ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/drivers/net/wireless/ath/ath10k/pci.c b/marvell/linux/drivers/net/wireless/ath/ath10k/pci.c
new file mode 100644
index 0000000..464dd02
--- /dev/null
+++ b/marvell/linux/drivers/net/wireless/ath/ath10k/pci.c
@@ -0,0 +1,3833 @@
+// SPDX-License-Identifier: ISC
+/*
+ * Copyright (c) 2005-2011 Atheros Communications Inc.
+ * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
+ */
+
+#include <linux/pci.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/bitops.h>
+
+#include "core.h"
+#include "debug.h"
+#include "coredump.h"
+
+#include "targaddrs.h"
+#include "bmi.h"
+
+#include "hif.h"
+#include "htc.h"
+
+#include "ce.h"
+#include "pci.h"
+
+enum ath10k_pci_reset_mode {
+	ATH10K_PCI_RESET_AUTO = 0,
+	ATH10K_PCI_RESET_WARM_ONLY = 1,
+};
+
+static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
+static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
+
+module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
+MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
+
+module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
+MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
+
+/* how long wait to wait for target to initialise, in ms */
+#define ATH10K_PCI_TARGET_WAIT 3000
+#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
+
+/* Maximum number of bytes that can be handled atomically by
+ * diag read and write.
+ */
+#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
+
+#define QCA99X0_PCIE_BAR0_START_REG    0x81030
+#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
+#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
+
+static const struct pci_device_id ath10k_pci_id_table[] = {
+	/* PCI-E QCA988X V2 (Ubiquiti branded) */
+	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
+
+	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
+	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
+	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
+	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
+	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
+	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
+	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
+	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
+	{0}
+};
+
+static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
+	/* QCA988X pre 2.0 chips are not supported because they need some nasty
+	 * hacks. ath10k doesn't have them and these devices crash horribly
+	 * because of that.
+	 */
+	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
+	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
+
+	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
+	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
+	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
+	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
+	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
+
+	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
+	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
+	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
+	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
+	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
+
+	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
+
+	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
+
+	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
+
+	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
+	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
+
+	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
+};
+
+static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
+static int ath10k_pci_cold_reset(struct ath10k *ar);
+static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
+static int ath10k_pci_init_irq(struct ath10k *ar);
+static int ath10k_pci_deinit_irq(struct ath10k *ar);
+static int ath10k_pci_request_irq(struct ath10k *ar);
+static void ath10k_pci_free_irq(struct ath10k *ar);
+static int ath10k_pci_bmi_wait(struct ath10k *ar,
+			       struct ath10k_ce_pipe *tx_pipe,
+			       struct ath10k_ce_pipe *rx_pipe,
+			       struct bmi_xfer *xfer);
+static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
+static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
+static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
+static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
+static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
+static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
+static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
+
+static struct ce_attr host_ce_config_wlan[] = {
+	/* CE0: host->target HTC control and raw streams */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 16,
+		.src_sz_max = 256,
+		.dest_nentries = 0,
+		.send_cb = ath10k_pci_htc_tx_cb,
+	},
+
+	/* CE1: target->host HTT + HTC control */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 2048,
+		.dest_nentries = 512,
+		.recv_cb = ath10k_pci_htt_htc_rx_cb,
+	},
+
+	/* CE2: target->host WMI */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 2048,
+		.dest_nentries = 128,
+		.recv_cb = ath10k_pci_htc_rx_cb,
+	},
+
+	/* CE3: host->target WMI */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 32,
+		.src_sz_max = 2048,
+		.dest_nentries = 0,
+		.send_cb = ath10k_pci_htc_tx_cb,
+	},
+
+	/* CE4: host->target HTT */
+	{
+		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
+		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
+		.src_sz_max = 256,
+		.dest_nentries = 0,
+		.send_cb = ath10k_pci_htt_tx_cb,
+	},
+
+	/* CE5: target->host HTT (HIF->HTT) */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 512,
+		.dest_nentries = 512,
+		.recv_cb = ath10k_pci_htt_rx_cb,
+	},
+
+	/* CE6: target autonomous hif_memcpy */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 0,
+		.dest_nentries = 0,
+	},
+
+	/* CE7: ce_diag, the Diagnostic Window */
+	{
+		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
+		.src_nentries = 2,
+		.src_sz_max = DIAG_TRANSFER_LIMIT,
+		.dest_nentries = 2,
+	},
+
+	/* CE8: target->host pktlog */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 2048,
+		.dest_nentries = 128,
+		.recv_cb = ath10k_pci_pktlog_rx_cb,
+	},
+
+	/* CE9 target autonomous qcache memcpy */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 0,
+		.dest_nentries = 0,
+	},
+
+	/* CE10: target autonomous hif memcpy */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 0,
+		.dest_nentries = 0,
+	},
+
+	/* CE11: target autonomous hif memcpy */
+	{
+		.flags = CE_ATTR_FLAGS,
+		.src_nentries = 0,
+		.src_sz_max = 0,
+		.dest_nentries = 0,
+	},
+};
+
+/* Target firmware's Copy Engine configuration. */
+static struct ce_pipe_config target_ce_config_wlan[] = {
+	/* CE0: host->target HTC control and raw streams */
+	{
+		.pipenum = __cpu_to_le32(0),
+		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
+		.nentries = __cpu_to_le32(32),
+		.nbytes_max = __cpu_to_le32(256),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE1: target->host HTT + HTC control */
+	{
+		.pipenum = __cpu_to_le32(1),
+		.pipedir = __cpu_to_le32(PIPEDIR_IN),
+		.nentries = __cpu_to_le32(32),
+		.nbytes_max = __cpu_to_le32(2048),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE2: target->host WMI */
+	{
+		.pipenum = __cpu_to_le32(2),
+		.pipedir = __cpu_to_le32(PIPEDIR_IN),
+		.nentries = __cpu_to_le32(64),
+		.nbytes_max = __cpu_to_le32(2048),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE3: host->target WMI */
+	{
+		.pipenum = __cpu_to_le32(3),
+		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
+		.nentries = __cpu_to_le32(32),
+		.nbytes_max = __cpu_to_le32(2048),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE4: host->target HTT */
+	{
+		.pipenum = __cpu_to_le32(4),
+		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
+		.nentries = __cpu_to_le32(256),
+		.nbytes_max = __cpu_to_le32(256),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* NB: 50% of src nentries, since tx has 2 frags */
+
+	/* CE5: target->host HTT (HIF->HTT) */
+	{
+		.pipenum = __cpu_to_le32(5),
+		.pipedir = __cpu_to_le32(PIPEDIR_IN),
+		.nentries = __cpu_to_le32(32),
+		.nbytes_max = __cpu_to_le32(512),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE6: Reserved for target autonomous hif_memcpy */
+	{
+		.pipenum = __cpu_to_le32(6),
+		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
+		.nentries = __cpu_to_le32(32),
+		.nbytes_max = __cpu_to_le32(4096),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE7 used only by Host */
+	{
+		.pipenum = __cpu_to_le32(7),
+		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
+		.nentries = __cpu_to_le32(0),
+		.nbytes_max = __cpu_to_le32(0),
+		.flags = __cpu_to_le32(0),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE8 target->host packtlog */
+	{
+		.pipenum = __cpu_to_le32(8),
+		.pipedir = __cpu_to_le32(PIPEDIR_IN),
+		.nentries = __cpu_to_le32(64),
+		.nbytes_max = __cpu_to_le32(2048),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* CE9 target autonomous qcache memcpy */
+	{
+		.pipenum = __cpu_to_le32(9),
+		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
+		.nentries = __cpu_to_le32(32),
+		.nbytes_max = __cpu_to_le32(2048),
+		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
+		.reserved = __cpu_to_le32(0),
+	},
+
+	/* It not necessary to send target wlan configuration for CE10 & CE11
+	 * as these CEs are not actively used in target.
+	 */
+};
+
+/*
+ * Map from service/endpoint to Copy Engine.
+ * This table is derived from the CE_PCI TABLE, above.
+ * It is passed to the Target at startup for use by firmware.
+ */
+static struct service_to_pipe target_service_to_ce_map_wlan[] = {
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(3),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(2),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(3),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(2),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(3),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(2),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(3),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(2),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(3),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(2),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(0),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(1),
+	},
+	{ /* not used */
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(0),
+	},
+	{ /* not used */
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(1),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
+		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
+		__cpu_to_le32(4),
+	},
+	{
+		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
+		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
+		__cpu_to_le32(5),
+	},
+
+	/* (Additions here) */
+
+	{ /* must be last */
+		__cpu_to_le32(0),
+		__cpu_to_le32(0),
+		__cpu_to_le32(0),
+	},
+};
+
+static bool ath10k_pci_is_awake(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
+			   RTC_STATE_ADDRESS);
+
+	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
+}
+
+static void __ath10k_pci_wake(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	lockdep_assert_held(&ar_pci->ps_lock);
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
+		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
+
+	iowrite32(PCIE_SOC_WAKE_V_MASK,
+		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
+		  PCIE_SOC_WAKE_ADDRESS);
+}
+
+static void __ath10k_pci_sleep(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	lockdep_assert_held(&ar_pci->ps_lock);
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
+		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
+
+	iowrite32(PCIE_SOC_WAKE_RESET,
+		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
+		  PCIE_SOC_WAKE_ADDRESS);
+	ar_pci->ps_awake = false;
+}
+
+static int ath10k_pci_wake_wait(struct ath10k *ar)
+{
+	int tot_delay = 0;
+	int curr_delay = 5;
+
+	while (tot_delay < PCIE_WAKE_TIMEOUT) {
+		if (ath10k_pci_is_awake(ar)) {
+			if (tot_delay > PCIE_WAKE_LATE_US)
+				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
+					    tot_delay / 1000);
+			return 0;
+		}
+
+		udelay(curr_delay);
+		tot_delay += curr_delay;
+
+		if (curr_delay < 50)
+			curr_delay += 5;
+	}
+
+	return -ETIMEDOUT;
+}
+
+static int ath10k_pci_force_wake(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long flags;
+	int ret = 0;
+
+	if (ar_pci->pci_ps)
+		return ret;
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+
+	if (!ar_pci->ps_awake) {
+		iowrite32(PCIE_SOC_WAKE_V_MASK,
+			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
+			  PCIE_SOC_WAKE_ADDRESS);
+
+		ret = ath10k_pci_wake_wait(ar);
+		if (ret == 0)
+			ar_pci->ps_awake = true;
+	}
+
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+
+	return ret;
+}
+
+static void ath10k_pci_force_sleep(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long flags;
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+
+	iowrite32(PCIE_SOC_WAKE_RESET,
+		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
+		  PCIE_SOC_WAKE_ADDRESS);
+	ar_pci->ps_awake = false;
+
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+}
+
+static int ath10k_pci_wake(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long flags;
+	int ret = 0;
+
+	if (ar_pci->pci_ps == 0)
+		return ret;
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
+		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
+
+	/* This function can be called very frequently. To avoid excessive
+	 * CPU stalls for MMIO reads use a cache var to hold the device state.
+	 */
+	if (!ar_pci->ps_awake) {
+		__ath10k_pci_wake(ar);
+
+		ret = ath10k_pci_wake_wait(ar);
+		if (ret == 0)
+			ar_pci->ps_awake = true;
+	}
+
+	if (ret == 0) {
+		ar_pci->ps_wake_refcount++;
+		WARN_ON(ar_pci->ps_wake_refcount == 0);
+	}
+
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+
+	return ret;
+}
+
+static void ath10k_pci_sleep(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long flags;
+
+	if (ar_pci->pci_ps == 0)
+		return;
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
+		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
+
+	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
+		goto skip;
+
+	ar_pci->ps_wake_refcount--;
+
+	mod_timer(&ar_pci->ps_timer, jiffies +
+		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
+
+skip:
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+}
+
+static void ath10k_pci_ps_timer(struct timer_list *t)
+{
+	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
+	struct ath10k *ar = ar_pci->ar;
+	unsigned long flags;
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
+		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
+
+	if (ar_pci->ps_wake_refcount > 0)
+		goto skip;
+
+	__ath10k_pci_sleep(ar);
+
+skip:
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+}
+
+static void ath10k_pci_sleep_sync(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long flags;
+
+	if (ar_pci->pci_ps == 0) {
+		ath10k_pci_force_sleep(ar);
+		return;
+	}
+
+	del_timer_sync(&ar_pci->ps_timer);
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+	WARN_ON(ar_pci->ps_wake_refcount > 0);
+	__ath10k_pci_sleep(ar);
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+}
+
+static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret;
+
+	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
+		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
+			    offset, offset + sizeof(value), ar_pci->mem_len);
+		return;
+	}
+
+	ret = ath10k_pci_wake(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
+			    value, offset, ret);
+		return;
+	}
+
+	iowrite32(value, ar_pci->mem + offset);
+	ath10k_pci_sleep(ar);
+}
+
+static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	u32 val;
+	int ret;
+
+	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
+		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
+			    offset, offset + sizeof(val), ar_pci->mem_len);
+		return 0;
+	}
+
+	ret = ath10k_pci_wake(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
+			    offset, ret);
+		return 0xffffffff;
+	}
+
+	val = ioread32(ar_pci->mem + offset);
+	ath10k_pci_sleep(ar);
+
+	return val;
+}
+
+inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
+{
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+
+	ce->bus_ops->write32(ar, offset, value);
+}
+
+inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
+{
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+
+	return ce->bus_ops->read32(ar, offset);
+}
+
+u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
+{
+	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
+}
+
+void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
+{
+	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
+}
+
+u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
+{
+	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
+}
+
+void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
+{
+	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
+}
+
+bool ath10k_pci_irq_pending(struct ath10k *ar)
+{
+	u32 cause;
+
+	/* Check if the shared legacy irq is for us */
+	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
+				  PCIE_INTR_CAUSE_ADDRESS);
+	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
+		return true;
+
+	return false;
+}
+
+void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
+{
+	/* IMPORTANT: INTR_CLR register has to be set after
+	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
+	 * really cleared.
+	 */
+	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
+			   0);
+	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
+			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
+
+	/* IMPORTANT: this extra read transaction is required to
+	 * flush the posted write buffer.
+	 */
+	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
+				PCIE_INTR_ENABLE_ADDRESS);
+}
+
+void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
+{
+	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
+			   PCIE_INTR_ENABLE_ADDRESS,
+			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
+
+	/* IMPORTANT: this extra read transaction is required to
+	 * flush the posted write buffer.
+	 */
+	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
+				PCIE_INTR_ENABLE_ADDRESS);
+}
+
+static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
+		return "msi";
+
+	return "legacy";
+}
+
+static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
+{
+	struct ath10k *ar = pipe->hif_ce_state;
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
+	struct sk_buff *skb;
+	dma_addr_t paddr;
+	int ret;
+
+	skb = dev_alloc_skb(pipe->buf_sz);
+	if (!skb)
+		return -ENOMEM;
+
+	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
+
+	paddr = dma_map_single(ar->dev, skb->data,
+			       skb->len + skb_tailroom(skb),
+			       DMA_FROM_DEVICE);
+	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
+		ath10k_warn(ar, "failed to dma map pci rx buf\n");
+		dev_kfree_skb_any(skb);
+		return -EIO;
+	}
+
+	ATH10K_SKB_RXCB(skb)->paddr = paddr;
+
+	spin_lock_bh(&ce->ce_lock);
+	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
+	spin_unlock_bh(&ce->ce_lock);
+	if (ret) {
+		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
+				 DMA_FROM_DEVICE);
+		dev_kfree_skb_any(skb);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
+{
+	struct ath10k *ar = pipe->hif_ce_state;
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
+	int ret, num;
+
+	if (pipe->buf_sz == 0)
+		return;
+
+	if (!ce_pipe->dest_ring)
+		return;
+
+	spin_lock_bh(&ce->ce_lock);
+	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
+	spin_unlock_bh(&ce->ce_lock);
+
+	while (num >= 0) {
+		ret = __ath10k_pci_rx_post_buf(pipe);
+		if (ret) {
+			if (ret == -ENOSPC)
+				break;
+			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
+			mod_timer(&ar_pci->rx_post_retry, jiffies +
+				  ATH10K_PCI_RX_POST_RETRY_MS);
+			break;
+		}
+		num--;
+	}
+}
+
+void ath10k_pci_rx_post(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int i;
+
+	for (i = 0; i < CE_COUNT; i++)
+		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
+}
+
+void ath10k_pci_rx_replenish_retry(struct timer_list *t)
+{
+	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
+	struct ath10k *ar = ar_pci->ar;
+
+	ath10k_pci_rx_post(ar);
+}
+
+static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
+{
+	u32 val = 0, region = addr & 0xfffff;
+
+	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
+				 & 0x7ff) << 21;
+	val |= 0x100000 | region;
+	return val;
+}
+
+/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
+ * Support to access target space below 1M for qca6174 and qca9377.
+ * If target space is below 1M, the bit[20] of converted CE addr is 0.
+ * Otherwise bit[20] of converted CE addr is 1.
+ */
+static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
+{
+	u32 val = 0, region = addr & 0xfffff;
+
+	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
+				 & 0x7ff) << 21;
+	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
+	return val;
+}
+
+static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
+{
+	u32 val = 0, region = addr & 0xfffff;
+
+	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
+	val |= 0x100000 | region;
+	return val;
+}
+
+static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
+		return -ENOTSUPP;
+
+	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
+}
+
+/*
+ * Diagnostic read/write access is provided for startup/config/debug usage.
+ * Caller must guarantee proper alignment, when applicable, and single user
+ * at any moment.
+ */
+static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
+				    int nbytes)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret = 0;
+	u32 *buf;
+	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
+	struct ath10k_ce_pipe *ce_diag;
+	/* Host buffer address in CE space */
+	u32 ce_data;
+	dma_addr_t ce_data_base = 0;
+	void *data_buf;
+	int i;
+
+	mutex_lock(&ar_pci->ce_diag_mutex);
+	ce_diag = ar_pci->ce_diag;
+
+	/*
+	 * Allocate a temporary bounce buffer to hold caller's data
+	 * to be DMA'ed from Target. This guarantees
+	 *   1) 4-byte alignment
+	 *   2) Buffer in DMA-able space
+	 */
+	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
+
+	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
+				      GFP_ATOMIC);
+	if (!data_buf) {
+		ret = -ENOMEM;
+		goto done;
+	}
+
+	/* The address supplied by the caller is in the
+	 * Target CPU virtual address space.
+	 *
+	 * In order to use this address with the diagnostic CE,
+	 * convert it from Target CPU virtual address space
+	 * to CE address space
+	 */
+	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
+
+	remaining_bytes = nbytes;
+	ce_data = ce_data_base;
+	while (remaining_bytes) {
+		nbytes = min_t(unsigned int, remaining_bytes,
+			       DIAG_TRANSFER_LIMIT);
+
+		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
+		if (ret != 0)
+			goto done;
+
+		/* Request CE to send from Target(!) address to Host buffer */
+		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
+		if (ret)
+			goto done;
+
+		i = 0;
+		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
+			udelay(DIAG_ACCESS_CE_WAIT_US);
+			i += DIAG_ACCESS_CE_WAIT_US;
+
+			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
+				ret = -EBUSY;
+				goto done;
+			}
+		}
+
+		i = 0;
+		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
+						     &completed_nbytes) != 0) {
+			udelay(DIAG_ACCESS_CE_WAIT_US);
+			i += DIAG_ACCESS_CE_WAIT_US;
+
+			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
+				ret = -EBUSY;
+				goto done;
+			}
+		}
+
+		if (nbytes != completed_nbytes) {
+			ret = -EIO;
+			goto done;
+		}
+
+		if (*buf != ce_data) {
+			ret = -EIO;
+			goto done;
+		}
+
+		remaining_bytes -= nbytes;
+		memcpy(data, data_buf, nbytes);
+
+		address += nbytes;
+		data += nbytes;
+	}
+
+done:
+
+	if (data_buf)
+		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
+				  ce_data_base);
+
+	mutex_unlock(&ar_pci->ce_diag_mutex);
+
+	return ret;
+}
+
+static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
+{
+	__le32 val = 0;
+	int ret;
+
+	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
+	*value = __le32_to_cpu(val);
+
+	return ret;
+}
+
+static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
+				     u32 src, u32 len)
+{
+	u32 host_addr, addr;
+	int ret;
+
+	host_addr = host_interest_item_address(src);
+
+	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
+	if (ret != 0) {
+		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
+			    src, ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
+	if (ret != 0) {
+		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
+			    addr, len, ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
+	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
+
+int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
+			      const void *data, int nbytes)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret = 0;
+	u32 *buf;
+	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
+	struct ath10k_ce_pipe *ce_diag;
+	void *data_buf;
+	dma_addr_t ce_data_base = 0;
+	int i;
+
+	mutex_lock(&ar_pci->ce_diag_mutex);
+	ce_diag = ar_pci->ce_diag;
+
+	/*
+	 * Allocate a temporary bounce buffer to hold caller's data
+	 * to be DMA'ed to Target. This guarantees
+	 *   1) 4-byte alignment
+	 *   2) Buffer in DMA-able space
+	 */
+	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
+
+	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
+				      GFP_ATOMIC);
+	if (!data_buf) {
+		ret = -ENOMEM;
+		goto done;
+	}
+
+	/*
+	 * The address supplied by the caller is in the
+	 * Target CPU virtual address space.
+	 *
+	 * In order to use this address with the diagnostic CE,
+	 * convert it from
+	 *    Target CPU virtual address space
+	 * to
+	 *    CE address space
+	 */
+	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
+
+	remaining_bytes = nbytes;
+	while (remaining_bytes) {
+		/* FIXME: check cast */
+		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
+
+		/* Copy caller's data to allocated DMA buf */
+		memcpy(data_buf, data, nbytes);
+
+		/* Set up to receive directly into Target(!) address */
+		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
+		if (ret != 0)
+			goto done;
+
+		/*
+		 * Request CE to send caller-supplied data that
+		 * was copied to bounce buffer to Target(!) address.
+		 */
+		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
+		if (ret != 0)
+			goto done;
+
+		i = 0;
+		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
+			udelay(DIAG_ACCESS_CE_WAIT_US);
+			i += DIAG_ACCESS_CE_WAIT_US;
+
+			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
+				ret = -EBUSY;
+				goto done;
+			}
+		}
+
+		i = 0;
+		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
+						     &completed_nbytes) != 0) {
+			udelay(DIAG_ACCESS_CE_WAIT_US);
+			i += DIAG_ACCESS_CE_WAIT_US;
+
+			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
+				ret = -EBUSY;
+				goto done;
+			}
+		}
+
+		if (nbytes != completed_nbytes) {
+			ret = -EIO;
+			goto done;
+		}
+
+		if (*buf != address) {
+			ret = -EIO;
+			goto done;
+		}
+
+		remaining_bytes -= nbytes;
+		address += nbytes;
+		data += nbytes;
+	}
+
+done:
+	if (data_buf) {
+		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
+				  ce_data_base);
+	}
+
+	if (ret != 0)
+		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
+			    address, ret);
+
+	mutex_unlock(&ar_pci->ce_diag_mutex);
+
+	return ret;
+}
+
+static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
+{
+	__le32 val = __cpu_to_le32(value);
+
+	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
+}
+
+/* Called by lower (CE) layer when a send to Target completes. */
+static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
+{
+	struct ath10k *ar = ce_state->ar;
+	struct sk_buff_head list;
+	struct sk_buff *skb;
+
+	__skb_queue_head_init(&list);
+	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
+		/* no need to call tx completion for NULL pointers */
+		if (skb == NULL)
+			continue;
+
+		__skb_queue_tail(&list, skb);
+	}
+
+	while ((skb = __skb_dequeue(&list)))
+		ath10k_htc_tx_completion_handler(ar, skb);
+}
+
+static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
+				     void (*callback)(struct ath10k *ar,
+						      struct sk_buff *skb))
+{
+	struct ath10k *ar = ce_state->ar;
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
+	struct sk_buff *skb;
+	struct sk_buff_head list;
+	void *transfer_context;
+	unsigned int nbytes, max_nbytes;
+
+	__skb_queue_head_init(&list);
+	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
+					     &nbytes) == 0) {
+		skb = transfer_context;
+		max_nbytes = skb->len + skb_tailroom(skb);
+		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
+				 max_nbytes, DMA_FROM_DEVICE);
+
+		if (unlikely(max_nbytes < nbytes)) {
+			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
+				    nbytes, max_nbytes);
+			dev_kfree_skb_any(skb);
+			continue;
+		}
+
+		skb_put(skb, nbytes);
+		__skb_queue_tail(&list, skb);
+	}
+
+	while ((skb = __skb_dequeue(&list))) {
+		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
+			   ce_state->id, skb->len);
+		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
+				skb->data, skb->len);
+
+		callback(ar, skb);
+	}
+
+	ath10k_pci_rx_post_pipe(pipe_info);
+}
+
+static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
+					 void (*callback)(struct ath10k *ar,
+							  struct sk_buff *skb))
+{
+	struct ath10k *ar = ce_state->ar;
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
+	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
+	struct sk_buff *skb;
+	struct sk_buff_head list;
+	void *transfer_context;
+	unsigned int nbytes, max_nbytes, nentries;
+	int orig_len;
+
+	/* No need to aquire ce_lock for CE5, since this is the only place CE5
+	 * is processed other than init and deinit. Before releasing CE5
+	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
+	 */
+	__skb_queue_head_init(&list);
+	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
+						    &nbytes) == 0) {
+		skb = transfer_context;
+		max_nbytes = skb->len + skb_tailroom(skb);
+
+		if (unlikely(max_nbytes < nbytes)) {
+			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
+				    nbytes, max_nbytes);
+			continue;
+		}
+
+		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
+					max_nbytes, DMA_FROM_DEVICE);
+		skb_put(skb, nbytes);
+		__skb_queue_tail(&list, skb);
+	}
+
+	nentries = skb_queue_len(&list);
+	while ((skb = __skb_dequeue(&list))) {
+		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
+			   ce_state->id, skb->len);
+		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
+				skb->data, skb->len);
+
+		orig_len = skb->len;
+		callback(ar, skb);
+		skb_push(skb, orig_len - skb->len);
+		skb_reset_tail_pointer(skb);
+		skb_trim(skb, 0);
+
+		/*let device gain the buffer again*/
+		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
+					   skb->len + skb_tailroom(skb),
+					   DMA_FROM_DEVICE);
+	}
+	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
+}
+
+/* Called by lower (CE) layer when data is received from the Target. */
+static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
+{
+	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
+}
+
+static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
+{
+	/* CE4 polling needs to be done whenever CE pipe which transports
+	 * HTT Rx (target->host) is processed.
+	 */
+	ath10k_ce_per_engine_service(ce_state->ar, 4);
+
+	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
+}
+
+/* Called by lower (CE) layer when data is received from the Target.
+ * Only 10.4 firmware uses separate CE to transfer pktlog data.
+ */
+static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
+{
+	ath10k_pci_process_rx_cb(ce_state,
+				 ath10k_htt_rx_pktlog_completion_handler);
+}
+
+/* Called by lower (CE) layer when a send to HTT Target completes. */
+static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
+{
+	struct ath10k *ar = ce_state->ar;
+	struct sk_buff *skb;
+
+	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
+		/* no need to call tx completion for NULL pointers */
+		if (!skb)
+			continue;
+
+		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
+				 skb->len, DMA_TO_DEVICE);
+		ath10k_htt_hif_tx_complete(ar, skb);
+	}
+}
+
+static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
+{
+	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
+	ath10k_htt_t2h_msg_handler(ar, skb);
+}
+
+/* Called by lower (CE) layer when HTT data is received from the Target. */
+static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
+{
+	/* CE4 polling needs to be done whenever CE pipe which transports
+	 * HTT Rx (target->host) is processed.
+	 */
+	ath10k_ce_per_engine_service(ce_state->ar, 4);
+
+	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
+}
+
+int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
+			 struct ath10k_hif_sg_item *items, int n_items)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
+	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
+	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
+	unsigned int nentries_mask;
+	unsigned int sw_index;
+	unsigned int write_index;
+	int err, i = 0;
+
+	spin_lock_bh(&ce->ce_lock);
+
+	nentries_mask = src_ring->nentries_mask;
+	sw_index = src_ring->sw_index;
+	write_index = src_ring->write_index;
+
+	if (unlikely(CE_RING_DELTA(nentries_mask,
+				   write_index, sw_index - 1) < n_items)) {
+		err = -ENOBUFS;
+		goto err;
+	}
+
+	for (i = 0; i < n_items - 1; i++) {
+		ath10k_dbg(ar, ATH10K_DBG_PCI,
+			   "pci tx item %d paddr %pad len %d n_items %d\n",
+			   i, &items[i].paddr, items[i].len, n_items);
+		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
+				items[i].vaddr, items[i].len);
+
+		err = ath10k_ce_send_nolock(ce_pipe,
+					    items[i].transfer_context,
+					    items[i].paddr,
+					    items[i].len,
+					    items[i].transfer_id,
+					    CE_SEND_FLAG_GATHER);
+		if (err)
+			goto err;
+	}
+
+	/* `i` is equal to `n_items -1` after for() */
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI,
+		   "pci tx item %d paddr %pad len %d n_items %d\n",
+		   i, &items[i].paddr, items[i].len, n_items);
+	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
+			items[i].vaddr, items[i].len);
+
+	err = ath10k_ce_send_nolock(ce_pipe,
+				    items[i].transfer_context,
+				    items[i].paddr,
+				    items[i].len,
+				    items[i].transfer_id,
+				    0);
+	if (err)
+		goto err;
+
+	spin_unlock_bh(&ce->ce_lock);
+	return 0;
+
+err:
+	for (; i > 0; i--)
+		__ath10k_ce_send_revert(ce_pipe);
+
+	spin_unlock_bh(&ce->ce_lock);
+	return err;
+}
+
+int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
+			     size_t buf_len)
+{
+	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
+}
+
+u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
+
+	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
+}
+
+static void ath10k_pci_dump_registers(struct ath10k *ar,
+				      struct ath10k_fw_crash_data *crash_data)
+{
+	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
+	int i, ret;
+
+	lockdep_assert_held(&ar->dump_mutex);
+
+	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
+				      hi_failure_state,
+				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
+	if (ret) {
+		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
+		return;
+	}
+
+	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
+
+	ath10k_err(ar, "firmware register dump:\n");
+	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
+		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
+			   i,
+			   __le32_to_cpu(reg_dump_values[i]),
+			   __le32_to_cpu(reg_dump_values[i + 1]),
+			   __le32_to_cpu(reg_dump_values[i + 2]),
+			   __le32_to_cpu(reg_dump_values[i + 3]));
+
+	if (!crash_data)
+		return;
+
+	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
+		crash_data->registers[i] = reg_dump_values[i];
+}
+
+static int ath10k_pci_dump_memory_section(struct ath10k *ar,
+					  const struct ath10k_mem_region *mem_region,
+					  u8 *buf, size_t buf_len)
+{
+	const struct ath10k_mem_section *cur_section, *next_section;
+	unsigned int count, section_size, skip_size;
+	int ret, i, j;
+
+	if (!mem_region || !buf)
+		return 0;
+
+	cur_section = &mem_region->section_table.sections[0];
+
+	if (mem_region->start > cur_section->start) {
+		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
+			    mem_region->start, cur_section->start);
+		return 0;
+	}
+
+	skip_size = cur_section->start - mem_region->start;
+
+	/* fill the gap between the first register section and register
+	 * start address
+	 */
+	for (i = 0; i < skip_size; i++) {
+		*buf = ATH10K_MAGIC_NOT_COPIED;
+		buf++;
+	}
+
+	count = 0;
+
+	for (i = 0; cur_section != NULL; i++) {
+		section_size = cur_section->end - cur_section->start;
+
+		if (section_size <= 0) {
+			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
+				    cur_section->start,
+				    cur_section->end);
+			break;
+		}
+
+		if ((i + 1) == mem_region->section_table.size) {
+			/* last section */
+			next_section = NULL;
+			skip_size = 0;
+		} else {
+			next_section = cur_section + 1;
+
+			if (cur_section->end > next_section->start) {
+				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
+					    next_section->start,
+					    cur_section->end);
+				break;
+			}
+
+			skip_size = next_section->start - cur_section->end;
+		}
+
+		if (buf_len < (skip_size + section_size)) {
+			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
+			break;
+		}
+
+		buf_len -= skip_size + section_size;
+
+		/* read section to dest memory */
+		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
+					       buf, section_size);
+		if (ret) {
+			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
+				    cur_section->start, ret);
+			break;
+		}
+
+		buf += section_size;
+		count += section_size;
+
+		/* fill in the gap between this section and the next */
+		for (j = 0; j < skip_size; j++) {
+			*buf = ATH10K_MAGIC_NOT_COPIED;
+			buf++;
+		}
+
+		count += skip_size;
+
+		if (!next_section)
+			/* this was the last section */
+			break;
+
+		cur_section = next_section;
+	}
+
+	return count;
+}
+
+static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
+{
+	u32 val;
+
+	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
+			   FW_RAM_CONFIG_ADDRESS, config);
+
+	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
+				FW_RAM_CONFIG_ADDRESS);
+	if (val != config) {
+		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
+			    val, config);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+/* if an error happened returns < 0, otherwise the length */
+static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
+				       const struct ath10k_mem_region *region,
+				       u8 *buf)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	u32 base_addr, i;
+
+	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
+	base_addr += region->start;
+
+	for (i = 0; i < region->len; i += 4) {
+		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
+		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
+	}
+
+	return region->len;
+}
+
+/* if an error happened returns < 0, otherwise the length */
+static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
+				      const struct ath10k_mem_region *region,
+				      u8 *buf)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	u32 i;
+	int ret;
+
+	mutex_lock(&ar->conf_mutex);
+	if (ar->state != ATH10K_STATE_ON) {
+		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
+		ret = -EIO;
+		goto done;
+	}
+
+	for (i = 0; i < region->len; i += 4)
+		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
+
+	ret = region->len;
+done:
+	mutex_unlock(&ar->conf_mutex);
+	return ret;
+}
+
+/* if an error happened returns < 0, otherwise the length */
+static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
+					  const struct ath10k_mem_region *current_region,
+					  u8 *buf)
+{
+	int ret;
+
+	if (current_region->section_table.size > 0)
+		/* Copy each section individually. */
+		return ath10k_pci_dump_memory_section(ar,
+						      current_region,
+						      buf,
+						      current_region->len);
+
+	/* No individiual memory sections defined so we can
+	 * copy the entire memory region.
+	 */
+	ret = ath10k_pci_diag_read_mem(ar,
+				       current_region->start,
+				       buf,
+				       current_region->len);
+	if (ret) {
+		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
+			    current_region->name, ret);
+		return ret;
+	}
+
+	return current_region->len;
+}
+
+static void ath10k_pci_dump_memory(struct ath10k *ar,
+				   struct ath10k_fw_crash_data *crash_data)
+{
+	const struct ath10k_hw_mem_layout *mem_layout;
+	const struct ath10k_mem_region *current_region;
+	struct ath10k_dump_ram_data_hdr *hdr;
+	u32 count, shift;
+	size_t buf_len;
+	int ret, i;
+	u8 *buf;
+
+	lockdep_assert_held(&ar->dump_mutex);
+
+	if (!crash_data)
+		return;
+
+	mem_layout = ath10k_coredump_get_mem_layout(ar);
+	if (!mem_layout)
+		return;
+
+	current_region = &mem_layout->region_table.regions[0];
+
+	buf = crash_data->ramdump_buf;
+	buf_len = crash_data->ramdump_buf_len;
+
+	memset(buf, 0, buf_len);
+
+	for (i = 0; i < mem_layout->region_table.size; i++) {
+		count = 0;
+
+		if (current_region->len > buf_len) {
+			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
+				    current_region->name,
+				    current_region->len,
+				    buf_len);
+			break;
+		}
+
+		/* To get IRAM dump, the host driver needs to switch target
+		 * ram config from DRAM to IRAM.
+		 */
+		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
+		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
+			shift = current_region->start >> 20;
+
+			ret = ath10k_pci_set_ram_config(ar, shift);
+			if (ret) {
+				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
+					    current_region->name, ret);
+				break;
+			}
+		}
+
+		/* Reserve space for the header. */
+		hdr = (void *)buf;
+		buf += sizeof(*hdr);
+		buf_len -= sizeof(*hdr);
+
+		switch (current_region->type) {
+		case ATH10K_MEM_REGION_TYPE_IOSRAM:
+			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
+			break;
+		case ATH10K_MEM_REGION_TYPE_IOREG:
+			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
+			if (ret < 0)
+				break;
+
+			count = ret;
+			break;
+		default:
+			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
+			if (ret < 0)
+				break;
+
+			count = ret;
+			break;
+		}
+
+		hdr->region_type = cpu_to_le32(current_region->type);
+		hdr->start = cpu_to_le32(current_region->start);
+		hdr->length = cpu_to_le32(count);
+
+		if (count == 0)
+			/* Note: the header remains, just with zero length. */
+			break;
+
+		buf += count;
+		buf_len -= count;
+
+		current_region++;
+	}
+}
+
+static void ath10k_pci_fw_dump_work(struct work_struct *work)
+{
+	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
+						 dump_work);
+	struct ath10k_fw_crash_data *crash_data;
+	struct ath10k *ar = ar_pci->ar;
+	char guid[UUID_STRING_LEN + 1];
+
+	mutex_lock(&ar->dump_mutex);
+
+	spin_lock_bh(&ar->data_lock);
+	ar->stats.fw_crash_counter++;
+	spin_unlock_bh(&ar->data_lock);
+
+	crash_data = ath10k_coredump_new(ar);
+
+	if (crash_data)
+		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
+	else
+		scnprintf(guid, sizeof(guid), "n/a");
+
+	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
+	ath10k_print_driver_info(ar);
+	ath10k_pci_dump_registers(ar, crash_data);
+	ath10k_ce_dump_registers(ar, crash_data);
+	ath10k_pci_dump_memory(ar, crash_data);
+
+	mutex_unlock(&ar->dump_mutex);
+
+	queue_work(ar->workqueue, &ar->restart_work);
+}
+
+static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	queue_work(ar->workqueue, &ar_pci->dump_work);
+}
+
+void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
+					int force)
+{
+	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
+
+	if (!force) {
+		int resources;
+		/*
+		 * Decide whether to actually poll for completions, or just
+		 * wait for a later chance.
+		 * If there seem to be plenty of resources left, then just wait
+		 * since checking involves reading a CE register, which is a
+		 * relatively expensive operation.
+		 */
+		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
+
+		/*
+		 * If at least 50% of the total resources are still available,
+		 * don't bother checking again yet.
+		 */
+		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
+			return;
+	}
+	ath10k_ce_per_engine_service(ar, pipe);
+}
+
+static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	del_timer_sync(&ar_pci->rx_post_retry);
+}
+
+int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
+				       u8 *ul_pipe, u8 *dl_pipe)
+{
+	const struct service_to_pipe *entry;
+	bool ul_set = false, dl_set = false;
+	int i;
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
+
+	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
+		entry = &target_service_to_ce_map_wlan[i];
+
+		if (__le32_to_cpu(entry->service_id) != service_id)
+			continue;
+
+		switch (__le32_to_cpu(entry->pipedir)) {
+		case PIPEDIR_NONE:
+			break;
+		case PIPEDIR_IN:
+			WARN_ON(dl_set);
+			*dl_pipe = __le32_to_cpu(entry->pipenum);
+			dl_set = true;
+			break;
+		case PIPEDIR_OUT:
+			WARN_ON(ul_set);
+			*ul_pipe = __le32_to_cpu(entry->pipenum);
+			ul_set = true;
+			break;
+		case PIPEDIR_INOUT:
+			WARN_ON(dl_set);
+			WARN_ON(ul_set);
+			*dl_pipe = __le32_to_cpu(entry->pipenum);
+			*ul_pipe = __le32_to_cpu(entry->pipenum);
+			dl_set = true;
+			ul_set = true;
+			break;
+		}
+	}
+
+	if (!ul_set || !dl_set)
+		return -ENOENT;
+
+	return 0;
+}
+
+void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
+				     u8 *ul_pipe, u8 *dl_pipe)
+{
+	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
+
+	(void)ath10k_pci_hif_map_service_to_pipe(ar,
+						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
+						 ul_pipe, dl_pipe);
+}
+
+void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
+{
+	u32 val;
+
+	switch (ar->hw_rev) {
+	case ATH10K_HW_QCA988X:
+	case ATH10K_HW_QCA9887:
+	case ATH10K_HW_QCA6174:
+	case ATH10K_HW_QCA9377:
+		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
+					CORE_CTRL_ADDRESS);
+		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
+		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
+				   CORE_CTRL_ADDRESS, val);
+		break;
+	case ATH10K_HW_QCA99X0:
+	case ATH10K_HW_QCA9984:
+	case ATH10K_HW_QCA9888:
+	case ATH10K_HW_QCA4019:
+		/* TODO: Find appropriate register configuration for QCA99X0
+		 *  to mask irq/MSI.
+		 */
+		break;
+	case ATH10K_HW_WCN3990:
+		break;
+	}
+}
+
+static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
+{
+	u32 val;
+
+	switch (ar->hw_rev) {
+	case ATH10K_HW_QCA988X:
+	case ATH10K_HW_QCA9887:
+	case ATH10K_HW_QCA6174:
+	case ATH10K_HW_QCA9377:
+		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
+					CORE_CTRL_ADDRESS);
+		val |= CORE_CTRL_PCIE_REG_31_MASK;
+		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
+				   CORE_CTRL_ADDRESS, val);
+		break;
+	case ATH10K_HW_QCA99X0:
+	case ATH10K_HW_QCA9984:
+	case ATH10K_HW_QCA9888:
+	case ATH10K_HW_QCA4019:
+		/* TODO: Find appropriate register configuration for QCA99X0
+		 *  to unmask irq/MSI.
+		 */
+		break;
+	case ATH10K_HW_WCN3990:
+		break;
+	}
+}
+
+static void ath10k_pci_irq_disable(struct ath10k *ar)
+{
+	ath10k_ce_disable_interrupts(ar);
+	ath10k_pci_disable_and_clear_legacy_irq(ar);
+	ath10k_pci_irq_msi_fw_mask(ar);
+}
+
+static void ath10k_pci_irq_sync(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	synchronize_irq(ar_pci->pdev->irq);
+}
+
+static void ath10k_pci_irq_enable(struct ath10k *ar)
+{
+	ath10k_ce_enable_interrupts(ar);
+	ath10k_pci_enable_legacy_irq(ar);
+	ath10k_pci_irq_msi_fw_unmask(ar);
+}
+
+static int ath10k_pci_hif_start(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
+
+	napi_enable(&ar->napi);
+
+	ath10k_pci_irq_enable(ar);
+	ath10k_pci_rx_post(ar);
+
+	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
+					   PCI_EXP_LNKCTL_ASPMC,
+					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
+
+	return 0;
+}
+
+static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
+{
+	struct ath10k *ar;
+	struct ath10k_ce_pipe *ce_pipe;
+	struct ath10k_ce_ring *ce_ring;
+	struct sk_buff *skb;
+	int i;
+
+	ar = pci_pipe->hif_ce_state;
+	ce_pipe = pci_pipe->ce_hdl;
+	ce_ring = ce_pipe->dest_ring;
+
+	if (!ce_ring)
+		return;
+
+	if (!pci_pipe->buf_sz)
+		return;
+
+	for (i = 0; i < ce_ring->nentries; i++) {
+		skb = ce_ring->per_transfer_context[i];
+		if (!skb)
+			continue;
+
+		ce_ring->per_transfer_context[i] = NULL;
+
+		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
+				 skb->len + skb_tailroom(skb),
+				 DMA_FROM_DEVICE);
+		dev_kfree_skb_any(skb);
+	}
+}
+
+static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
+{
+	struct ath10k *ar;
+	struct ath10k_ce_pipe *ce_pipe;
+	struct ath10k_ce_ring *ce_ring;
+	struct sk_buff *skb;
+	int i;
+
+	ar = pci_pipe->hif_ce_state;
+	ce_pipe = pci_pipe->ce_hdl;
+	ce_ring = ce_pipe->src_ring;
+
+	if (!ce_ring)
+		return;
+
+	if (!pci_pipe->buf_sz)
+		return;
+
+	for (i = 0; i < ce_ring->nentries; i++) {
+		skb = ce_ring->per_transfer_context[i];
+		if (!skb)
+			continue;
+
+		ce_ring->per_transfer_context[i] = NULL;
+
+		ath10k_htc_tx_completion_handler(ar, skb);
+	}
+}
+
+/*
+ * Cleanup residual buffers for device shutdown:
+ *    buffers that were enqueued for receive
+ *    buffers that were to be sent
+ * Note: Buffers that had completed but which were
+ * not yet processed are on a completion queue. They
+ * are handled when the completion thread shuts down.
+ */
+static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int pipe_num;
+
+	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
+		struct ath10k_pci_pipe *pipe_info;
+
+		pipe_info = &ar_pci->pipe_info[pipe_num];
+		ath10k_pci_rx_pipe_cleanup(pipe_info);
+		ath10k_pci_tx_pipe_cleanup(pipe_info);
+	}
+}
+
+void ath10k_pci_ce_deinit(struct ath10k *ar)
+{
+	int i;
+
+	for (i = 0; i < CE_COUNT; i++)
+		ath10k_ce_deinit_pipe(ar, i);
+}
+
+void ath10k_pci_flush(struct ath10k *ar)
+{
+	ath10k_pci_rx_retry_sync(ar);
+	ath10k_pci_buffer_cleanup(ar);
+}
+
+static void ath10k_pci_hif_stop(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long flags;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
+
+	ath10k_pci_irq_disable(ar);
+	ath10k_pci_irq_sync(ar);
+	napi_synchronize(&ar->napi);
+	napi_disable(&ar->napi);
+	cancel_work_sync(&ar_pci->dump_work);
+
+	/* Most likely the device has HTT Rx ring configured. The only way to
+	 * prevent the device from accessing (and possible corrupting) host
+	 * memory is to reset the chip now.
+	 *
+	 * There's also no known way of masking MSI interrupts on the device.
+	 * For ranged MSI the CE-related interrupts can be masked. However
+	 * regardless how many MSI interrupts are assigned the first one
+	 * is always used for firmware indications (crashes) and cannot be
+	 * masked. To prevent the device from asserting the interrupt reset it
+	 * before proceeding with cleanup.
+	 */
+	ath10k_pci_safe_chip_reset(ar);
+
+	ath10k_pci_flush(ar);
+
+	spin_lock_irqsave(&ar_pci->ps_lock, flags);
+	WARN_ON(ar_pci->ps_wake_refcount > 0);
+	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
+}
+
+int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
+				    void *req, u32 req_len,
+				    void *resp, u32 *resp_len)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
+	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
+	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
+	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
+	dma_addr_t req_paddr = 0;
+	dma_addr_t resp_paddr = 0;
+	struct bmi_xfer xfer = {};
+	void *treq, *tresp = NULL;
+	int ret = 0;
+
+	might_sleep();
+
+	if (resp && !resp_len)
+		return -EINVAL;
+
+	if (resp && resp_len && *resp_len == 0)
+		return -EINVAL;
+
+	treq = kmemdup(req, req_len, GFP_KERNEL);
+	if (!treq)
+		return -ENOMEM;
+
+	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
+	ret = dma_mapping_error(ar->dev, req_paddr);
+	if (ret) {
+		ret = -EIO;
+		goto err_dma;
+	}
+
+	if (resp && resp_len) {
+		tresp = kzalloc(*resp_len, GFP_KERNEL);
+		if (!tresp) {
+			ret = -ENOMEM;
+			goto err_req;
+		}
+
+		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
+					    DMA_FROM_DEVICE);
+		ret = dma_mapping_error(ar->dev, resp_paddr);
+		if (ret) {
+			ret = -EIO;
+			goto err_req;
+		}
+
+		xfer.wait_for_resp = true;
+		xfer.resp_len = 0;
+
+		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
+	}
+
+	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
+	if (ret)
+		goto err_resp;
+
+	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
+	if (ret) {
+		dma_addr_t unused_buffer;
+		unsigned int unused_nbytes;
+		unsigned int unused_id;
+
+		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
+					   &unused_nbytes, &unused_id);
+	} else {
+		/* non-zero means we did not time out */
+		ret = 0;
+	}
+
+err_resp:
+	if (resp) {
+		dma_addr_t unused_buffer;
+
+		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
+		dma_unmap_single(ar->dev, resp_paddr,
+				 *resp_len, DMA_FROM_DEVICE);
+	}
+err_req:
+	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
+
+	if (ret == 0 && resp_len) {
+		*resp_len = min(*resp_len, xfer.resp_len);
+		memcpy(resp, tresp, xfer.resp_len);
+	}
+err_dma:
+	kfree(treq);
+	kfree(tresp);
+
+	return ret;
+}
+
+static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
+{
+	struct bmi_xfer *xfer;
+
+	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
+		return;
+
+	xfer->tx_done = true;
+}
+
+static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
+{
+	struct ath10k *ar = ce_state->ar;
+	struct bmi_xfer *xfer;
+	unsigned int nbytes;
+
+	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
+					  &nbytes))
+		return;
+
+	if (WARN_ON_ONCE(!xfer))
+		return;
+
+	if (!xfer->wait_for_resp) {
+		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
+		return;
+	}
+
+	xfer->resp_len = nbytes;
+	xfer->rx_done = true;
+}
+
+static int ath10k_pci_bmi_wait(struct ath10k *ar,
+			       struct ath10k_ce_pipe *tx_pipe,
+			       struct ath10k_ce_pipe *rx_pipe,
+			       struct bmi_xfer *xfer)
+{
+	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
+	unsigned long started = jiffies;
+	unsigned long dur;
+	int ret;
+
+	while (time_before_eq(jiffies, timeout)) {
+		ath10k_pci_bmi_send_done(tx_pipe);
+		ath10k_pci_bmi_recv_data(rx_pipe);
+
+		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
+			ret = 0;
+			goto out;
+		}
+
+		schedule();
+	}
+
+	ret = -ETIMEDOUT;
+
+out:
+	dur = jiffies - started;
+	if (dur > HZ)
+		ath10k_dbg(ar, ATH10K_DBG_BMI,
+			   "bmi cmd took %lu jiffies hz %d ret %d\n",
+			   dur, HZ, ret);
+	return ret;
+}
+
+/*
+ * Send an interrupt to the device to wake up the Target CPU
+ * so it has an opportunity to notice any changed state.
+ */
+static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
+{
+	u32 addr, val;
+
+	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
+	val = ath10k_pci_read32(ar, addr);
+	val |= CORE_CTRL_CPU_INTR_MASK;
+	ath10k_pci_write32(ar, addr, val);
+
+	return 0;
+}
+
+static int ath10k_pci_get_num_banks(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	switch (ar_pci->pdev->device) {
+	case QCA988X_2_0_DEVICE_ID_UBNT:
+	case QCA988X_2_0_DEVICE_ID:
+	case QCA99X0_2_0_DEVICE_ID:
+	case QCA9888_2_0_DEVICE_ID:
+	case QCA9984_1_0_DEVICE_ID:
+	case QCA9887_1_0_DEVICE_ID:
+		return 1;
+	case QCA6164_2_1_DEVICE_ID:
+	case QCA6174_2_1_DEVICE_ID:
+		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
+		case QCA6174_HW_1_0_CHIP_ID_REV:
+		case QCA6174_HW_1_1_CHIP_ID_REV:
+		case QCA6174_HW_2_1_CHIP_ID_REV:
+		case QCA6174_HW_2_2_CHIP_ID_REV:
+			return 3;
+		case QCA6174_HW_1_3_CHIP_ID_REV:
+			return 2;
+		case QCA6174_HW_3_0_CHIP_ID_REV:
+		case QCA6174_HW_3_1_CHIP_ID_REV:
+		case QCA6174_HW_3_2_CHIP_ID_REV:
+			return 9;
+		}
+		break;
+	case QCA9377_1_0_DEVICE_ID:
+		return 9;
+	}
+
+	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
+	return 1;
+}
+
+static int ath10k_bus_get_num_banks(struct ath10k *ar)
+{
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+
+	return ce->bus_ops->get_num_banks(ar);
+}
+
+int ath10k_pci_init_config(struct ath10k *ar)
+{
+	u32 interconnect_targ_addr;
+	u32 pcie_state_targ_addr = 0;
+	u32 pipe_cfg_targ_addr = 0;
+	u32 svc_to_pipe_map = 0;
+	u32 pcie_config_flags = 0;
+	u32 ealloc_value;
+	u32 ealloc_targ_addr;
+	u32 flag2_value;
+	u32 flag2_targ_addr;
+	int ret = 0;
+
+	/* Download to Target the CE Config and the service-to-CE map */
+	interconnect_targ_addr =
+		host_interest_item_address(HI_ITEM(hi_interconnect_state));
+
+	/* Supply Target-side CE configuration */
+	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
+				     &pcie_state_targ_addr);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
+		return ret;
+	}
+
+	if (pcie_state_targ_addr == 0) {
+		ret = -EIO;
+		ath10k_err(ar, "Invalid pcie state addr\n");
+		return ret;
+	}
+
+	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
+					  offsetof(struct pcie_state,
+						   pipe_cfg_addr)),
+				     &pipe_cfg_targ_addr);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
+		return ret;
+	}
+
+	if (pipe_cfg_targ_addr == 0) {
+		ret = -EIO;
+		ath10k_err(ar, "Invalid pipe cfg addr\n");
+		return ret;
+	}
+
+	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
+					target_ce_config_wlan,
+					sizeof(struct ce_pipe_config) *
+					NUM_TARGET_CE_CONFIG_WLAN);
+
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
+					  offsetof(struct pcie_state,
+						   svc_to_pipe_map)),
+				     &svc_to_pipe_map);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
+		return ret;
+	}
+
+	if (svc_to_pipe_map == 0) {
+		ret = -EIO;
+		ath10k_err(ar, "Invalid svc_to_pipe map\n");
+		return ret;
+	}
+
+	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
+					target_service_to_ce_map_wlan,
+					sizeof(target_service_to_ce_map_wlan));
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
+					  offsetof(struct pcie_state,
+						   config_flags)),
+				     &pcie_config_flags);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
+		return ret;
+	}
+
+	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
+
+	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
+					   offsetof(struct pcie_state,
+						    config_flags)),
+				      pcie_config_flags);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
+		return ret;
+	}
+
+	/* configure early allocation */
+	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
+
+	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
+		return ret;
+	}
+
+	/* first bank is switched to IRAM */
+	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
+			 HI_EARLY_ALLOC_MAGIC_MASK);
+	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
+			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
+			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
+
+	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
+		return ret;
+	}
+
+	/* Tell Target to proceed with initialization */
+	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
+
+	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to get option val: %d\n", ret);
+		return ret;
+	}
+
+	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
+
+	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
+	if (ret != 0) {
+		ath10k_err(ar, "Failed to set option val: %d\n", ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void ath10k_pci_override_ce_config(struct ath10k *ar)
+{
+	struct ce_attr *attr;
+	struct ce_pipe_config *config;
+
+	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
+	 * since it is currently used for other feature.
+	 */
+
+	/* Override Host's Copy Engine 5 configuration */
+	attr = &host_ce_config_wlan[5];
+	attr->src_sz_max = 0;
+	attr->dest_nentries = 0;
+
+	/* Override Target firmware's Copy Engine configuration */
+	config = &target_ce_config_wlan[5];
+	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
+	config->nbytes_max = __cpu_to_le32(2048);
+
+	/* Map from service/endpoint to Copy Engine */
+	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
+}
+
+int ath10k_pci_alloc_pipes(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_pci_pipe *pipe;
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+	int i, ret;
+
+	for (i = 0; i < CE_COUNT; i++) {
+		pipe = &ar_pci->pipe_info[i];
+		pipe->ce_hdl = &ce->ce_states[i];
+		pipe->pipe_num = i;
+		pipe->hif_ce_state = ar;
+
+		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
+		if (ret) {
+			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
+				   i, ret);
+			return ret;
+		}
+
+		/* Last CE is Diagnostic Window */
+		if (i == CE_DIAG_PIPE) {
+			ar_pci->ce_diag = pipe->ce_hdl;
+			continue;
+		}
+
+		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
+	}
+
+	return 0;
+}
+
+void ath10k_pci_free_pipes(struct ath10k *ar)
+{
+	int i;
+
+	for (i = 0; i < CE_COUNT; i++)
+		ath10k_ce_free_pipe(ar, i);
+}
+
+int ath10k_pci_init_pipes(struct ath10k *ar)
+{
+	int i, ret;
+
+	for (i = 0; i < CE_COUNT; i++) {
+		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
+		if (ret) {
+			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
+				   i, ret);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
+{
+	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
+	       FW_IND_EVENT_PENDING;
+}
+
+static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
+{
+	u32 val;
+
+	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
+	val &= ~FW_IND_EVENT_PENDING;
+	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
+}
+
+static bool ath10k_pci_has_device_gone(struct ath10k *ar)
+{
+	u32 val;
+
+	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
+	return (val == 0xffffffff);
+}
+
+/* this function effectively clears target memory controller assert line */
+static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
+{
+	u32 val;
+
+	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
+	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
+			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
+	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
+
+	msleep(10);
+
+	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
+	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
+			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
+	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
+
+	msleep(10);
+}
+
+static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
+{
+	u32 val;
+
+	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
+
+	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
+				SOC_RESET_CONTROL_ADDRESS);
+	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
+			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
+}
+
+static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
+{
+	u32 val;
+
+	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
+				SOC_RESET_CONTROL_ADDRESS);
+
+	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
+			   val | SOC_RESET_CONTROL_CE_RST_MASK);
+	msleep(10);
+	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
+			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
+}
+
+static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
+{
+	u32 val;
+
+	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
+				SOC_LF_TIMER_CONTROL0_ADDRESS);
+	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
+			   SOC_LF_TIMER_CONTROL0_ADDRESS,
+			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
+}
+
+static int ath10k_pci_warm_reset(struct ath10k *ar)
+{
+	int ret;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
+
+	spin_lock_bh(&ar->data_lock);
+	ar->stats.fw_warm_reset_counter++;
+	spin_unlock_bh(&ar->data_lock);
+
+	ath10k_pci_irq_disable(ar);
+
+	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
+	 * were to access copy engine while host performs copy engine reset
+	 * then it is possible for the device to confuse pci-e controller to
+	 * the point of bringing host system to a complete stop (i.e. hang).
+	 */
+	ath10k_pci_warm_reset_si0(ar);
+	ath10k_pci_warm_reset_cpu(ar);
+	ath10k_pci_init_pipes(ar);
+	ath10k_pci_wait_for_target_init(ar);
+
+	ath10k_pci_warm_reset_clear_lf(ar);
+	ath10k_pci_warm_reset_ce(ar);
+	ath10k_pci_warm_reset_cpu(ar);
+	ath10k_pci_init_pipes(ar);
+
+	ret = ath10k_pci_wait_for_target_init(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
+		return ret;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
+
+	return 0;
+}
+
+static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
+{
+	ath10k_pci_irq_disable(ar);
+	return ath10k_pci_qca99x0_chip_reset(ar);
+}
+
+static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	if (!ar_pci->pci_soft_reset)
+		return -ENOTSUPP;
+
+	return ar_pci->pci_soft_reset(ar);
+}
+
+static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
+{
+	int i, ret;
+	u32 val;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
+
+	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
+	 * It is thus preferred to use warm reset which is safer but may not be
+	 * able to recover the device from all possible fail scenarios.
+	 *
+	 * Warm reset doesn't always work on first try so attempt it a few
+	 * times before giving up.
+	 */
+	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
+		ret = ath10k_pci_warm_reset(ar);
+		if (ret) {
+			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
+				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
+				    ret);
+			continue;
+		}
+
+		/* FIXME: Sometimes copy engine doesn't recover after warm
+		 * reset. In most cases this needs cold reset. In some of these
+		 * cases the device is in such a state that a cold reset may
+		 * lock up the host.
+		 *
+		 * Reading any host interest register via copy engine is
+		 * sufficient to verify if device is capable of booting
+		 * firmware blob.
+		 */
+		ret = ath10k_pci_init_pipes(ar);
+		if (ret) {
+			ath10k_warn(ar, "failed to init copy engine: %d\n",
+				    ret);
+			continue;
+		}
+
+		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
+					     &val);
+		if (ret) {
+			ath10k_warn(ar, "failed to poke copy engine: %d\n",
+				    ret);
+			continue;
+		}
+
+		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
+		return 0;
+	}
+
+	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
+		ath10k_warn(ar, "refusing cold reset as requested\n");
+		return -EPERM;
+	}
+
+	ret = ath10k_pci_cold_reset(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_wait_for_target_init(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
+			    ret);
+		return ret;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
+
+	return 0;
+}
+
+static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
+{
+	int ret;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
+
+	/* FIXME: QCA6174 requires cold + warm reset to work. */
+
+	ret = ath10k_pci_cold_reset(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_wait_for_target_init(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
+			    ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_warm_reset(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
+		return ret;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
+
+	return 0;
+}
+
+static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
+{
+	int ret;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
+
+	ret = ath10k_pci_cold_reset(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
+		return ret;
+	}
+
+	ret = ath10k_pci_wait_for_target_init(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
+			    ret);
+		return ret;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
+
+	return 0;
+}
+
+static int ath10k_pci_chip_reset(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	if (WARN_ON(!ar_pci->pci_hard_reset))
+		return -ENOTSUPP;
+
+	return ar_pci->pci_hard_reset(ar);
+}
+
+static int ath10k_pci_hif_power_up(struct ath10k *ar,
+				   enum ath10k_firmware_mode fw_mode)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
+
+	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
+				  &ar_pci->link_ctl);
+	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
+				   PCI_EXP_LNKCTL_ASPMC);
+
+	/*
+	 * Bring the target up cleanly.
+	 *
+	 * The target may be in an undefined state with an AUX-powered Target
+	 * and a Host in WoW mode. If the Host crashes, loses power, or is
+	 * restarted (without unloading the driver) then the Target is left
+	 * (aux) powered and running. On a subsequent driver load, the Target
+	 * is in an unexpected state. We try to catch that here in order to
+	 * reset the Target and retry the probe.
+	 */
+	ret = ath10k_pci_chip_reset(ar);
+	if (ret) {
+		if (ath10k_pci_has_fw_crashed(ar)) {
+			ath10k_warn(ar, "firmware crashed during chip reset\n");
+			ath10k_pci_fw_crashed_clear(ar);
+			ath10k_pci_fw_crashed_dump(ar);
+		}
+
+		ath10k_err(ar, "failed to reset chip: %d\n", ret);
+		goto err_sleep;
+	}
+
+	ret = ath10k_pci_init_pipes(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
+		goto err_sleep;
+	}
+
+	ret = ath10k_pci_init_config(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to setup init config: %d\n", ret);
+		goto err_ce;
+	}
+
+	ret = ath10k_pci_wake_target_cpu(ar);
+	if (ret) {
+		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
+		goto err_ce;
+	}
+
+	return 0;
+
+err_ce:
+	ath10k_pci_ce_deinit(ar);
+
+err_sleep:
+	return ret;
+}
+
+void ath10k_pci_hif_power_down(struct ath10k *ar)
+{
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
+
+	/* Currently hif_power_up performs effectively a reset and hif_stop
+	 * resets the chip as well so there's no point in resetting here.
+	 */
+}
+
+static int ath10k_pci_hif_suspend(struct ath10k *ar)
+{
+	/* Nothing to do; the important stuff is in the driver suspend. */
+	return 0;
+}
+
+static int ath10k_pci_suspend(struct ath10k *ar)
+{
+	/* The grace timer can still be counting down and ar->ps_awake be true.
+	 * It is known that the device may be asleep after resuming regardless
+	 * of the SoC powersave state before suspending. Hence make sure the
+	 * device is asleep before proceeding.
+	 */
+	ath10k_pci_sleep_sync(ar);
+
+	return 0;
+}
+
+static int ath10k_pci_hif_resume(struct ath10k *ar)
+{
+	/* Nothing to do; the important stuff is in the driver resume. */
+	return 0;
+}
+
+static int ath10k_pci_resume(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct pci_dev *pdev = ar_pci->pdev;
+	u32 val;
+	int ret = 0;
+
+	ret = ath10k_pci_force_wake(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to wake up target: %d\n", ret);
+		return ret;
+	}
+
+	/* Suspend/Resume resets the PCI configuration space, so we have to
+	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
+	 * from interfering with C3 CPU state. pci_restore_state won't help
+	 * here since it only restores the first 64 bytes pci config header.
+	 */
+	pci_read_config_dword(pdev, 0x40, &val);
+	if ((val & 0x0000ff00) != 0)
+		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
+
+	return ret;
+}
+
+static bool ath10k_pci_validate_cal(void *data, size_t size)
+{
+	__le16 *cal_words = data;
+	u16 checksum = 0;
+	size_t i;
+
+	if (size % 2 != 0)
+		return false;
+
+	for (i = 0; i < size / 2; i++)
+		checksum ^= le16_to_cpu(cal_words[i]);
+
+	return checksum == 0xffff;
+}
+
+static void ath10k_pci_enable_eeprom(struct ath10k *ar)
+{
+	/* Enable SI clock */
+	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
+
+	/* Configure GPIOs for I2C operation */
+	ath10k_pci_write32(ar,
+			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
+			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
+			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
+			      GPIO_PIN0_CONFIG) |
+			   SM(1, GPIO_PIN0_PAD_PULL));
+
+	ath10k_pci_write32(ar,
+			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
+			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
+			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
+			   SM(1, GPIO_PIN0_PAD_PULL));
+
+	ath10k_pci_write32(ar,
+			   GPIO_BASE_ADDRESS +
+			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
+			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
+
+	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
+	ath10k_pci_write32(ar,
+			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
+			   SM(1, SI_CONFIG_ERR_INT) |
+			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
+			   SM(1, SI_CONFIG_I2C) |
+			   SM(1, SI_CONFIG_POS_SAMPLE) |
+			   SM(1, SI_CONFIG_INACTIVE_DATA) |
+			   SM(1, SI_CONFIG_INACTIVE_CLK) |
+			   SM(8, SI_CONFIG_DIVIDER));
+}
+
+static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
+{
+	u32 reg;
+	int wait_limit;
+
+	/* set device select byte and for the read operation */
+	reg = QCA9887_EEPROM_SELECT_READ |
+	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
+	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
+	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
+
+	/* write transmit data, transfer length, and START bit */
+	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
+			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
+			   SM(4, SI_CS_TX_CNT));
+
+	/* wait max 1 sec */
+	wait_limit = 100000;
+
+	/* wait for SI_CS_DONE_INT */
+	do {
+		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
+		if (MS(reg, SI_CS_DONE_INT))
+			break;
+
+		wait_limit--;
+		udelay(10);
+	} while (wait_limit > 0);
+
+	if (!MS(reg, SI_CS_DONE_INT)) {
+		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
+			   addr);
+		return -ETIMEDOUT;
+	}
+
+	/* clear SI_CS_DONE_INT */
+	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
+
+	if (MS(reg, SI_CS_DONE_ERR)) {
+		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
+		return -EIO;
+	}
+
+	/* extract receive data */
+	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
+	*out = reg;
+
+	return 0;
+}
+
+static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
+					   size_t *data_len)
+{
+	u8 *caldata = NULL;
+	size_t calsize, i;
+	int ret;
+
+	if (!QCA_REV_9887(ar))
+		return -EOPNOTSUPP;
+
+	calsize = ar->hw_params.cal_data_len;
+	caldata = kmalloc(calsize, GFP_KERNEL);
+	if (!caldata)
+		return -ENOMEM;
+
+	ath10k_pci_enable_eeprom(ar);
+
+	for (i = 0; i < calsize; i++) {
+		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
+		if (ret)
+			goto err_free;
+	}
+
+	if (!ath10k_pci_validate_cal(caldata, calsize))
+		goto err_free;
+
+	*data = caldata;
+	*data_len = calsize;
+
+	return 0;
+
+err_free:
+	kfree(caldata);
+
+	return -EINVAL;
+}
+
+static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
+	.tx_sg			= ath10k_pci_hif_tx_sg,
+	.diag_read		= ath10k_pci_hif_diag_read,
+	.diag_write		= ath10k_pci_diag_write_mem,
+	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
+	.start			= ath10k_pci_hif_start,
+	.stop			= ath10k_pci_hif_stop,
+	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
+	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
+	.send_complete_check	= ath10k_pci_hif_send_complete_check,
+	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
+	.power_up		= ath10k_pci_hif_power_up,
+	.power_down		= ath10k_pci_hif_power_down,
+	.read32			= ath10k_pci_read32,
+	.write32		= ath10k_pci_write32,
+	.suspend		= ath10k_pci_hif_suspend,
+	.resume			= ath10k_pci_hif_resume,
+	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
+};
+
+/*
+ * Top-level interrupt handler for all PCI interrupts from a Target.
+ * When a block of MSI interrupts is allocated, this top-level handler
+ * is not used; instead, we directly call the correct sub-handler.
+ */
+static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
+{
+	struct ath10k *ar = arg;
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret;
+
+	if (ath10k_pci_has_device_gone(ar))
+		return IRQ_NONE;
+
+	ret = ath10k_pci_force_wake(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
+		return IRQ_NONE;
+	}
+
+	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
+	    !ath10k_pci_irq_pending(ar))
+		return IRQ_NONE;
+
+	ath10k_pci_disable_and_clear_legacy_irq(ar);
+	ath10k_pci_irq_msi_fw_mask(ar);
+	napi_schedule(&ar->napi);
+
+	return IRQ_HANDLED;
+}
+
+static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
+{
+	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
+	int done = 0;
+
+	if (ath10k_pci_has_fw_crashed(ar)) {
+		ath10k_pci_fw_crashed_clear(ar);
+		ath10k_pci_fw_crashed_dump(ar);
+		napi_complete(ctx);
+		return done;
+	}
+
+	ath10k_ce_per_engine_service_any(ar);
+
+	done = ath10k_htt_txrx_compl_task(ar, budget);
+
+	if (done < budget) {
+		napi_complete_done(ctx, done);
+		/* In case of MSI, it is possible that interrupts are received
+		 * while NAPI poll is inprogress. So pending interrupts that are
+		 * received after processing all copy engine pipes by NAPI poll
+		 * will not be handled again. This is causing failure to
+		 * complete boot sequence in x86 platform. So before enabling
+		 * interrupts safer to check for pending interrupts for
+		 * immediate servicing.
+		 */
+		if (ath10k_ce_interrupt_summary(ar)) {
+			napi_reschedule(ctx);
+			goto out;
+		}
+		ath10k_pci_enable_legacy_irq(ar);
+		ath10k_pci_irq_msi_fw_unmask(ar);
+	}
+
+out:
+	return done;
+}
+
+static int ath10k_pci_request_irq_msi(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret;
+
+	ret = request_irq(ar_pci->pdev->irq,
+			  ath10k_pci_interrupt_handler,
+			  IRQF_SHARED, "ath10k_pci", ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
+			    ar_pci->pdev->irq, ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret;
+
+	ret = request_irq(ar_pci->pdev->irq,
+			  ath10k_pci_interrupt_handler,
+			  IRQF_SHARED, "ath10k_pci", ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
+			    ar_pci->pdev->irq, ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+static int ath10k_pci_request_irq(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	switch (ar_pci->oper_irq_mode) {
+	case ATH10K_PCI_IRQ_LEGACY:
+		return ath10k_pci_request_irq_legacy(ar);
+	case ATH10K_PCI_IRQ_MSI:
+		return ath10k_pci_request_irq_msi(ar);
+	default:
+		return -EINVAL;
+	}
+}
+
+static void ath10k_pci_free_irq(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	free_irq(ar_pci->pdev->irq, ar);
+}
+
+void ath10k_pci_init_napi(struct ath10k *ar)
+{
+	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
+		       ATH10K_NAPI_BUDGET);
+}
+
+static int ath10k_pci_init_irq(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	int ret;
+
+	ath10k_pci_init_napi(ar);
+
+	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
+		ath10k_info(ar, "limiting irq mode to: %d\n",
+			    ath10k_pci_irq_mode);
+
+	/* Try MSI */
+	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
+		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
+		ret = pci_enable_msi(ar_pci->pdev);
+		if (ret == 0)
+			return 0;
+
+		/* fall-through */
+	}
+
+	/* Try legacy irq
+	 *
+	 * A potential race occurs here: The CORE_BASE write
+	 * depends on target correctly decoding AXI address but
+	 * host won't know when target writes BAR to CORE_CTRL.
+	 * This write might get lost if target has NOT written BAR.
+	 * For now, fix the race by repeating the write in below
+	 * synchronization checking.
+	 */
+	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
+
+	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
+			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
+
+	return 0;
+}
+
+static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
+{
+	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
+			   0);
+}
+
+static int ath10k_pci_deinit_irq(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+
+	switch (ar_pci->oper_irq_mode) {
+	case ATH10K_PCI_IRQ_LEGACY:
+		ath10k_pci_deinit_irq_legacy(ar);
+		break;
+	default:
+		pci_disable_msi(ar_pci->pdev);
+		break;
+	}
+
+	return 0;
+}
+
+int ath10k_pci_wait_for_target_init(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	unsigned long timeout;
+	u32 val;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
+
+	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
+
+	do {
+		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
+
+		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
+			   val);
+
+		/* target should never return this */
+		if (val == 0xffffffff)
+			continue;
+
+		/* the device has crashed so don't bother trying anymore */
+		if (val & FW_IND_EVENT_PENDING)
+			break;
+
+		if (val & FW_IND_INITIALIZED)
+			break;
+
+		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
+			/* Fix potential race by repeating CORE_BASE writes */
+			ath10k_pci_enable_legacy_irq(ar);
+
+		mdelay(10);
+	} while (time_before(jiffies, timeout));
+
+	ath10k_pci_disable_and_clear_legacy_irq(ar);
+	ath10k_pci_irq_msi_fw_mask(ar);
+
+	if (val == 0xffffffff) {
+		ath10k_err(ar, "failed to read device register, device is gone\n");
+		return -EIO;
+	}
+
+	if (val & FW_IND_EVENT_PENDING) {
+		ath10k_warn(ar, "device has crashed during init\n");
+		return -ECOMM;
+	}
+
+	if (!(val & FW_IND_INITIALIZED)) {
+		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
+			   val);
+		return -ETIMEDOUT;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
+	return 0;
+}
+
+static int ath10k_pci_cold_reset(struct ath10k *ar)
+{
+	u32 val;
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
+
+	spin_lock_bh(&ar->data_lock);
+
+	ar->stats.fw_cold_reset_counter++;
+
+	spin_unlock_bh(&ar->data_lock);
+
+	/* Put Target, including PCIe, into RESET. */
+	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
+	val |= 1;
+	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
+
+	/* After writing into SOC_GLOBAL_RESET to put device into
+	 * reset and pulling out of reset pcie may not be stable
+	 * for any immediate pcie register access and cause bus error,
+	 * add delay before any pcie access request to fix this issue.
+	 */
+	msleep(20);
+
+	/* Pull Target, including PCIe, out of RESET. */
+	val &= ~1;
+	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
+
+	msleep(20);
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
+
+	return 0;
+}
+
+static int ath10k_pci_claim(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct pci_dev *pdev = ar_pci->pdev;
+	int ret;
+
+	pci_set_drvdata(pdev, ar);
+
+	ret = pci_enable_device(pdev);
+	if (ret) {
+		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
+		return ret;
+	}
+
+	ret = pci_request_region(pdev, BAR_NUM, "ath");
+	if (ret) {
+		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
+			   ret);
+		goto err_device;
+	}
+
+	/* Target expects 32 bit DMA. Enforce it. */
+	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+	if (ret) {
+		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
+		goto err_region;
+	}
+
+	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
+	if (ret) {
+		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
+			   ret);
+		goto err_region;
+	}
+
+	pci_set_master(pdev);
+
+	/* Arrange for access to Target SoC registers. */
+	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
+	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
+	if (!ar_pci->mem) {
+		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
+		ret = -EIO;
+		goto err_master;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
+	return 0;
+
+err_master:
+	pci_clear_master(pdev);
+
+err_region:
+	pci_release_region(pdev, BAR_NUM);
+
+err_device:
+	pci_disable_device(pdev);
+
+	return ret;
+}
+
+static void ath10k_pci_release(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct pci_dev *pdev = ar_pci->pdev;
+
+	pci_iounmap(pdev, ar_pci->mem);
+	pci_release_region(pdev, BAR_NUM);
+	pci_clear_master(pdev);
+	pci_disable_device(pdev);
+}
+
+static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
+{
+	const struct ath10k_pci_supp_chip *supp_chip;
+	int i;
+	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
+
+	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
+		supp_chip = &ath10k_pci_supp_chips[i];
+
+		if (supp_chip->dev_id == dev_id &&
+		    supp_chip->rev_id == rev_id)
+			return true;
+	}
+
+	return false;
+}
+
+int ath10k_pci_setup_resource(struct ath10k *ar)
+{
+	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
+	struct ath10k_ce *ce = ath10k_ce_priv(ar);
+	int ret;
+
+	spin_lock_init(&ce->ce_lock);
+	spin_lock_init(&ar_pci->ps_lock);
+	mutex_init(&ar_pci->ce_diag_mutex);
+
+	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
+
+	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
+
+	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
+		ath10k_pci_override_ce_config(ar);
+
+	ret = ath10k_pci_alloc_pipes(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
+			   ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+void ath10k_pci_release_resource(struct ath10k *ar)
+{
+	ath10k_pci_rx_retry_sync(ar);
+	netif_napi_del(&ar->napi);
+	ath10k_pci_ce_deinit(ar);
+	ath10k_pci_free_pipes(ar);
+}
+
+static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
+	.read32		= ath10k_bus_pci_read32,
+	.write32	= ath10k_bus_pci_write32,
+	.get_num_banks	= ath10k_pci_get_num_banks,
+};
+
+static int ath10k_pci_probe(struct pci_dev *pdev,
+			    const struct pci_device_id *pci_dev)
+{
+	int ret = 0;
+	struct ath10k *ar;
+	struct ath10k_pci *ar_pci;
+	enum ath10k_hw_rev hw_rev;
+	struct ath10k_bus_params bus_params = {};
+	bool pci_ps, is_qca988x = false;
+	int (*pci_soft_reset)(struct ath10k *ar);
+	int (*pci_hard_reset)(struct ath10k *ar);
+	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
+
+	switch (pci_dev->device) {
+	case QCA988X_2_0_DEVICE_ID_UBNT:
+	case QCA988X_2_0_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA988X;
+		pci_ps = false;
+		is_qca988x = true;
+		pci_soft_reset = ath10k_pci_warm_reset;
+		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
+		break;
+	case QCA9887_1_0_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA9887;
+		pci_ps = false;
+		pci_soft_reset = ath10k_pci_warm_reset;
+		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
+		break;
+	case QCA6164_2_1_DEVICE_ID:
+	case QCA6174_2_1_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA6174;
+		pci_ps = true;
+		pci_soft_reset = ath10k_pci_warm_reset;
+		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
+		break;
+	case QCA99X0_2_0_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA99X0;
+		pci_ps = false;
+		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
+		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
+		break;
+	case QCA9984_1_0_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA9984;
+		pci_ps = false;
+		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
+		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
+		break;
+	case QCA9888_2_0_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA9888;
+		pci_ps = false;
+		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
+		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
+		break;
+	case QCA9377_1_0_DEVICE_ID:
+		hw_rev = ATH10K_HW_QCA9377;
+		pci_ps = true;
+		pci_soft_reset = ath10k_pci_warm_reset;
+		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
+		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
+		break;
+	default:
+		WARN_ON(1);
+		return -ENOTSUPP;
+	}
+
+	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
+				hw_rev, &ath10k_pci_hif_ops);
+	if (!ar) {
+		dev_err(&pdev->dev, "failed to allocate core\n");
+		return -ENOMEM;
+	}
+
+	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
+		   pdev->vendor, pdev->device,
+		   pdev->subsystem_vendor, pdev->subsystem_device);
+
+	ar_pci = ath10k_pci_priv(ar);
+	ar_pci->pdev = pdev;
+	ar_pci->dev = &pdev->dev;
+	ar_pci->ar = ar;
+	ar->dev_id = pci_dev->device;
+	ar_pci->pci_ps = pci_ps;
+	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
+	ar_pci->pci_soft_reset = pci_soft_reset;
+	ar_pci->pci_hard_reset = pci_hard_reset;
+	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
+	ar->ce_priv = &ar_pci->ce;
+
+	ar->id.vendor = pdev->vendor;
+	ar->id.device = pdev->device;
+	ar->id.subsystem_vendor = pdev->subsystem_vendor;
+	ar->id.subsystem_device = pdev->subsystem_device;
+
+	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
+
+	ret = ath10k_pci_setup_resource(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to setup resource: %d\n", ret);
+		goto err_core_destroy;
+	}
+
+	ret = ath10k_pci_claim(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to claim device: %d\n", ret);
+		goto err_free_pipes;
+	}
+
+	ret = ath10k_pci_force_wake(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
+		goto err_sleep;
+	}
+
+	ath10k_pci_ce_deinit(ar);
+	ath10k_pci_irq_disable(ar);
+
+	ret = ath10k_pci_init_irq(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to init irqs: %d\n", ret);
+		goto err_sleep;
+	}
+
+	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
+		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
+		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
+
+	ret = ath10k_pci_request_irq(ar);
+	if (ret) {
+		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
+		goto err_deinit_irq;
+	}
+
+	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
+	bus_params.link_can_suspend = true;
+	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
+	 * fall off the bus during chip_reset. These chips have the same pci
+	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
+	 */
+	if (is_qca988x) {
+		bus_params.chip_id =
+			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
+		if (bus_params.chip_id != 0xffffffff) {
+			if (!ath10k_pci_chip_is_supported(pdev->device,
+							  bus_params.chip_id)) {
+				ret = -ENODEV;
+				goto err_unsupported;
+			}
+		}
+	}
+
+	ret = ath10k_pci_chip_reset(ar);
+	if (ret) {
+		ath10k_err(ar, "failed to reset chip: %d\n", ret);
+		goto err_free_irq;
+	}
+
+	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
+	if (bus_params.chip_id == 0xffffffff) {
+		ret = -ENODEV;
+		goto err_unsupported;
+	}
+
+	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
+		ret = -ENODEV;
+		goto err_unsupported;
+	}
+
+	ret = ath10k_core_register(ar, &bus_params);
+	if (ret) {
+		ath10k_err(ar, "failed to register driver core: %d\n", ret);
+		goto err_free_irq;
+	}
+
+	return 0;
+
+err_unsupported:
+	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
+		   pdev->device, bus_params.chip_id);
+
+err_free_irq:
+	ath10k_pci_free_irq(ar);
+	ath10k_pci_rx_retry_sync(ar);
+
+err_deinit_irq:
+	ath10k_pci_deinit_irq(ar);
+
+err_sleep:
+	ath10k_pci_sleep_sync(ar);
+	ath10k_pci_release(ar);
+
+err_free_pipes:
+	ath10k_pci_free_pipes(ar);
+
+err_core_destroy:
+	ath10k_core_destroy(ar);
+
+	return ret;
+}
+
+static void ath10k_pci_remove(struct pci_dev *pdev)
+{
+	struct ath10k *ar = pci_get_drvdata(pdev);
+	struct ath10k_pci *ar_pci;
+
+	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
+
+	if (!ar)
+		return;
+
+	ar_pci = ath10k_pci_priv(ar);
+
+	if (!ar_pci)
+		return;
+
+	ath10k_core_unregister(ar);
+	ath10k_pci_free_irq(ar);
+	ath10k_pci_deinit_irq(ar);
+	ath10k_pci_release_resource(ar);
+	ath10k_pci_sleep_sync(ar);
+	ath10k_pci_release(ar);
+	ath10k_core_destroy(ar);
+}
+
+MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
+
+static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
+{
+	struct ath10k *ar = dev_get_drvdata(dev);
+	int ret;
+
+	ret = ath10k_pci_suspend(ar);
+	if (ret)
+		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
+
+	return ret;
+}
+
+static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
+{
+	struct ath10k *ar = dev_get_drvdata(dev);
+	int ret;
+
+	ret = ath10k_pci_resume(ar);
+	if (ret)
+		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
+
+	return ret;
+}
+
+static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
+			 ath10k_pci_pm_suspend,
+			 ath10k_pci_pm_resume);
+
+static struct pci_driver ath10k_pci_driver = {
+	.name = "ath10k_pci",
+	.id_table = ath10k_pci_id_table,
+	.probe = ath10k_pci_probe,
+	.remove = ath10k_pci_remove,
+#ifdef CONFIG_PM
+	.driver.pm = &ath10k_pci_pm_ops,
+#endif
+};
+
+static int __init ath10k_pci_init(void)
+{
+	int ret1, ret2;
+
+	ret1 = pci_register_driver(&ath10k_pci_driver);
+	if (ret1)
+		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
+		       ret1);
+
+	ret2 = ath10k_ahb_init();
+	if (ret2)
+		printk(KERN_ERR "ahb init failed: %d\n", ret2);
+
+	if (ret1 && ret2)
+		return ret1;
+
+	/* registered to at least one bus */
+	return 0;
+}
+module_init(ath10k_pci_init);
+
+static void __exit ath10k_pci_exit(void)
+{
+	pci_unregister_driver(&ath10k_pci_driver);
+	ath10k_ahb_exit();
+}
+
+module_exit(ath10k_pci_exit);
+
+MODULE_AUTHOR("Qualcomm Atheros");
+MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
+MODULE_LICENSE("Dual BSD/GPL");
+
+/* QCA988x 2.0 firmware files */
+MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
+MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
+MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
+MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
+MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
+MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
+
+/* QCA9887 1.0 firmware files */
+MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
+MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
+MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
+
+/* QCA6174 2.1 firmware files */
+MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
+MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
+MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
+MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
+
+/* QCA6174 3.1 firmware files */
+MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
+MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
+MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
+MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
+MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
+
+/* QCA9377 1.0 firmware files */
+MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
+MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
+MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);