ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/drivers/net/dsa/bcm_sf2_cfp.c b/marvell/linux/drivers/net/dsa/bcm_sf2_cfp.c
new file mode 100644
index 0000000..12d305a
--- /dev/null
+++ b/marvell/linux/drivers/net/dsa/bcm_sf2_cfp.c
@@ -0,0 +1,1350 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Broadcom Starfighter 2 DSA switch CFP support
+ *
+ * Copyright (C) 2016, Broadcom
+ */
+
+#include <linux/list.h>
+#include <linux/ethtool.h>
+#include <linux/if_ether.h>
+#include <linux/in.h>
+#include <linux/netdevice.h>
+#include <net/dsa.h>
+#include <linux/bitmap.h>
+#include <net/flow_offload.h>
+#include <net/switchdev.h>
+#include <uapi/linux/if_bridge.h>
+
+#include "bcm_sf2.h"
+#include "bcm_sf2_regs.h"
+
+struct cfp_rule {
+	int port;
+	struct ethtool_rx_flow_spec fs;
+	struct list_head next;
+};
+
+struct cfp_udf_slice_layout {
+	u8 slices[UDFS_PER_SLICE];
+	u32 mask_value;
+	u32 base_offset;
+};
+
+struct cfp_udf_layout {
+	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
+};
+
+static const u8 zero_slice[UDFS_PER_SLICE] = { };
+
+/* UDF slices layout for a TCPv4/UDPv4 specification */
+static const struct cfp_udf_layout udf_tcpip4_layout = {
+	.udfs = {
+		[1] = {
+			.slices = {
+				/* End of L2, byte offset 12, src IP[0:15] */
+				CFG_UDF_EOL2 | 6,
+				/* End of L2, byte offset 14, src IP[16:31] */
+				CFG_UDF_EOL2 | 7,
+				/* End of L2, byte offset 16, dst IP[0:15] */
+				CFG_UDF_EOL2 | 8,
+				/* End of L2, byte offset 18, dst IP[16:31] */
+				CFG_UDF_EOL2 | 9,
+				/* End of L3, byte offset 0, src port */
+				CFG_UDF_EOL3 | 0,
+				/* End of L3, byte offset 2, dst port */
+				CFG_UDF_EOL3 | 1,
+				0, 0, 0
+			},
+			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
+		},
+	},
+};
+
+/* UDF slices layout for a TCPv6/UDPv6 specification */
+static const struct cfp_udf_layout udf_tcpip6_layout = {
+	.udfs = {
+		[0] = {
+			.slices = {
+				/* End of L2, byte offset 8, src IP[0:15] */
+				CFG_UDF_EOL2 | 4,
+				/* End of L2, byte offset 10, src IP[16:31] */
+				CFG_UDF_EOL2 | 5,
+				/* End of L2, byte offset 12, src IP[32:47] */
+				CFG_UDF_EOL2 | 6,
+				/* End of L2, byte offset 14, src IP[48:63] */
+				CFG_UDF_EOL2 | 7,
+				/* End of L2, byte offset 16, src IP[64:79] */
+				CFG_UDF_EOL2 | 8,
+				/* End of L2, byte offset 18, src IP[80:95] */
+				CFG_UDF_EOL2 | 9,
+				/* End of L2, byte offset 20, src IP[96:111] */
+				CFG_UDF_EOL2 | 10,
+				/* End of L2, byte offset 22, src IP[112:127] */
+				CFG_UDF_EOL2 | 11,
+				/* End of L3, byte offset 0, src port */
+				CFG_UDF_EOL3 | 0,
+			},
+			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
+		},
+		[3] = {
+			.slices = {
+				/* End of L2, byte offset 24, dst IP[0:15] */
+				CFG_UDF_EOL2 | 12,
+				/* End of L2, byte offset 26, dst IP[16:31] */
+				CFG_UDF_EOL2 | 13,
+				/* End of L2, byte offset 28, dst IP[32:47] */
+				CFG_UDF_EOL2 | 14,
+				/* End of L2, byte offset 30, dst IP[48:63] */
+				CFG_UDF_EOL2 | 15,
+				/* End of L2, byte offset 32, dst IP[64:79] */
+				CFG_UDF_EOL2 | 16,
+				/* End of L2, byte offset 34, dst IP[80:95] */
+				CFG_UDF_EOL2 | 17,
+				/* End of L2, byte offset 36, dst IP[96:111] */
+				CFG_UDF_EOL2 | 18,
+				/* End of L2, byte offset 38, dst IP[112:127] */
+				CFG_UDF_EOL2 | 19,
+				/* End of L3, byte offset 2, dst port */
+				CFG_UDF_EOL3 | 1,
+			},
+			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
+		},
+	},
+};
+
+static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
+{
+	unsigned int i, count = 0;
+
+	for (i = 0; i < UDFS_PER_SLICE; i++) {
+		if (layout[i] != 0)
+			count++;
+	}
+
+	return count;
+}
+
+static inline u32 udf_upper_bits(unsigned int num_udf)
+{
+	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
+}
+
+static inline u32 udf_lower_bits(unsigned int num_udf)
+{
+	return (u8)GENMASK(num_udf - 1, 0);
+}
+
+static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
+					     unsigned int start)
+{
+	const struct cfp_udf_slice_layout *slice_layout;
+	unsigned int slice_idx;
+
+	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
+		slice_layout = &l->udfs[slice_idx];
+		if (memcmp(slice_layout->slices, zero_slice,
+			   sizeof(zero_slice)))
+			break;
+	}
+
+	return slice_idx;
+}
+
+static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
+				const struct cfp_udf_layout *layout,
+				unsigned int slice_num)
+{
+	u32 offset = layout->udfs[slice_num].base_offset;
+	unsigned int i;
+
+	for (i = 0; i < UDFS_PER_SLICE; i++)
+		core_writel(priv, layout->udfs[slice_num].slices[i],
+			    offset + i * 4);
+}
+
+static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
+{
+	unsigned int timeout = 1000;
+	u32 reg;
+
+	reg = core_readl(priv, CORE_CFP_ACC);
+	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
+	reg |= OP_STR_DONE | op;
+	core_writel(priv, reg, CORE_CFP_ACC);
+
+	do {
+		reg = core_readl(priv, CORE_CFP_ACC);
+		if (!(reg & OP_STR_DONE))
+			break;
+
+		cpu_relax();
+	} while (timeout--);
+
+	if (!timeout)
+		return -ETIMEDOUT;
+
+	return 0;
+}
+
+static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
+					     unsigned int addr)
+{
+	u32 reg;
+
+	WARN_ON(addr >= priv->num_cfp_rules);
+
+	reg = core_readl(priv, CORE_CFP_ACC);
+	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
+	reg |= addr << XCESS_ADDR_SHIFT;
+	core_writel(priv, reg, CORE_CFP_ACC);
+}
+
+static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
+{
+	/* Entry #0 is reserved */
+	return priv->num_cfp_rules - 1;
+}
+
+static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
+				   unsigned int rule_index,
+				   int src_port,
+				   unsigned int port_num,
+				   unsigned int queue_num,
+				   bool fwd_map_change)
+{
+	int ret;
+	u32 reg;
+
+	/* Replace ARL derived destination with DST_MAP derived, define
+	 * which port and queue this should be forwarded to.
+	 */
+	if (fwd_map_change)
+		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
+		      BIT(port_num + DST_MAP_IB_SHIFT) |
+		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
+	else
+		reg = 0;
+
+	/* Enable looping back to the original port */
+	if (src_port == port_num)
+		reg |= LOOP_BK_EN;
+
+	core_writel(priv, reg, CORE_ACT_POL_DATA0);
+
+	/* Set classification ID that needs to be put in Broadcom tag */
+	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
+
+	core_writel(priv, 0, CORE_ACT_POL_DATA2);
+
+	/* Configure policer RAM now */
+	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
+	if (ret) {
+		pr_err("Policer entry at %d failed\n", rule_index);
+		return ret;
+	}
+
+	/* Disable the policer */
+	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
+
+	/* Now the rate meter */
+	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
+	if (ret) {
+		pr_err("Meter entry at %d failed\n", rule_index);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
+				   struct flow_dissector_key_ipv4_addrs *addrs,
+				   struct flow_dissector_key_ports *ports,
+				   const __be16 vlan_tci,
+				   unsigned int slice_num, u8 num_udf,
+				   bool mask)
+{
+	u32 reg, offset;
+
+	/* UDF_Valid[7:0]	[31:24]
+	 * S-Tag		[23:8]
+	 * C-Tag		[7:0]
+	 */
+	reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
+	if (mask)
+		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
+	else
+		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
+
+	/* C-Tag		[31:24]
+	 * UDF_n_A8		[23:8]
+	 * UDF_n_A7		[7:0]
+	 */
+	reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(4);
+	else
+		offset = CORE_CFP_DATA_PORT(4);
+	core_writel(priv, reg, offset);
+
+	/* UDF_n_A7		[31:24]
+	 * UDF_n_A6		[23:8]
+	 * UDF_n_A5		[7:0]
+	 */
+	reg = be16_to_cpu(ports->dst) >> 8;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(3);
+	else
+		offset = CORE_CFP_DATA_PORT(3);
+	core_writel(priv, reg, offset);
+
+	/* UDF_n_A5		[31:24]
+	 * UDF_n_A4		[23:8]
+	 * UDF_n_A3		[7:0]
+	 */
+	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
+	      (u32)be16_to_cpu(ports->src) << 8 |
+	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(2);
+	else
+		offset = CORE_CFP_DATA_PORT(2);
+	core_writel(priv, reg, offset);
+
+	/* UDF_n_A3		[31:24]
+	 * UDF_n_A2		[23:8]
+	 * UDF_n_A1		[7:0]
+	 */
+	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
+	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
+	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(1);
+	else
+		offset = CORE_CFP_DATA_PORT(1);
+	core_writel(priv, reg, offset);
+
+	/* UDF_n_A1		[31:24]
+	 * UDF_n_A0		[23:8]
+	 * Reserved		[7:4]
+	 * Slice ID		[3:2]
+	 * Slice valid		[1:0]
+	 */
+	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
+	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
+	      SLICE_NUM(slice_num) | SLICE_VALID;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(0);
+	else
+		offset = CORE_CFP_DATA_PORT(0);
+	core_writel(priv, reg, offset);
+}
+
+static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
+				     unsigned int port_num,
+				     unsigned int queue_num,
+				     struct ethtool_rx_flow_spec *fs)
+{
+	struct ethtool_rx_flow_spec_input input = {};
+	__be16 vlan_tci = 0 , vlan_m_tci = 0xffff;
+	const struct cfp_udf_layout *layout;
+	unsigned int slice_num, rule_index;
+	struct ethtool_rx_flow_rule *flow;
+	struct flow_match_ipv4_addrs ipv4;
+	struct flow_match_ports ports;
+	struct flow_match_ip ip;
+	u8 ip_proto, ip_frag;
+	u8 num_udf;
+	u32 reg;
+	int ret;
+
+	switch (fs->flow_type & ~FLOW_EXT) {
+	case TCP_V4_FLOW:
+		ip_proto = IPPROTO_TCP;
+		break;
+	case UDP_V4_FLOW:
+		ip_proto = IPPROTO_UDP;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
+
+	/* Extract VLAN TCI */
+	if (fs->flow_type & FLOW_EXT) {
+		vlan_tci = fs->h_ext.vlan_tci;
+		vlan_m_tci = fs->m_ext.vlan_tci;
+	}
+
+	/* Locate the first rule available */
+	if (fs->location == RX_CLS_LOC_ANY)
+		rule_index = find_first_zero_bit(priv->cfp.used,
+						 priv->num_cfp_rules);
+	else
+		rule_index = fs->location;
+
+	if (rule_index > bcm_sf2_cfp_rule_size(priv))
+		return -ENOSPC;
+
+	input.fs = fs;
+	flow = ethtool_rx_flow_rule_create(&input);
+	if (IS_ERR(flow))
+		return PTR_ERR(flow);
+
+	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
+	flow_rule_match_ports(flow->rule, &ports);
+	flow_rule_match_ip(flow->rule, &ip);
+
+	layout = &udf_tcpip4_layout;
+	/* We only use one UDF slice for now */
+	slice_num = bcm_sf2_get_slice_number(layout, 0);
+	if (slice_num == UDF_NUM_SLICES) {
+		ret = -EINVAL;
+		goto out_err_flow_rule;
+	}
+
+	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+	/* Apply the UDF layout for this filter */
+	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+	/* Apply to all packets received through this port */
+	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
+
+	/* Source port map match */
+	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
+
+	/* S-Tag status		[31:30]
+	 * C-Tag status		[29:28]
+	 * L2 framing		[27:26]
+	 * L3 framing		[25:24]
+	 * IP ToS		[23:16]
+	 * IP proto		[15:08]
+	 * IP Fragm		[7]
+	 * Non 1st frag		[6]
+	 * IP Authen		[5]
+	 * TTL range		[4:3]
+	 * PPPoE session	[2]
+	 * Reserved		[1]
+	 * UDF_Valid[8]		[0]
+	 */
+	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
+		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
+		    udf_upper_bits(num_udf),
+		    CORE_CFP_DATA_PORT(6));
+
+	/* Mask with the specific layout for IPv4 packets */
+	core_writel(priv, layout->udfs[slice_num].mask_value |
+		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
+
+	/* Program the match and the mask */
+	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
+			       slice_num, num_udf, false);
+	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
+			       SLICE_NUM_MASK, num_udf, true);
+
+	/* Insert into TCAM now */
+	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
+
+	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+	if (ret) {
+		pr_err("TCAM entry at addr %d failed\n", rule_index);
+		goto out_err_flow_rule;
+	}
+
+	/* Insert into Action and policer RAMs now */
+	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
+				      queue_num, true);
+	if (ret)
+		goto out_err_flow_rule;
+
+	/* Turn on CFP for this rule now */
+	reg = core_readl(priv, CORE_CFP_CTL_REG);
+	reg |= BIT(port);
+	core_writel(priv, reg, CORE_CFP_CTL_REG);
+
+	/* Flag the rule as being used and return it */
+	set_bit(rule_index, priv->cfp.used);
+	set_bit(rule_index, priv->cfp.unique);
+	fs->location = rule_index;
+
+	return 0;
+
+out_err_flow_rule:
+	ethtool_rx_flow_rule_destroy(flow);
+	return ret;
+}
+
+static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
+				   const __be32 *ip6_addr, const __be16 port,
+				   const __be16 vlan_tci,
+				   unsigned int slice_num, u32 udf_bits,
+				   bool mask)
+{
+	u32 reg, tmp, val, offset;
+
+	/* UDF_Valid[7:0]	[31:24]
+	 * S-Tag		[23:8]
+	 * C-Tag		[7:0]
+	 */
+	reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
+	if (mask)
+		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
+	else
+		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
+
+	/* C-Tag		[31:24]
+	 * UDF_n_B8		[23:8]	(port)
+	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
+	 */
+	reg = be32_to_cpu(ip6_addr[3]);
+	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
+	val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(4);
+	else
+		offset = CORE_CFP_DATA_PORT(4);
+	core_writel(priv, val, offset);
+
+	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
+	 * UDF_n_B6		[23:8] (addr[31:16])
+	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
+	 */
+	tmp = be32_to_cpu(ip6_addr[2]);
+	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
+	      ((tmp >> 8) & 0xff);
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(3);
+	else
+		offset = CORE_CFP_DATA_PORT(3);
+	core_writel(priv, val, offset);
+
+	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
+	 * UDF_n_B4		[23:8] (addr[63:48])
+	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
+	 */
+	reg = be32_to_cpu(ip6_addr[1]);
+	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
+	      ((reg >> 8) & 0xff);
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(2);
+	else
+		offset = CORE_CFP_DATA_PORT(2);
+	core_writel(priv, val, offset);
+
+	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
+	 * UDF_n_B2		[23:8] (addr[95:80])
+	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
+	 */
+	tmp = be32_to_cpu(ip6_addr[0]);
+	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
+	      ((tmp >> 8) & 0xff);
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(1);
+	else
+		offset = CORE_CFP_DATA_PORT(1);
+	core_writel(priv, val, offset);
+
+	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
+	 * UDF_n_B0		[23:8] (addr[127:112])
+	 * Reserved		[7:4]
+	 * Slice ID		[3:2]
+	 * Slice valid		[1:0]
+	 */
+	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
+	       SLICE_NUM(slice_num) | SLICE_VALID;
+	if (mask)
+		offset = CORE_CFP_MASK_PORT(0);
+	else
+		offset = CORE_CFP_DATA_PORT(0);
+	core_writel(priv, reg, offset);
+}
+
+static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
+					      int port, u32 location)
+{
+	struct cfp_rule *rule;
+
+	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
+		if (rule->port == port && rule->fs.location == location)
+			return rule;
+	}
+
+	return NULL;
+}
+
+static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
+				struct ethtool_rx_flow_spec *fs)
+{
+	struct cfp_rule *rule = NULL;
+	size_t fs_size = 0;
+	int ret = 1;
+
+	if (list_empty(&priv->cfp.rules_list))
+		return ret;
+
+	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
+		ret = 1;
+		if (rule->port != port)
+			continue;
+
+		if (rule->fs.flow_type != fs->flow_type ||
+		    rule->fs.ring_cookie != fs->ring_cookie ||
+		    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
+			continue;
+
+		switch (fs->flow_type & ~FLOW_EXT) {
+		case TCP_V6_FLOW:
+		case UDP_V6_FLOW:
+			fs_size = sizeof(struct ethtool_tcpip6_spec);
+			break;
+		case TCP_V4_FLOW:
+		case UDP_V4_FLOW:
+			fs_size = sizeof(struct ethtool_tcpip4_spec);
+			break;
+		default:
+			continue;
+		}
+
+		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
+		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
+		/* Compare VLAN TCI values as well */
+		if (rule->fs.flow_type & FLOW_EXT) {
+			ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
+			ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
+		}
+		if (ret == 0)
+			break;
+	}
+
+	return ret;
+}
+
+static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
+				     unsigned int port_num,
+				     unsigned int queue_num,
+				     struct ethtool_rx_flow_spec *fs)
+{
+	struct ethtool_rx_flow_spec_input input = {};
+	__be16 vlan_tci = 0, vlan_m_tci = 0xffff;
+	unsigned int slice_num, rule_index[2];
+	const struct cfp_udf_layout *layout;
+	struct ethtool_rx_flow_rule *flow;
+	struct flow_match_ipv6_addrs ipv6;
+	struct flow_match_ports ports;
+	u8 ip_proto, ip_frag;
+	int ret = 0;
+	u8 num_udf;
+	u32 reg;
+
+	switch (fs->flow_type & ~FLOW_EXT) {
+	case TCP_V6_FLOW:
+		ip_proto = IPPROTO_TCP;
+		break;
+	case UDP_V6_FLOW:
+		ip_proto = IPPROTO_UDP;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
+
+	/* Extract VLAN TCI */
+	if (fs->flow_type & FLOW_EXT) {
+		vlan_tci = fs->h_ext.vlan_tci;
+		vlan_m_tci = fs->m_ext.vlan_tci;
+	}
+
+	layout = &udf_tcpip6_layout;
+	slice_num = bcm_sf2_get_slice_number(layout, 0);
+	if (slice_num == UDF_NUM_SLICES)
+		return -EINVAL;
+
+	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+	/* Negotiate two indexes, one for the second half which we are chained
+	 * from, which is what we will return to user-space, and a second one
+	 * which is used to store its first half. That first half does not
+	 * allow any choice of placement, so it just needs to find the next
+	 * available bit. We return the second half as fs->location because
+	 * that helps with the rule lookup later on since the second half is
+	 * chained from its first half, we can easily identify IPv6 CFP rules
+	 * by looking whether they carry a CHAIN_ID.
+	 *
+	 * We also want the second half to have a lower rule_index than its
+	 * first half because the HW search is by incrementing addresses.
+	 */
+	if (fs->location == RX_CLS_LOC_ANY)
+		rule_index[1] = find_first_zero_bit(priv->cfp.used,
+						    priv->num_cfp_rules);
+	else
+		rule_index[1] = fs->location;
+	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
+		return -ENOSPC;
+
+	/* Flag it as used (cleared on error path) such that we can immediately
+	 * obtain a second one to chain from.
+	 */
+	set_bit(rule_index[1], priv->cfp.used);
+
+	rule_index[0] = find_first_zero_bit(priv->cfp.used,
+					    priv->num_cfp_rules);
+	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
+		ret = -ENOSPC;
+		goto out_err;
+	}
+
+	input.fs = fs;
+	flow = ethtool_rx_flow_rule_create(&input);
+	if (IS_ERR(flow)) {
+		ret = PTR_ERR(flow);
+		goto out_err;
+	}
+	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
+	flow_rule_match_ports(flow->rule, &ports);
+
+	/* Apply the UDF layout for this filter */
+	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+	/* Apply to all packets received through this port */
+	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
+
+	/* Source port map match */
+	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
+
+	/* S-Tag status		[31:30]
+	 * C-Tag status		[29:28]
+	 * L2 framing		[27:26]
+	 * L3 framing		[25:24]
+	 * IP ToS		[23:16]
+	 * IP proto		[15:08]
+	 * IP Fragm		[7]
+	 * Non 1st frag		[6]
+	 * IP Authen		[5]
+	 * TTL range		[4:3]
+	 * PPPoE session	[2]
+	 * Reserved		[1]
+	 * UDF_Valid[8]		[0]
+	 */
+	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
+		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
+	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
+
+	/* Mask with the specific layout for IPv6 packets including
+	 * UDF_Valid[8]
+	 */
+	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
+	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
+
+	/* Slice the IPv6 source address and port */
+	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
+			       ports.key->src, vlan_tci, slice_num,
+			       udf_lower_bits(num_udf), false);
+	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
+			       ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
+			       udf_lower_bits(num_udf), true);
+
+	/* Insert into TCAM now because we need to insert a second rule */
+	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
+
+	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+	if (ret) {
+		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
+		goto out_err_flow_rule;
+	}
+
+	/* Insert into Action and policer RAMs now */
+	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
+				      queue_num, false);
+	if (ret)
+		goto out_err_flow_rule;
+
+	/* Now deal with the second slice to chain this rule */
+	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
+	if (slice_num == UDF_NUM_SLICES) {
+		ret = -EINVAL;
+		goto out_err_flow_rule;
+	}
+
+	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+	/* Apply the UDF layout for this filter */
+	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+	/* Chained rule, source port match is coming from the rule we are
+	 * chained from.
+	 */
+	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
+	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
+
+	/*
+	 * CHAIN ID		[31:24] chain to previous slice
+	 * Reserved		[23:20]
+	 * UDF_Valid[11:8]	[19:16]
+	 * UDF_Valid[7:0]	[15:8]
+	 * UDF_n_D11		[7:0]
+	 */
+	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
+		udf_lower_bits(num_udf) << 8;
+	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
+
+	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
+	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
+		udf_lower_bits(num_udf) << 8;
+	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
+
+	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
+			       ports.key->dst, 0, slice_num,
+			       0, false);
+	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
+			       ports.key->dst, 0, SLICE_NUM_MASK,
+			       0, true);
+
+	/* Insert into TCAM now */
+	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
+
+	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+	if (ret) {
+		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
+		goto out_err_flow_rule;
+	}
+
+	/* Insert into Action and policer RAMs now, set chain ID to
+	 * the one we are chained to
+	 */
+	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
+				      queue_num, true);
+	if (ret)
+		goto out_err_flow_rule;
+
+	/* Turn on CFP for this rule now */
+	reg = core_readl(priv, CORE_CFP_CTL_REG);
+	reg |= BIT(port);
+	core_writel(priv, reg, CORE_CFP_CTL_REG);
+
+	/* Flag the second half rule as being used now, return it as the
+	 * location, and flag it as unique while dumping rules
+	 */
+	set_bit(rule_index[0], priv->cfp.used);
+	set_bit(rule_index[1], priv->cfp.unique);
+	fs->location = rule_index[1];
+
+	return ret;
+
+out_err_flow_rule:
+	ethtool_rx_flow_rule_destroy(flow);
+out_err:
+	clear_bit(rule_index[1], priv->cfp.used);
+	return ret;
+}
+
+static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
+				   struct ethtool_rx_flow_spec *fs)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	s8 cpu_port = ds->ports[port].cpu_dp->index;
+	__u64 ring_cookie = fs->ring_cookie;
+	struct switchdev_obj_port_vlan vlan;
+	unsigned int queue_num, port_num;
+	u16 vid;
+	int ret;
+
+	/* This rule is a Wake-on-LAN filter and we must specifically
+	 * target the CPU port in order for it to be working.
+	 */
+	if (ring_cookie == RX_CLS_FLOW_WAKE)
+		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
+
+	/* We do not support discarding packets, check that the
+	 * destination port is enabled and that we are within the
+	 * number of ports supported by the switch
+	 */
+	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
+
+	if (ring_cookie == RX_CLS_FLOW_DISC ||
+	    !(dsa_is_user_port(ds, port_num) ||
+	      dsa_is_cpu_port(ds, port_num)) ||
+	    port_num >= priv->hw_params.num_ports)
+		return -EINVAL;
+
+	/* If the rule is matching a particular VLAN, make sure that we honor
+	 * the matching and have it tagged or untagged on the destination port,
+	 * we do this on egress with a VLAN entry. The egress tagging attribute
+	 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
+	 * a 0 means tagged.
+	 */
+	if (fs->flow_type & FLOW_EXT) {
+		/* We cannot support matching multiple VLAN IDs yet */
+		if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
+		    VLAN_VID_MASK)
+			return -EINVAL;
+
+		vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
+		vlan.vid_begin = vid;
+		vlan.vid_end = vid;
+		if (cpu_to_be32(fs->h_ext.data[1]) & 1)
+			vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
+		else
+			vlan.flags = 0;
+
+		ret = ds->ops->port_vlan_prepare(ds, port_num, &vlan);
+		if (ret)
+			return ret;
+
+		ds->ops->port_vlan_add(ds, port_num, &vlan);
+	}
+
+	/*
+	 * We have a small oddity where Port 6 just does not have a
+	 * valid bit here (so we substract by one).
+	 */
+	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
+	if (port_num >= 7)
+		port_num -= 1;
+
+	switch (fs->flow_type & ~FLOW_EXT) {
+	case TCP_V4_FLOW:
+	case UDP_V4_FLOW:
+		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
+						queue_num, fs);
+		break;
+	case TCP_V6_FLOW:
+	case UDP_V6_FLOW:
+		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
+						queue_num, fs);
+		break;
+	default:
+		ret = -EINVAL;
+		break;
+	}
+
+	return ret;
+}
+
+static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
+				struct ethtool_rx_flow_spec *fs)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	struct cfp_rule *rule = NULL;
+	int ret = -EINVAL;
+
+	/* Check for unsupported extensions */
+	if (fs->flow_type & FLOW_MAC_EXT)
+		return -EINVAL;
+
+	if (fs->location != RX_CLS_LOC_ANY &&
+	    fs->location > bcm_sf2_cfp_rule_size(priv))
+		return -EINVAL;
+
+	if ((fs->flow_type & FLOW_EXT) &&
+	    !(ds->ops->port_vlan_prepare || ds->ops->port_vlan_add ||
+	      ds->ops->port_vlan_del))
+		return -EOPNOTSUPP;
+
+	if (fs->location != RX_CLS_LOC_ANY &&
+	    test_bit(fs->location, priv->cfp.used))
+		return -EBUSY;
+
+	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
+	if (ret == 0)
+		return -EEXIST;
+
+	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
+	if (!rule)
+		return -ENOMEM;
+
+	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
+	if (ret) {
+		kfree(rule);
+		return ret;
+	}
+
+	rule->port = port;
+	memcpy(&rule->fs, fs, sizeof(*fs));
+	list_add_tail(&rule->next, &priv->cfp.rules_list);
+
+	return ret;
+}
+
+static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
+				    u32 loc, u32 *next_loc)
+{
+	int ret;
+	u32 reg;
+
+	/* Indicate which rule we want to read */
+	bcm_sf2_cfp_rule_addr_set(priv, loc);
+
+	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
+	if (ret)
+		return ret;
+
+	/* Check if this is possibly an IPv6 rule that would
+	 * indicate we need to delete its companion rule
+	 * as well
+	 */
+	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+	if (next_loc)
+		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
+
+	/* Clear its valid bits */
+	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
+	reg &= ~SLICE_VALID;
+	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
+
+	/* Write back this entry into the TCAM now */
+	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+	if (ret)
+		return ret;
+
+	clear_bit(loc, priv->cfp.used);
+	clear_bit(loc, priv->cfp.unique);
+
+	return 0;
+}
+
+static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
+				   u32 loc)
+{
+	u32 next_loc = 0;
+	int ret;
+
+	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
+	if (ret)
+		return ret;
+
+	/* If this was an IPv6 rule, delete is companion rule too */
+	if (next_loc)
+		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
+
+	return ret;
+}
+
+static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
+{
+	struct cfp_rule *rule;
+	int ret;
+
+	if (loc > bcm_sf2_cfp_rule_size(priv))
+		return -EINVAL;
+
+	/* Refuse deleting unused rules, and those that are not unique since
+	 * that could leave IPv6 rules with one of the chained rule in the
+	 * table.
+	 */
+	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
+		return -EINVAL;
+
+	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
+	if (!rule)
+		return -EINVAL;
+
+	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
+
+	list_del(&rule->next);
+	kfree(rule);
+
+	return ret;
+}
+
+static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
+{
+	unsigned int i;
+
+	for (i = 0; i < sizeof(flow->m_u); i++)
+		flow->m_u.hdata[i] ^= 0xff;
+
+	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
+	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
+	flow->m_ext.data[0] ^= cpu_to_be32(~0);
+	flow->m_ext.data[1] ^= cpu_to_be32(~0);
+}
+
+static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
+				struct ethtool_rxnfc *nfc)
+{
+	struct cfp_rule *rule;
+
+	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
+	if (!rule)
+		return -EINVAL;
+
+	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
+
+	bcm_sf2_invert_masks(&nfc->fs);
+
+	/* Put the TCAM size here */
+	nfc->data = bcm_sf2_cfp_rule_size(priv);
+
+	return 0;
+}
+
+/* We implement the search doing a TCAM search operation */
+static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
+				    int port, struct ethtool_rxnfc *nfc,
+				    u32 *rule_locs)
+{
+	unsigned int index = 1, rules_cnt = 0;
+
+	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
+		rule_locs[rules_cnt] = index;
+		rules_cnt++;
+	}
+
+	/* Put the TCAM size here */
+	nfc->data = bcm_sf2_cfp_rule_size(priv);
+	nfc->rule_cnt = rules_cnt;
+
+	return 0;
+}
+
+int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
+		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
+{
+	struct net_device *p = ds->ports[port].cpu_dp->master;
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	int ret = 0;
+
+	mutex_lock(&priv->cfp.lock);
+
+	switch (nfc->cmd) {
+	case ETHTOOL_GRXCLSRLCNT:
+		/* Subtract the default, unusable rule */
+		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
+					      priv->num_cfp_rules) - 1;
+		/* We support specifying rule locations */
+		nfc->data |= RX_CLS_LOC_SPECIAL;
+		break;
+	case ETHTOOL_GRXCLSRULE:
+		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
+		break;
+	case ETHTOOL_GRXCLSRLALL:
+		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
+		break;
+	default:
+		ret = -EOPNOTSUPP;
+		break;
+	}
+
+	mutex_unlock(&priv->cfp.lock);
+
+	if (ret)
+		return ret;
+
+	/* Pass up the commands to the attached master network device */
+	if (p->ethtool_ops->get_rxnfc) {
+		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
+		if (ret == -EOPNOTSUPP)
+			ret = 0;
+	}
+
+	return ret;
+}
+
+int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
+		      struct ethtool_rxnfc *nfc)
+{
+	struct net_device *p = ds->ports[port].cpu_dp->master;
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	int ret = 0;
+
+	mutex_lock(&priv->cfp.lock);
+
+	switch (nfc->cmd) {
+	case ETHTOOL_SRXCLSRLINS:
+		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
+		break;
+
+	case ETHTOOL_SRXCLSRLDEL:
+		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
+		break;
+	default:
+		ret = -EOPNOTSUPP;
+		break;
+	}
+
+	mutex_unlock(&priv->cfp.lock);
+
+	if (ret)
+		return ret;
+
+	/* Pass up the commands to the attached master network device.
+	 * This can fail, so rollback the operation if we need to.
+	 */
+	if (p->ethtool_ops->set_rxnfc) {
+		ret = p->ethtool_ops->set_rxnfc(p, nfc);
+		if (ret && ret != -EOPNOTSUPP) {
+			mutex_lock(&priv->cfp.lock);
+			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
+			mutex_unlock(&priv->cfp.lock);
+		} else {
+			ret = 0;
+		}
+	}
+
+	return ret;
+}
+
+int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
+{
+	unsigned int timeout = 1000;
+	u32 reg;
+
+	reg = core_readl(priv, CORE_CFP_ACC);
+	reg |= TCAM_RESET;
+	core_writel(priv, reg, CORE_CFP_ACC);
+
+	do {
+		reg = core_readl(priv, CORE_CFP_ACC);
+		if (!(reg & TCAM_RESET))
+			break;
+
+		cpu_relax();
+	} while (timeout--);
+
+	if (!timeout)
+		return -ETIMEDOUT;
+
+	return 0;
+}
+
+void bcm_sf2_cfp_exit(struct dsa_switch *ds)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	struct cfp_rule *rule, *n;
+
+	if (list_empty(&priv->cfp.rules_list))
+		return;
+
+	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
+		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
+}
+
+int bcm_sf2_cfp_resume(struct dsa_switch *ds)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	struct cfp_rule *rule;
+	int ret = 0;
+	u32 reg;
+
+	if (list_empty(&priv->cfp.rules_list))
+		return ret;
+
+	reg = core_readl(priv, CORE_CFP_CTL_REG);
+	reg &= ~CFP_EN_MAP_MASK;
+	core_writel(priv, reg, CORE_CFP_CTL_REG);
+
+	ret = bcm_sf2_cfp_rst(priv);
+	if (ret)
+		return ret;
+
+	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
+		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
+					      rule->fs.location);
+		if (ret) {
+			dev_err(ds->dev, "failed to remove rule\n");
+			return ret;
+		}
+
+		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
+		if (ret) {
+			dev_err(ds->dev, "failed to restore rule\n");
+			return ret;
+		}
+	}
+
+	return ret;
+}
+
+static const struct bcm_sf2_cfp_stat {
+	unsigned int offset;
+	unsigned int ram_loc;
+	const char *name;
+} bcm_sf2_cfp_stats[] = {
+	{
+		.offset = CORE_STAT_GREEN_CNTR,
+		.ram_loc = GREEN_STAT_RAM,
+		.name = "Green"
+	},
+	{
+		.offset = CORE_STAT_YELLOW_CNTR,
+		.ram_loc = YELLOW_STAT_RAM,
+		.name = "Yellow"
+	},
+	{
+		.offset = CORE_STAT_RED_CNTR,
+		.ram_loc = RED_STAT_RAM,
+		.name = "Red"
+	},
+};
+
+void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
+			     u32 stringset, uint8_t *data)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
+	char buf[ETH_GSTRING_LEN];
+	unsigned int i, j, iter;
+
+	if (stringset != ETH_SS_STATS)
+		return;
+
+	for (i = 1; i < priv->num_cfp_rules; i++) {
+		for (j = 0; j < s; j++) {
+			snprintf(buf, sizeof(buf),
+				 "CFP%03d_%sCntr",
+				 i, bcm_sf2_cfp_stats[j].name);
+			iter = (i - 1) * s + j;
+			strlcpy(data + iter * ETH_GSTRING_LEN,
+				buf, ETH_GSTRING_LEN);
+		}
+	}
+}
+
+void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
+				   uint64_t *data)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
+	const struct bcm_sf2_cfp_stat *stat;
+	unsigned int i, j, iter;
+	struct cfp_rule *rule;
+	int ret;
+
+	mutex_lock(&priv->cfp.lock);
+	for (i = 1; i < priv->num_cfp_rules; i++) {
+		rule = bcm_sf2_cfp_rule_find(priv, port, i);
+		if (!rule)
+			continue;
+
+		for (j = 0; j < s; j++) {
+			stat = &bcm_sf2_cfp_stats[j];
+
+			bcm_sf2_cfp_rule_addr_set(priv, i);
+			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
+			if (ret)
+				continue;
+
+			iter = (i - 1) * s + j;
+			data[iter] = core_readl(priv, stat->offset);
+		}
+
+	}
+	mutex_unlock(&priv->cfp.lock);
+}
+
+int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
+{
+	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+
+	if (sset != ETH_SS_STATS)
+		return 0;
+
+	/* 3 counters per CFP rules */
+	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
+}