ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/fs/btrfs/async-thread.c b/marvell/linux/fs/btrfs/async-thread.c
new file mode 100644
index 0000000..eb592b9
--- /dev/null
+++ b/marvell/linux/fs/btrfs/async-thread.c
@@ -0,0 +1,426 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ * Copyright (C) 2014 Fujitsu.  All rights reserved.
+ */
+
+#include <linux/kthread.h>
+#include <linux/slab.h>
+#include <linux/list.h>
+#include <linux/spinlock.h>
+#include <linux/freezer.h>
+#include "async-thread.h"
+#include "ctree.h"
+
+enum {
+	WORK_DONE_BIT,
+	WORK_ORDER_DONE_BIT,
+	WORK_HIGH_PRIO_BIT,
+};
+
+#define NO_THRESHOLD (-1)
+#define DFT_THRESHOLD (32)
+
+struct __btrfs_workqueue {
+	struct workqueue_struct *normal_wq;
+
+	/* File system this workqueue services */
+	struct btrfs_fs_info *fs_info;
+
+	/* List head pointing to ordered work list */
+	struct list_head ordered_list;
+
+	/* Spinlock for ordered_list */
+	spinlock_t list_lock;
+
+	/* Thresholding related variants */
+	atomic_t pending;
+
+	/* Up limit of concurrency workers */
+	int limit_active;
+
+	/* Current number of concurrency workers */
+	int current_active;
+
+	/* Threshold to change current_active */
+	int thresh;
+	unsigned int count;
+	spinlock_t thres_lock;
+};
+
+struct btrfs_workqueue {
+	struct __btrfs_workqueue *normal;
+	struct __btrfs_workqueue *high;
+};
+
+struct btrfs_fs_info *
+btrfs_workqueue_owner(const struct __btrfs_workqueue *wq)
+{
+	return wq->fs_info;
+}
+
+struct btrfs_fs_info *
+btrfs_work_owner(const struct btrfs_work *work)
+{
+	return work->wq->fs_info;
+}
+
+bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
+{
+	/*
+	 * We could compare wq->normal->pending with num_online_cpus()
+	 * to support "thresh == NO_THRESHOLD" case, but it requires
+	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
+	 * postpone it until someone needs the support of that case.
+	 */
+	if (wq->normal->thresh == NO_THRESHOLD)
+		return false;
+
+	return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2;
+}
+
+static struct __btrfs_workqueue *
+__btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name,
+			unsigned int flags, int limit_active, int thresh)
+{
+	struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
+
+	if (!ret)
+		return NULL;
+
+	ret->fs_info = fs_info;
+	ret->limit_active = limit_active;
+	atomic_set(&ret->pending, 0);
+	if (thresh == 0)
+		thresh = DFT_THRESHOLD;
+	/* For low threshold, disabling threshold is a better choice */
+	if (thresh < DFT_THRESHOLD) {
+		ret->current_active = limit_active;
+		ret->thresh = NO_THRESHOLD;
+	} else {
+		/*
+		 * For threshold-able wq, let its concurrency grow on demand.
+		 * Use minimal max_active at alloc time to reduce resource
+		 * usage.
+		 */
+		ret->current_active = 1;
+		ret->thresh = thresh;
+	}
+
+	if (flags & WQ_HIGHPRI)
+		ret->normal_wq = alloc_workqueue("btrfs-%s-high", flags,
+						 ret->current_active, name);
+	else
+		ret->normal_wq = alloc_workqueue("btrfs-%s", flags,
+						 ret->current_active, name);
+	if (!ret->normal_wq) {
+		kfree(ret);
+		return NULL;
+	}
+
+	INIT_LIST_HEAD(&ret->ordered_list);
+	spin_lock_init(&ret->list_lock);
+	spin_lock_init(&ret->thres_lock);
+	trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
+	return ret;
+}
+
+static inline void
+__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
+
+struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
+					      const char *name,
+					      unsigned int flags,
+					      int limit_active,
+					      int thresh)
+{
+	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
+
+	if (!ret)
+		return NULL;
+
+	ret->normal = __btrfs_alloc_workqueue(fs_info, name,
+					      flags & ~WQ_HIGHPRI,
+					      limit_active, thresh);
+	if (!ret->normal) {
+		kfree(ret);
+		return NULL;
+	}
+
+	if (flags & WQ_HIGHPRI) {
+		ret->high = __btrfs_alloc_workqueue(fs_info, name, flags,
+						    limit_active, thresh);
+		if (!ret->high) {
+			__btrfs_destroy_workqueue(ret->normal);
+			kfree(ret);
+			return NULL;
+		}
+	}
+	return ret;
+}
+
+/*
+ * Hook for threshold which will be called in btrfs_queue_work.
+ * This hook WILL be called in IRQ handler context,
+ * so workqueue_set_max_active MUST NOT be called in this hook
+ */
+static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
+{
+	if (wq->thresh == NO_THRESHOLD)
+		return;
+	atomic_inc(&wq->pending);
+}
+
+/*
+ * Hook for threshold which will be called before executing the work,
+ * This hook is called in kthread content.
+ * So workqueue_set_max_active is called here.
+ */
+static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
+{
+	int new_current_active;
+	long pending;
+	int need_change = 0;
+
+	if (wq->thresh == NO_THRESHOLD)
+		return;
+
+	atomic_dec(&wq->pending);
+	spin_lock(&wq->thres_lock);
+	/*
+	 * Use wq->count to limit the calling frequency of
+	 * workqueue_set_max_active.
+	 */
+	wq->count++;
+	wq->count %= (wq->thresh / 4);
+	if (!wq->count)
+		goto  out;
+	new_current_active = wq->current_active;
+
+	/*
+	 * pending may be changed later, but it's OK since we really
+	 * don't need it so accurate to calculate new_max_active.
+	 */
+	pending = atomic_read(&wq->pending);
+	if (pending > wq->thresh)
+		new_current_active++;
+	if (pending < wq->thresh / 2)
+		new_current_active--;
+	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
+	if (new_current_active != wq->current_active)  {
+		need_change = 1;
+		wq->current_active = new_current_active;
+	}
+out:
+	spin_unlock(&wq->thres_lock);
+
+	if (need_change) {
+		workqueue_set_max_active(wq->normal_wq, wq->current_active);
+	}
+}
+
+static void run_ordered_work(struct __btrfs_workqueue *wq,
+			     struct btrfs_work *self)
+{
+	struct list_head *list = &wq->ordered_list;
+	struct btrfs_work *work;
+	spinlock_t *lock = &wq->list_lock;
+	unsigned long flags;
+	void *wtag;
+	bool free_self = false;
+
+	while (1) {
+		spin_lock_irqsave(lock, flags);
+		if (list_empty(list))
+			break;
+		work = list_entry(list->next, struct btrfs_work,
+				  ordered_list);
+		if (!test_bit(WORK_DONE_BIT, &work->flags))
+			break;
+		/*
+		 * Orders all subsequent loads after reading WORK_DONE_BIT,
+		 * paired with the smp_mb__before_atomic in btrfs_work_helper
+		 * this guarantees that the ordered function will see all
+		 * updates from ordinary work function.
+		 */
+		smp_rmb();
+
+		/*
+		 * we are going to call the ordered done function, but
+		 * we leave the work item on the list as a barrier so
+		 * that later work items that are done don't have their
+		 * functions called before this one returns
+		 */
+		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
+			break;
+		trace_btrfs_ordered_sched(work);
+		spin_unlock_irqrestore(lock, flags);
+		work->ordered_func(work);
+
+		/* now take the lock again and drop our item from the list */
+		spin_lock_irqsave(lock, flags);
+		list_del(&work->ordered_list);
+		spin_unlock_irqrestore(lock, flags);
+
+		if (work == self) {
+			/*
+			 * This is the work item that the worker is currently
+			 * executing.
+			 *
+			 * The kernel workqueue code guarantees non-reentrancy
+			 * of work items. I.e., if a work item with the same
+			 * address and work function is queued twice, the second
+			 * execution is blocked until the first one finishes. A
+			 * work item may be freed and recycled with the same
+			 * work function; the workqueue code assumes that the
+			 * original work item cannot depend on the recycled work
+			 * item in that case (see find_worker_executing_work()).
+			 *
+			 * Note that different types of Btrfs work can depend on
+			 * each other, and one type of work on one Btrfs
+			 * filesystem may even depend on the same type of work
+			 * on another Btrfs filesystem via, e.g., a loop device.
+			 * Therefore, we must not allow the current work item to
+			 * be recycled until we are really done, otherwise we
+			 * break the above assumption and can deadlock.
+			 */
+			free_self = true;
+		} else {
+			/*
+			 * We don't want to call the ordered free functions with
+			 * the lock held though. Save the work as tag for the
+			 * trace event, because the callback could free the
+			 * structure.
+			 */
+			wtag = work;
+			work->ordered_free(work);
+			trace_btrfs_all_work_done(wq->fs_info, wtag);
+		}
+	}
+	spin_unlock_irqrestore(lock, flags);
+
+	if (free_self) {
+		wtag = self;
+		self->ordered_free(self);
+		trace_btrfs_all_work_done(wq->fs_info, wtag);
+	}
+}
+
+static void btrfs_work_helper(struct work_struct *normal_work)
+{
+	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
+					       normal_work);
+	struct __btrfs_workqueue *wq;
+	void *wtag;
+	int need_order = 0;
+
+	/*
+	 * We should not touch things inside work in the following cases:
+	 * 1) after work->func() if it has no ordered_free
+	 *    Since the struct is freed in work->func().
+	 * 2) after setting WORK_DONE_BIT
+	 *    The work may be freed in other threads almost instantly.
+	 * So we save the needed things here.
+	 */
+	if (work->ordered_func)
+		need_order = 1;
+	wq = work->wq;
+	/* Safe for tracepoints in case work gets freed by the callback */
+	wtag = work;
+
+	trace_btrfs_work_sched(work);
+	thresh_exec_hook(wq);
+	work->func(work);
+	if (need_order) {
+		/*
+		 * Ensures all memory accesses done in the work function are
+		 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
+		 * which is going to executed the ordered work sees them.
+		 * Pairs with the smp_rmb in run_ordered_work.
+		 */
+		smp_mb__before_atomic();
+		set_bit(WORK_DONE_BIT, &work->flags);
+		run_ordered_work(wq, work);
+	}
+	if (!need_order)
+		trace_btrfs_all_work_done(wq->fs_info, wtag);
+}
+
+void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
+		     btrfs_func_t ordered_func, btrfs_func_t ordered_free)
+{
+	work->func = func;
+	work->ordered_func = ordered_func;
+	work->ordered_free = ordered_free;
+	INIT_WORK(&work->normal_work, btrfs_work_helper);
+	INIT_LIST_HEAD(&work->ordered_list);
+	work->flags = 0;
+}
+
+static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
+				      struct btrfs_work *work)
+{
+	unsigned long flags;
+
+	work->wq = wq;
+	thresh_queue_hook(wq);
+	if (work->ordered_func) {
+		spin_lock_irqsave(&wq->list_lock, flags);
+		list_add_tail(&work->ordered_list, &wq->ordered_list);
+		spin_unlock_irqrestore(&wq->list_lock, flags);
+	}
+	trace_btrfs_work_queued(work);
+	queue_work(wq->normal_wq, &work->normal_work);
+}
+
+void btrfs_queue_work(struct btrfs_workqueue *wq,
+		      struct btrfs_work *work)
+{
+	struct __btrfs_workqueue *dest_wq;
+
+	if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
+		dest_wq = wq->high;
+	else
+		dest_wq = wq->normal;
+	__btrfs_queue_work(dest_wq, work);
+}
+
+static inline void
+__btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
+{
+	destroy_workqueue(wq->normal_wq);
+	trace_btrfs_workqueue_destroy(wq);
+	kfree(wq);
+}
+
+void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
+{
+	if (!wq)
+		return;
+	if (wq->high)
+		__btrfs_destroy_workqueue(wq->high);
+	__btrfs_destroy_workqueue(wq->normal);
+	kfree(wq);
+}
+
+void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
+{
+	if (!wq)
+		return;
+	wq->normal->limit_active = limit_active;
+	if (wq->high)
+		wq->high->limit_active = limit_active;
+}
+
+void btrfs_set_work_high_priority(struct btrfs_work *work)
+{
+	set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
+}
+
+void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
+{
+	if (wq->high)
+		flush_workqueue(wq->high->normal_wq);
+
+	flush_workqueue(wq->normal->normal_wq);
+}