	drm_crtc_cleanup(crtc);
+}
+
+static void
+vc4_crtc_lut_load(struct drm_crtc *crtc)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	u32 i;
+
+	/* The LUT memory is laid out with each HVS channel in order,
+	 * each of which takes 256 writes for R, 256 for G, then 256
+	 * for B.
+	 */
+	HVS_WRITE(SCALER_GAMADDR,
+		  SCALER_GAMADDR_AUTOINC |
+		  (vc4_crtc->channel * 3 * crtc->gamma_size));
+
+	for (i = 0; i < crtc->gamma_size; i++)
+		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
+	for (i = 0; i < crtc->gamma_size; i++)
+		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
+	for (i = 0; i < crtc->gamma_size; i++)
+		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
+}
+
+static void
+vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
+{
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
+	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
+	u32 i;
+
+	for (i = 0; i < length; i++) {
+		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
+		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
+		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
+	}
+
+	vc4_crtc_lut_load(crtc);
+}
+
+static u32 vc4_get_fifo_full_level(u32 format)
+{
+	static const u32 fifo_len_bytes = 64;
+	static const u32 hvs_latency_pix = 6;
+
+	switch (format) {
+	case PV_CONTROL_FORMAT_DSIV_16:
+	case PV_CONTROL_FORMAT_DSIC_16:
+		return fifo_len_bytes - 2 * hvs_latency_pix;
+	case PV_CONTROL_FORMAT_DSIV_18:
+		return fifo_len_bytes - 14;
+	case PV_CONTROL_FORMAT_24:
+	case PV_CONTROL_FORMAT_DSIV_24:
+	default:
+		return fifo_len_bytes - 3 * hvs_latency_pix;
+	}
+}
+
+/*
+ * Returns the encoder attached to the CRTC.
+ *
+ * VC4 can only scan out to one encoder at a time, while the DRM core
+ * allows drivers to push pixels to more than one encoder from the
+ * same CRTC.
+ */
+static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
+{
+	struct drm_connector *connector;
+	struct drm_connector_list_iter conn_iter;
+
+	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
+	drm_for_each_connector_iter(connector, &conn_iter) {
+		if (connector->state->crtc == crtc) {
+			drm_connector_list_iter_end(&conn_iter);
+			return connector->encoder;
+		}
+	}
+	drm_connector_list_iter_end(&conn_iter);
+
+	return NULL;
+}
+
+static void vc4_crtc_config_pv(struct drm_crtc *crtc)
+{
+	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
+	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	struct drm_crtc_state *state = crtc->state;
+	struct drm_display_mode *mode = &state->adjusted_mode;
+	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
+	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
+	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
+		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
+	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
+
+	/* Reset the PV fifo. */
+	CRTC_WRITE(PV_CONTROL, 0);
+	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
+	CRTC_WRITE(PV_CONTROL, 0);
+
+	CRTC_WRITE(PV_HORZA,
+		   VC4_SET_FIELD((mode->htotal -
+				  mode->hsync_end) * pixel_rep,
+				 PV_HORZA_HBP) |
+		   VC4_SET_FIELD((mode->hsync_end -
+				  mode->hsync_start) * pixel_rep,
+				 PV_HORZA_HSYNC));
+	CRTC_WRITE(PV_HORZB,
+		   VC4_SET_FIELD((mode->hsync_start -
+				  mode->hdisplay) * pixel_rep,
+				 PV_HORZB_HFP) |
+		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
+
+	CRTC_WRITE(PV_VERTA,
+		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
+				 PV_VERTA_VBP) |
+		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
+				 PV_VERTA_VSYNC));
+	CRTC_WRITE(PV_VERTB,
+		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
+				 PV_VERTB_VFP) |
+		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
+
+	if (interlace) {
+		CRTC_WRITE(PV_VERTA_EVEN,
+			   VC4_SET_FIELD(mode->crtc_vtotal -
+					 mode->crtc_vsync_end - 1,
+					 PV_VERTA_VBP) |
+			   VC4_SET_FIELD(mode->crtc_vsync_end -
+					 mode->crtc_vsync_start,
+					 PV_VERTA_VSYNC));
+		CRTC_WRITE(PV_VERTB_EVEN,
+			   VC4_SET_FIELD(mode->crtc_vsync_start -
+					 mode->crtc_vdisplay,
+					 PV_VERTB_VFP) |
+			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
+
+		/* We set up first field even mode for HDMI.  VEC's
+		 * NTSC mode would want first field odd instead, once
+		 * we support it (to do so, set ODD_FIRST and put the
+		 * delay in VSYNCD_EVEN instead).
+		 */
+		CRTC_WRITE(PV_V_CONTROL,
+			   PV_VCONTROL_CONTINUOUS |
+			   (is_dsi ? PV_VCONTROL_DSI : 0) |
+			   PV_VCONTROL_INTERLACE |
+			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
+					 PV_VCONTROL_ODD_DELAY));
+		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
+	} else {
+		CRTC_WRITE(PV_V_CONTROL,
+			   PV_VCONTROL_CONTINUOUS |
+			   (is_dsi ? PV_VCONTROL_DSI : 0));
+	}
+
+	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
+
+	CRTC_WRITE(PV_CONTROL,
+		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
+		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
+				 PV_CONTROL_FIFO_LEVEL) |
+		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
+		   PV_CONTROL_CLR_AT_START |
+		   PV_CONTROL_TRIGGER_UNDERFLOW |
+		   PV_CONTROL_WAIT_HSTART |
+		   VC4_SET_FIELD(vc4_encoder->clock_select,
+				 PV_CONTROL_CLK_SELECT) |
+		   PV_CONTROL_FIFO_CLR |
+		   PV_CONTROL_EN);
+}
+
+static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
+	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
+	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
+	bool debug_dump_regs = false;
+
+	if (debug_dump_regs) {
+		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
+		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
+			 drm_crtc_index(crtc));
+		drm_print_regset32(&p, &vc4_crtc->regset);
+	}
+
+	if (vc4_crtc->channel == 2) {
+		u32 dispctrl;
+		u32 dsp3_mux;
+
+		/*
+		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
+		 * FIFO X'.
+		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
+		 *
+		 * DSP3 is connected to FIFO2 unless the transposer is
+		 * enabled. In this case, FIFO 2 is directly accessed by the
+		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
+		 * route.
+		 */
+		if (vc4_state->feed_txp)
+			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
+		else
+			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
+
+		dispctrl = HVS_READ(SCALER_DISPCTRL) &
+			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
+		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
+	}
+
+	if (!vc4_state->feed_txp)
+		vc4_crtc_config_pv(crtc);
+
+	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
+		  SCALER_DISPBKGND_AUTOHS |
+		  SCALER_DISPBKGND_GAMMA |
+		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
+
+	/* Reload the LUT, since the SRAMs would have been disabled if
+	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
+	 */
+	vc4_crtc_lut_load(crtc);
+
+	if (debug_dump_regs) {
+		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
+		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
+			 drm_crtc_index(crtc));
+		drm_print_regset32(&p, &vc4_crtc->regset);
+	}
+}
+
+static void require_hvs_enabled(struct drm_device *dev)
+{
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+
+	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
+		     SCALER_DISPCTRL_ENABLE);
+}
+
+static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
+				    struct drm_crtc_state *old_state)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	u32 chan = vc4_crtc->channel;
+	int ret;
+	require_hvs_enabled(dev);
+
+	/* Disable vblank irq handling before crtc is disabled. */
+	drm_crtc_vblank_off(crtc);
+
+	CRTC_WRITE(PV_V_CONTROL,
+		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
+	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
+	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
+
+	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
+	    SCALER_DISPCTRLX_ENABLE) {
+		HVS_WRITE(SCALER_DISPCTRLX(chan),
+			  SCALER_DISPCTRLX_RESET);
+
+		/* While the docs say that reset is self-clearing, it
+		 * seems it doesn't actually.
+		 */
+		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
+	}
+
+	/* Once we leave, the scaler should be disabled and its fifo empty. */
+
+	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
+
+	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
+				   SCALER_DISPSTATX_MODE) !=
+		     SCALER_DISPSTATX_MODE_DISABLED);
+
+	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
+		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
+		     SCALER_DISPSTATX_EMPTY);
+
+	/*
+	 * Make sure we issue a vblank event after disabling the CRTC if
+	 * someone was waiting it.
+	 */
+	if (crtc->state->event) {
+		unsigned long flags;
+
+		spin_lock_irqsave(&dev->event_lock, flags);
+		drm_crtc_send_vblank_event(crtc, crtc->state->event);
+		crtc->state->event = NULL;
+		spin_unlock_irqrestore(&dev->event_lock, flags);
+	}
+}
+
+void vc4_crtc_txp_armed(struct drm_crtc_state *state)
+{
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
+
+	vc4_state->txp_armed = true;
+}
+
+static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
+
+	if (crtc->state->event) {
+		unsigned long flags;
+
+		crtc->state->event->pipe = drm_crtc_index(crtc);
+
+		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
+
+		spin_lock_irqsave(&dev->event_lock, flags);
+
+		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
+			vc4_crtc->event = crtc->state->event;
+			crtc->state->event = NULL;
+		}
+
+		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
+			  vc4_state->mm.start);
+
+		spin_unlock_irqrestore(&dev->event_lock, flags);
+	} else {
+		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
+			  vc4_state->mm.start);
+	}
+}
+
+static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
+				   struct drm_crtc_state *old_state)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
+	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
+
+	require_hvs_enabled(dev);
+
+	/* Enable vblank irq handling before crtc is started otherwise
+	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
+	 */
+	drm_crtc_vblank_on(crtc);
+	vc4_crtc_update_dlist(crtc);
+
+	/* Turn on the scaler, which will wait for vstart to start
+	 * compositing.
+	 * When feeding the transposer, we should operate in oneshot
+	 * mode.
+	 */
+	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
+		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
+		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
+		  SCALER_DISPCTRLX_ENABLE |
+		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
+
+	/* When feeding the transposer block the pixelvalve is unneeded and
+	 * should not be enabled.
+	 */
+	if (!vc4_state->feed_txp)
+		CRTC_WRITE(PV_V_CONTROL,
+			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
+}
+
+static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
+						const struct drm_display_mode *mode)
+{
+	/* Do not allow doublescan modes from user space */
+	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
+		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
+			      crtc->base.id);
+		return MODE_NO_DBLESCAN;
+	}
+
+	return MODE_OK;
+}
+
+void vc4_crtc_get_margins(struct drm_crtc_state *state,
+			  unsigned int *left, unsigned int *right,
+			  unsigned int *top, unsigned int *bottom)
+{
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
+	struct drm_connector_state *conn_state;
+	struct drm_connector *conn;
+	int i;
+
+	*left = vc4_state->margins.left;
+	*right = vc4_state->margins.right;
+	*top = vc4_state->margins.top;
+	*bottom = vc4_state->margins.bottom;
+
+	/* We have to interate over all new connector states because
+	 * vc4_crtc_get_margins() might be called before
+	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
+	 * might be outdated.
+	 */
+	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
+		if (conn_state->crtc != state->crtc)
+			continue;
+
+		*left = conn_state->tv.margins.left;
+		*right = conn_state->tv.margins.right;
+		*top = conn_state->tv.margins.top;
+		*bottom = conn_state->tv.margins.bottom;
+		break;
+	}
+}
+
+static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
+				 struct drm_crtc_state *state)
+{
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct drm_plane *plane;
+	unsigned long flags;
+	const struct drm_plane_state *plane_state;
+	struct drm_connector *conn;
+	struct drm_connector_state *conn_state;
+	u32 dlist_count = 0;
+	int ret, i;
+
+	/* The pixelvalve can only feed one encoder (and encoders are
+	 * 1:1 with connectors.)
+	 */
+	if (hweight32(state->connector_mask) > 1)
+		return -EINVAL;
+
+	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
+		dlist_count += vc4_plane_dlist_size(plane_state);
+
+	dlist_count++; /* Account for SCALER_CTL0_END. */
+
+	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
+	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
+				 dlist_count);
+	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
+	if (ret)
+		return ret;
+
+	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
+		if (conn_state->crtc != crtc)
+			continue;
+
+		/* The writeback connector is implemented using the transposer
+		 * block which is directly taking its data from the HVS FIFO.
+		 */
+		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
+			state->no_vblank = true;
+			vc4_state->feed_txp = true;
+		} else {
+			state->no_vblank = false;
+			vc4_state->feed_txp = false;
+		}
+
+		vc4_state->margins.left = conn_state->tv.margins.left;
+		vc4_state->margins.right = conn_state->tv.margins.right;
+		vc4_state->margins.top = conn_state->tv.margins.top;
+		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
+		break;
+	}
+
+	return 0;
+}
+
+static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
+				  struct drm_crtc_state *old_state)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
+	struct drm_plane *plane;
+	struct vc4_plane_state *vc4_plane_state;
+	bool debug_dump_regs = false;
+	bool enable_bg_fill = false;
+	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
+	u32 __iomem *dlist_next = dlist_start;
+
+	if (debug_dump_regs) {
+		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
+		vc4_hvs_dump_state(dev);
+	}
+
+	/* Copy all the active planes' dlist contents to the hardware dlist. */
+	drm_atomic_crtc_for_each_plane(plane, crtc) {
+		/* Is this the first active plane? */
+		if (dlist_next == dlist_start) {
+			/* We need to enable background fill when a plane
+			 * could be alpha blending from the background, i.e.
+			 * where no other plane is underneath. It suffices to
+			 * consider the first active plane here since we set
+			 * needs_bg_fill such that either the first plane
+			 * already needs it or all planes on top blend from
+			 * the first or a lower plane.
+			 */
+			vc4_plane_state = to_vc4_plane_state(plane->state);
+			enable_bg_fill = vc4_plane_state->needs_bg_fill;
+		}
+
+		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
+	}
+
+	writel(SCALER_CTL0_END, dlist_next);
+	dlist_next++;
+
+	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
+
+	if (enable_bg_fill)
+		/* This sets a black background color fill, as is the case
+		 * with other DRM drivers.
+		 */
+		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
+			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
+			  SCALER_DISPBKGND_FILL);
+
+	/* Only update DISPLIST if the CRTC was already running and is not
+	 * being disabled.
+	 * vc4_crtc_enable() takes care of updating the dlist just after
+	 * re-enabling VBLANK interrupts and before enabling the engine.
+	 * If the CRTC is being disabled, there's no point in updating this
+	 * information.
+	 */
+	if (crtc->state->active && old_state->active)
+		vc4_crtc_update_dlist(crtc);
+
+	if (crtc->state->color_mgmt_changed) {
+		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
+
+		if (crtc->state->gamma_lut) {
+			vc4_crtc_update_gamma_lut(crtc);
+			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
+		} else {
+			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
+			 * in hardware, which is the same as a linear lut that
+			 * DRM expects us to use in absence of a user lut.
+			 */
+			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
+		}
+		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
+	}
+
+	if (debug_dump_regs) {
+		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
+		vc4_hvs_dump_state(dev);
+	}
+}
+
+static int vc4_enable_vblank(struct drm_crtc *crtc)
+{
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+
+	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
+
+	return 0;
+}
+
+static void vc4_disable_vblank(struct drm_crtc *crtc)
+{
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+
+	CRTC_WRITE(PV_INTEN, 0);
+}
+
+static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
+{
+	struct drm_crtc *crtc = &vc4_crtc->base;
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
+	u32 chan = vc4_crtc->channel;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dev->event_lock, flags);
+	if (vc4_crtc->event &&
+	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
+	     vc4_state->feed_txp)) {
+		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
+		vc4_crtc->event = NULL;
+		drm_crtc_vblank_put(crtc);
+
+		/* Wait for the page flip to unmask the underrun to ensure that
+		 * the display list was updated by the hardware. Before that
+		 * happens, the HVS will be using the previous display list with
+		 * the CRTC and encoder already reconfigured, leading to
+		 * underruns. This can be seen when reconfiguring the CRTC.
+		 */
+		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
+	}
+	spin_unlock_irqrestore(&dev->event_lock, flags);
+}
+
+void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
+{
+	crtc->t_vblank = ktime_get();
+	drm_crtc_handle_vblank(&crtc->base);
+	vc4_crtc_handle_page_flip(crtc);
+}
+
+static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
+{
+	struct vc4_crtc *vc4_crtc = data;
+	u32 stat = CRTC_READ(PV_INTSTAT);
+	irqreturn_t ret = IRQ_NONE;
+
+	if (stat & PV_INT_VFP_START) {
+		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
+		vc4_crtc_handle_vblank(vc4_crtc);
+		ret = IRQ_HANDLED;
+	}
+
+	return ret;
+}
+
+struct vc4_async_flip_state {
+	struct drm_crtc *crtc;
+	struct drm_framebuffer *fb;
+	struct drm_framebuffer *old_fb;
+	struct drm_pending_vblank_event *event;
+
+	struct vc4_seqno_cb cb;
+};
+
+/* Called when the V3D execution for the BO being flipped to is done, so that
+ * we can actually update the plane's address to point to it.
+ */
+static void
+vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
+{
+	struct vc4_async_flip_state *flip_state =
+		container_of(cb, struct vc4_async_flip_state, cb);
+	struct drm_crtc *crtc = flip_state->crtc;
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct drm_plane *plane = crtc->primary;
+
+	vc4_plane_async_set_fb(plane, flip_state->fb);
+	if (flip_state->event) {
+		unsigned long flags;
+
+		spin_lock_irqsave(&dev->event_lock, flags);
+		drm_crtc_send_vblank_event(crtc, flip_state->event);
+		spin_unlock_irqrestore(&dev->event_lock, flags);
+	}
+
+	drm_crtc_vblank_put(crtc);
+	drm_framebuffer_put(flip_state->fb);
+
+	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
+	 * when the planes are updated through the async update path.
+	 * FIXME: we should move to generic async-page-flip when it's
+	 * available, so that we can get rid of this hand-made cleanup_fb()
+	 * logic.
+	 */
+	if (flip_state->old_fb) {
+		struct drm_gem_cma_object *cma_bo;
+		struct vc4_bo *bo;
+
+		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
+		bo = to_vc4_bo(&cma_bo->base);
+		vc4_bo_dec_usecnt(bo);
+		drm_framebuffer_put(flip_state->old_fb);
+	}
+
+	kfree(flip_state);
+
+	up(&vc4->async_modeset);
+}
+
+/* Implements async (non-vblank-synced) page flips.
+ *
+ * The page flip ioctl needs to return immediately, so we grab the
+ * modeset semaphore on the pipe, and queue the address update for
+ * when V3D is done with the BO being flipped to.
+ */
+static int vc4_async_page_flip(struct drm_crtc *crtc,
+			       struct drm_framebuffer *fb,
+			       struct drm_pending_vblank_event *event,
+			       uint32_t flags)
+{
+	struct drm_device *dev = crtc->dev;
+	struct vc4_dev *vc4 = to_vc4_dev(dev);
+	struct drm_plane *plane = crtc->primary;
+	int ret = 0;
+	struct vc4_async_flip_state *flip_state;
+	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
+	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
+
+	/* Increment the BO usecnt here, so that we never end up with an
+	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
+	 * plane is later updated through the non-async path.
+	 * FIXME: we should move to generic async-page-flip when it's
+	 * available, so that we can get rid of this hand-made prepare_fb()
+	 * logic.
+	 */
+	ret = vc4_bo_inc_usecnt(bo);
+	if (ret)
+		return ret;
+
+	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
+	if (!flip_state) {
+		vc4_bo_dec_usecnt(bo);
+		return -ENOMEM;
+	}
+
+	drm_framebuffer_get(fb);
+	flip_state->fb = fb;
+	flip_state->crtc = crtc;
+	flip_state->event = event;
+
+	/* Make sure all other async modesetes have landed. */
+	ret = down_interruptible(&vc4->async_modeset);
+	if (ret) {
+		drm_framebuffer_put(fb);
+		vc4_bo_dec_usecnt(bo);
+		kfree(flip_state);
+		return ret;
+	}
+
+	/* Save the current FB before it's replaced by the new one in
+	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
+	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
+	 * it consistent.
+	 * FIXME: we should move to generic async-page-flip when it's
+	 * available, so that we can get rid of this hand-made cleanup_fb()
+	 * logic.
+	 */
+	flip_state->old_fb = plane->state->fb;
+	if (flip_state->old_fb)
+		drm_framebuffer_get(flip_state->old_fb);
+
+	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
+
+	/* Immediately update the plane's legacy fb pointer, so that later
+	 * modeset prep sees the state that will be present when the semaphore
+	 * is released.
+	 */
+	drm_atomic_set_fb_for_plane(plane->state, fb);
+
+	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
+			   vc4_async_page_flip_complete);
+
+	/* Driver takes ownership of state on successful async commit. */
+	return 0;
+}
+
+static int vc4_page_flip(struct drm_crtc *crtc,
+			 struct drm_framebuffer *fb,
+			 struct drm_pending_vblank_event *event,
+			 uint32_t flags,
+			 struct drm_modeset_acquire_ctx *ctx)
+{
+	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
+		return vc4_async_page_flip(crtc, fb, event, flags);
+	else
+		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
+}
+
+static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
+{
+	struct vc4_crtc_state *vc4_state, *old_vc4_state;
+
+	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
+	if (!vc4_state)
+		return NULL;
+
+	old_vc4_state = to_vc4_crtc_state(crtc->state);
+	vc4_state->feed_txp = old_vc4_state->feed_txp;
+	vc4_state->margins = old_vc4_state->margins;
+
+	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
+	return &vc4_state->base;
+}
+
+static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
+				   struct drm_crtc_state *state)
+{
+	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
+	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
+
+	if (vc4_state->mm.allocated) {
+		unsigned long flags;
+
+		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
+		drm_mm_remove_node(&vc4_state->mm);
+		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
+
+	}
+
+	drm_atomic_helper_crtc_destroy_state(crtc, state);
+}
+
+static void
+vc4_crtc_reset(struct drm_crtc *crtc)
+{
+	if (crtc->state)
+		vc4_crtc_destroy_state(crtc, crtc->state);
+
+	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
+	if (crtc->state)
+		crtc->state->crtc = crtc;
+}
+
+static const struct drm_crtc_funcs vc4_crtc_funcs = {
+	.set_config = drm_atomic_helper_set_config,
+	.destroy = vc4_crtc_destroy,
+	.page_flip = vc4_page_flip,
+	.set_property = NULL,
+	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
+	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
+	.reset = vc4_crtc_reset,
+	.atomic_duplicate_state = vc4_crtc_duplicate_state,
+	.atomic_destroy_state = vc4_crtc_destroy_state,
+	.gamma_set = drm_atomic_helper_legacy_gamma_set,
+	.enable_vblank = vc4_enable_vblank,
+	.disable_vblank = vc4_disable_vblank,
+};
+
+static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
+	.mode_set_nofb = vc4_crtc_mode_set_nofb,
+	.mode_valid = vc4_crtc_mode_valid,
+	.atomic_check = vc4_crtc_atomic_check,
+	.atomic_flush = vc4_crtc_atomic_flush,
+	.atomic_enable = vc4_crtc_atomic_enable,
+	.atomic_disable = vc4_crtc_atomic_disable,
+};
+
+static const struct vc4_crtc_data pv0_data = {
+	.hvs_channel = 0,
+	.debugfs_name = "crtc0_regs",
+	.encoder_types = {
+		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
+		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
+	},
+};
+
+static const struct vc4_crtc_data pv1_data = {
+	.hvs_channel = 2,
+	.debugfs_name = "crtc1_regs",
+	.encoder_types = {
+		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
+		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
+	},
+};
+
+static const struct vc4_crtc_data pv2_data = {
+	.hvs_channel = 1,
+	.debugfs_name = "crtc2_regs",
+	.encoder_types = {
+		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
+		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
+	},
+};
+
+static const struct of_device_id vc4_crtc_dt_match[] = {
+	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
+	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
+	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
+	{}
+};
+
+static void vc4_set_crtc_possible_masks(struct drm_device *drm,
+					struct drm_crtc *crtc)
+{
+	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
+	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
+	struct drm_encoder *encoder;
+
+	drm_for_each_encoder(encoder, drm) {
+		struct vc4_encoder *vc4_encoder;
+		int i;
+
+		/* HVS FIFO2 can feed the TXP IP. */
+		if (crtc_data->hvs_channel == 2 &&
+		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
+			encoder->possible_crtcs |= drm_crtc_mask(crtc);
+			continue;
+		}
+
+		vc4_encoder = to_vc4_encoder(encoder);
+		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
+			if (vc4_encoder->type == encoder_types[i]) {
+				vc4_encoder->clock_select = i;
+				encoder->possible_crtcs |= drm_crtc_mask(crtc);
+				break;
+			}
+		}
+	}
+}
+
+static void
+vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
+{
+	struct drm_device *drm = vc4_crtc->base.dev;
+	struct vc4_dev *vc4 = to_vc4_dev(drm);
+	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
+	/* Top/base are supposed to be 4-pixel aligned, but the
+	 * Raspberry Pi firmware fills the low bits (which are
+	 * presumably ignored).
+	 */
+	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
+	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
+
+	vc4_crtc->cob_size = top - base + 4;
+}
+
+static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct drm_device *drm = dev_get_drvdata(master);
+	struct vc4_crtc *vc4_crtc;
+	struct drm_crtc *crtc;
+	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
+	const struct of_device_id *match;
+	int ret, i;
+
+	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
+	if (!vc4_crtc)
+		return -ENOMEM;
+	crtc = &vc4_crtc->base;
+
+	match = of_match_device(vc4_crtc_dt_match, dev);
+	if (!match)
+		return -ENODEV;
+	vc4_crtc->data = match->data;
+	vc4_crtc->pdev = pdev;
+
+	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
+	if (IS_ERR(vc4_crtc->regs))
+		return PTR_ERR(vc4_crtc->regs);
+
+	vc4_crtc->regset.base = vc4_crtc->regs;
+	vc4_crtc->regset.regs = crtc_regs;
+	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
+
+	/* For now, we create just the primary and the legacy cursor
+	 * planes.  We should be able to stack more planes on easily,
+	 * but to do that we would need to compute the bandwidth
+	 * requirement of the plane configuration, and reject ones
+	 * that will take too much.
+	 */
+	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
+	if (IS_ERR(primary_plane)) {
+		dev_err(dev, "failed to construct primary plane\n");
+		ret = PTR_ERR(primary_plane);
+		goto err;
+	}
+
+	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
+				  &vc4_crtc_funcs, NULL);
+	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
+	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
+	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
+	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
+
+	/* We support CTM, but only for one CRTC at a time. It's therefore
+	 * implemented as private driver state in vc4_kms, not here.
+	 */
+	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
+
+	/* Set up some arbitrary number of planes.  We're not limited
+	 * by a set number of physical registers, just the space in
+	 * the HVS (16k) and how small an plane can be (28 bytes).
+	 * However, each plane we set up takes up some memory, and
+	 * increases the cost of looping over planes, which atomic
+	 * modesetting does quite a bit.  As a result, we pick a
+	 * modest number of planes to expose, that should hopefully
+	 * still cover any sane usecase.
+	 */
+	for (i = 0; i < 8; i++) {
+		struct drm_plane *plane =
+			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
+
+		if (IS_ERR(plane))
+			continue;
+
+		plane->possible_crtcs = drm_crtc_mask(crtc);
+	}
+
+	/* Set up the legacy cursor after overlay initialization,
+	 * since we overlay planes on the CRTC in the order they were
+	 * initialized.
+	 */
+	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
+	if (!IS_ERR(cursor_plane)) {
+		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
+		crtc->cursor = cursor_plane;
+	}
+
+	vc4_crtc_get_cob_allocation(vc4_crtc);
+
+	CRTC_WRITE(PV_INTEN, 0);
+	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
+	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
+			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
+	if (ret)
+		goto err_destroy_planes;
+
+	vc4_set_crtc_possible_masks(drm, crtc);
+
+	for (i = 0; i < crtc->gamma_size; i++) {
+		vc4_crtc->lut_r[i] = i;
+		vc4_crtc->lut_g[i] = i;
+		vc4_crtc->lut_b[i] = i;
+	}
+
+	platform_set_drvdata(pdev, vc4_crtc);
+
+	vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
+				 &vc4_crtc->regset);
+
+	return 0;
+
+err_destroy_planes:
+	list_for_each_entry_safe(destroy_plane, temp,
+				 &drm->mode_config.plane_list, head) {
+		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
+		    destroy_plane->funcs->destroy(destroy_plane);
+	}
+err:
+	return ret;
+}
+
+static void vc4_crtc_unbind(struct device *dev, struct device *master,
+			    void *data)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
+
+	vc4_crtc_destroy(&vc4_crtc->base);
+
+	CRTC_WRITE(PV_INTEN, 0);
+
+	platform_set_drvdata(pdev, NULL);
+}
+
+static const struct component_ops vc4_crtc_ops = {
+	.bind   = vc4_crtc_bind,
+	.unbind = vc4_crtc_unbind,
+};
+
+static int vc4_crtc_dev_probe(struct platform_device *pdev)
+{
+	return component_add(&pdev->dev, &vc4_crtc_ops);
+}
+
+static int vc4_crtc_dev_remove(struct platform_device *pdev)
+{
+	component_del(&pdev->dev, &vc4_crtc_ops);
+	return 0;
+}
+
+struct platform_driver vc4_crtc_driver = {
+	.probe = vc4_crtc_dev_probe,
+	.remove = vc4_crtc_dev_remove,
+	.driver = {
+		.name = "vc4_crtc",
+		.of_match_table = vc4_crtc_dt_match,
+	},
+};