ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/fs/xfs/xfs_file.c b/marvell/linux/fs/xfs/xfs_file.c
new file mode 100644
index 0000000..5d0755e
--- /dev/null
+++ b/marvell/linux/fs/xfs/xfs_file.c
@@ -0,0 +1,1353 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_trans.h"
+#include "xfs_inode_item.h"
+#include "xfs_bmap.h"
+#include "xfs_bmap_util.h"
+#include "xfs_dir2.h"
+#include "xfs_dir2_priv.h"
+#include "xfs_ioctl.h"
+#include "xfs_trace.h"
+#include "xfs_log.h"
+#include "xfs_icache.h"
+#include "xfs_pnfs.h"
+#include "xfs_iomap.h"
+#include "xfs_reflink.h"
+
+#include <linux/falloc.h>
+#include <linux/backing-dev.h>
+#include <linux/mman.h>
+#include <linux/fadvise.h>
+
+static const struct vm_operations_struct xfs_file_vm_ops;
+
+int
+xfs_update_prealloc_flags(
+	struct xfs_inode	*ip,
+	enum xfs_prealloc_flags	flags)
+{
+	struct xfs_trans	*tp;
+	int			error;
+
+	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
+			0, 0, 0, &tp);
+	if (error)
+		return error;
+
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+
+	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
+		VFS_I(ip)->i_mode &= ~S_ISUID;
+		if (VFS_I(ip)->i_mode & S_IXGRP)
+			VFS_I(ip)->i_mode &= ~S_ISGID;
+		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+	}
+
+	if (flags & XFS_PREALLOC_SET)
+		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
+	if (flags & XFS_PREALLOC_CLEAR)
+		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
+
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+	if (flags & XFS_PREALLOC_SYNC)
+		xfs_trans_set_sync(tp);
+	return xfs_trans_commit(tp);
+}
+
+/*
+ * Fsync operations on directories are much simpler than on regular files,
+ * as there is no file data to flush, and thus also no need for explicit
+ * cache flush operations, and there are no non-transaction metadata updates
+ * on directories either.
+ */
+STATIC int
+xfs_dir_fsync(
+	struct file		*file,
+	loff_t			start,
+	loff_t			end,
+	int			datasync)
+{
+	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
+
+	trace_xfs_dir_fsync(ip);
+	return xfs_log_force_inode(ip);
+}
+
+STATIC int
+xfs_file_fsync(
+	struct file		*file,
+	loff_t			start,
+	loff_t			end,
+	int			datasync)
+{
+	struct inode		*inode = file->f_mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_mount	*mp = ip->i_mount;
+	int			error = 0;
+	int			log_flushed = 0;
+	xfs_lsn_t		lsn = 0;
+
+	trace_xfs_file_fsync(ip);
+
+	error = file_write_and_wait_range(file, start, end);
+	if (error)
+		return error;
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	xfs_iflags_clear(ip, XFS_ITRUNCATED);
+
+	/*
+	 * If we have an RT and/or log subvolume we need to make sure to flush
+	 * the write cache the device used for file data first.  This is to
+	 * ensure newly written file data make it to disk before logging the new
+	 * inode size in case of an extending write.
+	 */
+	if (XFS_IS_REALTIME_INODE(ip))
+		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
+	else if (mp->m_logdev_targp != mp->m_ddev_targp)
+		xfs_blkdev_issue_flush(mp->m_ddev_targp);
+
+	/*
+	 * All metadata updates are logged, which means that we just have to
+	 * flush the log up to the latest LSN that touched the inode. If we have
+	 * concurrent fsync/fdatasync() calls, we need them to all block on the
+	 * log force before we clear the ili_fsync_fields field. This ensures
+	 * that we don't get a racing sync operation that does not wait for the
+	 * metadata to hit the journal before returning. If we race with
+	 * clearing the ili_fsync_fields, then all that will happen is the log
+	 * force will do nothing as the lsn will already be on disk. We can't
+	 * race with setting ili_fsync_fields because that is done under
+	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
+	 * until after the ili_fsync_fields is cleared.
+	 */
+	xfs_ilock(ip, XFS_ILOCK_SHARED);
+	if (xfs_ipincount(ip)) {
+		if (!datasync ||
+		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
+			lsn = ip->i_itemp->ili_last_lsn;
+	}
+
+	if (lsn) {
+		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
+		ip->i_itemp->ili_fsync_fields = 0;
+	}
+	xfs_iunlock(ip, XFS_ILOCK_SHARED);
+
+	/*
+	 * If we only have a single device, and the log force about was
+	 * a no-op we might have to flush the data device cache here.
+	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
+	 * an already allocated file and thus do not have any metadata to
+	 * commit.
+	 */
+	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
+	    mp->m_logdev_targp == mp->m_ddev_targp)
+		xfs_blkdev_issue_flush(mp->m_ddev_targp);
+
+	return error;
+}
+
+STATIC ssize_t
+xfs_file_dio_aio_read(
+	struct kiocb		*iocb,
+	struct iov_iter		*to)
+{
+	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
+	size_t			count = iov_iter_count(to);
+	ssize_t			ret;
+
+	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
+
+	if (!count)
+		return 0; /* skip atime */
+
+	file_accessed(iocb->ki_filp);
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
+			return -EAGAIN;
+	} else {
+		xfs_ilock(ip, XFS_IOLOCK_SHARED);
+	}
+	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
+	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+	return ret;
+}
+
+static noinline ssize_t
+xfs_file_dax_read(
+	struct kiocb		*iocb,
+	struct iov_iter		*to)
+{
+	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
+	size_t			count = iov_iter_count(to);
+	ssize_t			ret = 0;
+
+	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
+
+	if (!count)
+		return 0; /* skip atime */
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
+			return -EAGAIN;
+	} else {
+		xfs_ilock(ip, XFS_IOLOCK_SHARED);
+	}
+
+	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
+	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+	file_accessed(iocb->ki_filp);
+	return ret;
+}
+
+STATIC ssize_t
+xfs_file_buffered_aio_read(
+	struct kiocb		*iocb,
+	struct iov_iter		*to)
+{
+	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
+	ssize_t			ret;
+
+	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
+			return -EAGAIN;
+	} else {
+		xfs_ilock(ip, XFS_IOLOCK_SHARED);
+	}
+	ret = generic_file_read_iter(iocb, to);
+	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+	return ret;
+}
+
+STATIC ssize_t
+xfs_file_read_iter(
+	struct kiocb		*iocb,
+	struct iov_iter		*to)
+{
+	struct inode		*inode = file_inode(iocb->ki_filp);
+	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
+	ssize_t			ret = 0;
+
+	XFS_STATS_INC(mp, xs_read_calls);
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	if (IS_DAX(inode))
+		ret = xfs_file_dax_read(iocb, to);
+	else if (iocb->ki_flags & IOCB_DIRECT)
+		ret = xfs_file_dio_aio_read(iocb, to);
+	else
+		ret = xfs_file_buffered_aio_read(iocb, to);
+
+	if (ret > 0)
+		XFS_STATS_ADD(mp, xs_read_bytes, ret);
+	return ret;
+}
+
+/*
+ * Common pre-write limit and setup checks.
+ *
+ * Called with the iolocked held either shared and exclusive according to
+ * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
+ * if called for a direct write beyond i_size.
+ */
+STATIC ssize_t
+xfs_file_aio_write_checks(
+	struct kiocb		*iocb,
+	struct iov_iter		*from,
+	int			*iolock)
+{
+	struct file		*file = iocb->ki_filp;
+	struct inode		*inode = file->f_mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	ssize_t			error = 0;
+	size_t			count = iov_iter_count(from);
+	bool			drained_dio = false;
+	loff_t			isize;
+
+restart:
+	error = generic_write_checks(iocb, from);
+	if (error <= 0)
+		return error;
+
+	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
+	if (error)
+		return error;
+
+	/*
+	 * For changing security info in file_remove_privs() we need i_rwsem
+	 * exclusively.
+	 */
+	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
+		xfs_iunlock(ip, *iolock);
+		*iolock = XFS_IOLOCK_EXCL;
+		xfs_ilock(ip, *iolock);
+		goto restart;
+	}
+	/*
+	 * If the offset is beyond the size of the file, we need to zero any
+	 * blocks that fall between the existing EOF and the start of this
+	 * write.  If zeroing is needed and we are currently holding the
+	 * iolock shared, we need to update it to exclusive which implies
+	 * having to redo all checks before.
+	 *
+	 * We need to serialise against EOF updates that occur in IO
+	 * completions here. We want to make sure that nobody is changing the
+	 * size while we do this check until we have placed an IO barrier (i.e.
+	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
+	 * The spinlock effectively forms a memory barrier once we have the
+	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
+	 * and hence be able to correctly determine if we need to run zeroing.
+	 */
+	spin_lock(&ip->i_flags_lock);
+	isize = i_size_read(inode);
+	if (iocb->ki_pos > isize) {
+		spin_unlock(&ip->i_flags_lock);
+		if (!drained_dio) {
+			if (*iolock == XFS_IOLOCK_SHARED) {
+				xfs_iunlock(ip, *iolock);
+				*iolock = XFS_IOLOCK_EXCL;
+				xfs_ilock(ip, *iolock);
+				iov_iter_reexpand(from, count);
+			}
+			/*
+			 * We now have an IO submission barrier in place, but
+			 * AIO can do EOF updates during IO completion and hence
+			 * we now need to wait for all of them to drain. Non-AIO
+			 * DIO will have drained before we are given the
+			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
+			 * no-op.
+			 */
+			inode_dio_wait(inode);
+			drained_dio = true;
+			goto restart;
+		}
+	
+		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
+		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
+				NULL, &xfs_iomap_ops);
+		if (error)
+			return error;
+	} else
+		spin_unlock(&ip->i_flags_lock);
+
+	/*
+	 * Updating the timestamps will grab the ilock again from
+	 * xfs_fs_dirty_inode, so we have to call it after dropping the
+	 * lock above.  Eventually we should look into a way to avoid
+	 * the pointless lock roundtrip.
+	 */
+	return file_modified(file);
+}
+
+static int
+xfs_dio_write_end_io(
+	struct kiocb		*iocb,
+	ssize_t			size,
+	int			error,
+	unsigned		flags)
+{
+	struct inode		*inode = file_inode(iocb->ki_filp);
+	struct xfs_inode	*ip = XFS_I(inode);
+	loff_t			offset = iocb->ki_pos;
+	unsigned int		nofs_flag;
+
+	trace_xfs_end_io_direct_write(ip, offset, size);
+
+	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+		return -EIO;
+
+	if (error)
+		return error;
+	if (!size)
+		return 0;
+
+	/*
+	 * Capture amount written on completion as we can't reliably account
+	 * for it on submission.
+	 */
+	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
+
+	/*
+	 * We can allocate memory here while doing writeback on behalf of
+	 * memory reclaim.  To avoid memory allocation deadlocks set the
+	 * task-wide nofs context for the following operations.
+	 */
+	nofs_flag = memalloc_nofs_save();
+
+	if (flags & IOMAP_DIO_COW) {
+		error = xfs_reflink_end_cow(ip, offset, size);
+		if (error)
+			goto out;
+	}
+
+	/*
+	 * Unwritten conversion updates the in-core isize after extent
+	 * conversion but before updating the on-disk size. Updating isize any
+	 * earlier allows a racing dio read to find unwritten extents before
+	 * they are converted.
+	 */
+	if (flags & IOMAP_DIO_UNWRITTEN) {
+		error = xfs_iomap_write_unwritten(ip, offset, size, true);
+		goto out;
+	}
+
+	/*
+	 * We need to update the in-core inode size here so that we don't end up
+	 * with the on-disk inode size being outside the in-core inode size. We
+	 * have no other method of updating EOF for AIO, so always do it here
+	 * if necessary.
+	 *
+	 * We need to lock the test/set EOF update as we can be racing with
+	 * other IO completions here to update the EOF. Failing to serialise
+	 * here can result in EOF moving backwards and Bad Things Happen when
+	 * that occurs.
+	 */
+	spin_lock(&ip->i_flags_lock);
+	if (offset + size > i_size_read(inode)) {
+		i_size_write(inode, offset + size);
+		spin_unlock(&ip->i_flags_lock);
+		error = xfs_setfilesize(ip, offset, size);
+	} else {
+		spin_unlock(&ip->i_flags_lock);
+	}
+
+out:
+	memalloc_nofs_restore(nofs_flag);
+	return error;
+}
+
+static const struct iomap_dio_ops xfs_dio_write_ops = {
+	.end_io		= xfs_dio_write_end_io,
+};
+
+/*
+ * xfs_file_dio_aio_write - handle direct IO writes
+ *
+ * Lock the inode appropriately to prepare for and issue a direct IO write.
+ * By separating it from the buffered write path we remove all the tricky to
+ * follow locking changes and looping.
+ *
+ * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
+ * until we're sure the bytes at the new EOF have been zeroed and/or the cached
+ * pages are flushed out.
+ *
+ * In most cases the direct IO writes will be done holding IOLOCK_SHARED
+ * allowing them to be done in parallel with reads and other direct IO writes.
+ * However, if the IO is not aligned to filesystem blocks, the direct IO layer
+ * needs to do sub-block zeroing and that requires serialisation against other
+ * direct IOs to the same block. In this case we need to serialise the
+ * submission of the unaligned IOs so that we don't get racing block zeroing in
+ * the dio layer.  To avoid the problem with aio, we also need to wait for
+ * outstanding IOs to complete so that unwritten extent conversion is completed
+ * before we try to map the overlapping block. This is currently implemented by
+ * hitting it with a big hammer (i.e. inode_dio_wait()).
+ *
+ * Returns with locks held indicated by @iolock and errors indicated by
+ * negative return values.
+ */
+STATIC ssize_t
+xfs_file_dio_aio_write(
+	struct kiocb		*iocb,
+	struct iov_iter		*from)
+{
+	struct file		*file = iocb->ki_filp;
+	struct address_space	*mapping = file->f_mapping;
+	struct inode		*inode = mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	struct xfs_mount	*mp = ip->i_mount;
+	ssize_t			ret = 0;
+	int			unaligned_io = 0;
+	int			iolock;
+	size_t			count = iov_iter_count(from);
+	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
+					mp->m_rtdev_targp : mp->m_ddev_targp;
+
+	/* DIO must be aligned to device logical sector size */
+	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
+		return -EINVAL;
+
+	/*
+	 * Don't take the exclusive iolock here unless the I/O is unaligned to
+	 * the file system block size.  We don't need to consider the EOF
+	 * extension case here because xfs_file_aio_write_checks() will relock
+	 * the inode as necessary for EOF zeroing cases and fill out the new
+	 * inode size as appropriate.
+	 */
+	if ((iocb->ki_pos & mp->m_blockmask) ||
+	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
+		unaligned_io = 1;
+
+		/*
+		 * We can't properly handle unaligned direct I/O to reflink
+		 * files yet, as we can't unshare a partial block.
+		 */
+		if (xfs_is_cow_inode(ip)) {
+			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
+			return -EREMCHG;
+		}
+		iolock = XFS_IOLOCK_EXCL;
+	} else {
+		iolock = XFS_IOLOCK_SHARED;
+	}
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		/* unaligned dio always waits, bail */
+		if (unaligned_io)
+			return -EAGAIN;
+		if (!xfs_ilock_nowait(ip, iolock))
+			return -EAGAIN;
+	} else {
+		xfs_ilock(ip, iolock);
+	}
+
+	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+	if (ret)
+		goto out;
+	count = iov_iter_count(from);
+
+	/*
+	 * If we are doing unaligned IO, we can't allow any other overlapping IO
+	 * in-flight at the same time or we risk data corruption. Wait for all
+	 * other IO to drain before we submit. If the IO is aligned, demote the
+	 * iolock if we had to take the exclusive lock in
+	 * xfs_file_aio_write_checks() for other reasons.
+	 */
+	if (unaligned_io) {
+		inode_dio_wait(inode);
+	} else if (iolock == XFS_IOLOCK_EXCL) {
+		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
+		iolock = XFS_IOLOCK_SHARED;
+	}
+
+	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
+	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
+
+	/*
+	 * If unaligned, this is the only IO in-flight. If it has not yet
+	 * completed, wait on it before we release the iolock to prevent
+	 * subsequent overlapping IO.
+	 */
+	if (ret == -EIOCBQUEUED && unaligned_io)
+		inode_dio_wait(inode);
+out:
+	xfs_iunlock(ip, iolock);
+
+	/*
+	 * No fallback to buffered IO on errors for XFS, direct IO will either
+	 * complete fully or fail.
+	 */
+	ASSERT(ret < 0 || ret == count);
+	return ret;
+}
+
+static noinline ssize_t
+xfs_file_dax_write(
+	struct kiocb		*iocb,
+	struct iov_iter		*from)
+{
+	struct inode		*inode = iocb->ki_filp->f_mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	int			iolock = XFS_IOLOCK_EXCL;
+	ssize_t			ret, error = 0;
+	size_t			count;
+	loff_t			pos;
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		if (!xfs_ilock_nowait(ip, iolock))
+			return -EAGAIN;
+	} else {
+		xfs_ilock(ip, iolock);
+	}
+
+	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+	if (ret)
+		goto out;
+
+	pos = iocb->ki_pos;
+	count = iov_iter_count(from);
+
+	trace_xfs_file_dax_write(ip, count, pos);
+	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
+	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
+		i_size_write(inode, iocb->ki_pos);
+		error = xfs_setfilesize(ip, pos, ret);
+	}
+out:
+	xfs_iunlock(ip, iolock);
+	if (error)
+		return error;
+
+	if (ret > 0) {
+		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
+
+		/* Handle various SYNC-type writes */
+		ret = generic_write_sync(iocb, ret);
+	}
+	return ret;
+}
+
+STATIC ssize_t
+xfs_file_buffered_aio_write(
+	struct kiocb		*iocb,
+	struct iov_iter		*from)
+{
+	struct file		*file = iocb->ki_filp;
+	struct address_space	*mapping = file->f_mapping;
+	struct inode		*inode = mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	ssize_t			ret;
+	int			enospc = 0;
+	int			iolock;
+
+	if (iocb->ki_flags & IOCB_NOWAIT)
+		return -EOPNOTSUPP;
+
+write_retry:
+	iolock = XFS_IOLOCK_EXCL;
+	xfs_ilock(ip, iolock);
+
+	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+	if (ret)
+		goto out;
+
+	/* We can write back this queue in page reclaim */
+	current->backing_dev_info = inode_to_bdi(inode);
+
+	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
+	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
+	if (likely(ret >= 0))
+		iocb->ki_pos += ret;
+
+	/*
+	 * If we hit a space limit, try to free up some lingering preallocated
+	 * space before returning an error. In the case of ENOSPC, first try to
+	 * write back all dirty inodes to free up some of the excess reserved
+	 * metadata space. This reduces the chances that the eofblocks scan
+	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
+	 * also behaves as a filter to prevent too many eofblocks scans from
+	 * running at the same time.
+	 */
+	if (ret == -EDQUOT && !enospc) {
+		xfs_iunlock(ip, iolock);
+		enospc = xfs_inode_free_quota_eofblocks(ip);
+		if (enospc)
+			goto write_retry;
+		enospc = xfs_inode_free_quota_cowblocks(ip);
+		if (enospc)
+			goto write_retry;
+		iolock = 0;
+	} else if (ret == -ENOSPC && !enospc) {
+		struct xfs_eofblocks eofb = {0};
+
+		enospc = 1;
+		xfs_flush_inodes(ip->i_mount);
+
+		xfs_iunlock(ip, iolock);
+		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
+		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
+		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
+		goto write_retry;
+	}
+
+	current->backing_dev_info = NULL;
+out:
+	if (iolock)
+		xfs_iunlock(ip, iolock);
+
+	if (ret > 0) {
+		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
+		/* Handle various SYNC-type writes */
+		ret = generic_write_sync(iocb, ret);
+	}
+	return ret;
+}
+
+STATIC ssize_t
+xfs_file_write_iter(
+	struct kiocb		*iocb,
+	struct iov_iter		*from)
+{
+	struct file		*file = iocb->ki_filp;
+	struct address_space	*mapping = file->f_mapping;
+	struct inode		*inode = mapping->host;
+	struct xfs_inode	*ip = XFS_I(inode);
+	ssize_t			ret;
+	size_t			ocount = iov_iter_count(from);
+
+	XFS_STATS_INC(ip->i_mount, xs_write_calls);
+
+	if (ocount == 0)
+		return 0;
+
+	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+		return -EIO;
+
+	if (IS_DAX(inode))
+		return xfs_file_dax_write(iocb, from);
+
+	if (iocb->ki_flags & IOCB_DIRECT) {
+		/*
+		 * Allow a directio write to fall back to a buffered
+		 * write *only* in the case that we're doing a reflink
+		 * CoW.  In all other directio scenarios we do not
+		 * allow an operation to fall back to buffered mode.
+		 */
+		ret = xfs_file_dio_aio_write(iocb, from);
+		if (ret != -EREMCHG)
+			return ret;
+	}
+
+	return xfs_file_buffered_aio_write(iocb, from);
+}
+
+static void
+xfs_wait_dax_page(
+	struct inode		*inode)
+{
+	struct xfs_inode        *ip = XFS_I(inode);
+
+	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
+	schedule();
+	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
+}
+
+static int
+xfs_break_dax_layouts(
+	struct inode		*inode,
+	bool			*retry)
+{
+	struct page		*page;
+
+	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
+
+	page = dax_layout_busy_page(inode->i_mapping);
+	if (!page)
+		return 0;
+
+	*retry = true;
+	return ___wait_var_event(&page->_refcount,
+			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
+			0, 0, xfs_wait_dax_page(inode));
+}
+
+int
+xfs_break_layouts(
+	struct inode		*inode,
+	uint			*iolock,
+	enum layout_break_reason reason)
+{
+	bool			retry;
+	int			error;
+
+	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
+
+	do {
+		retry = false;
+		switch (reason) {
+		case BREAK_UNMAP:
+			error = xfs_break_dax_layouts(inode, &retry);
+			if (error || retry)
+				break;
+			/* fall through */
+		case BREAK_WRITE:
+			error = xfs_break_leased_layouts(inode, iolock, &retry);
+			break;
+		default:
+			WARN_ON_ONCE(1);
+			error = -EINVAL;
+		}
+	} while (error == 0 && retry);
+
+	return error;
+}
+
+#define	XFS_FALLOC_FL_SUPPORTED						\
+		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
+		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
+		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
+
+STATIC long
+xfs_file_fallocate(
+	struct file		*file,
+	int			mode,
+	loff_t			offset,
+	loff_t			len)
+{
+	struct inode		*inode = file_inode(file);
+	struct xfs_inode	*ip = XFS_I(inode);
+	long			error;
+	enum xfs_prealloc_flags	flags = 0;
+	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
+	loff_t			new_size = 0;
+	bool			do_file_insert = false;
+
+	if (!S_ISREG(inode->i_mode))
+		return -EINVAL;
+	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
+		return -EOPNOTSUPP;
+
+	xfs_ilock(ip, iolock);
+	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
+	if (error)
+		goto out_unlock;
+
+	/*
+	 * Must wait for all AIO to complete before we continue as AIO can
+	 * change the file size on completion without holding any locks we
+	 * currently hold. We must do this first because AIO can update both
+	 * the on disk and in memory inode sizes, and the operations that follow
+	 * require the in-memory size to be fully up-to-date.
+	 */
+	inode_dio_wait(inode);
+
+	/*
+	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
+	 * the cached range over the first operation we are about to run.
+	 *
+	 * We care about zero and collapse here because they both run a hole
+	 * punch over the range first. Because that can zero data, and the range
+	 * of invalidation for the shift operations is much larger, we still do
+	 * the required flush for collapse in xfs_prepare_shift().
+	 *
+	 * Insert has the same range requirements as collapse, and we extend the
+	 * file first which can zero data. Hence insert has the same
+	 * flush/invalidate requirements as collapse and so they are both
+	 * handled at the right time by xfs_prepare_shift().
+	 */
+	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
+		    FALLOC_FL_COLLAPSE_RANGE)) {
+		error = xfs_flush_unmap_range(ip, offset, len);
+		if (error)
+			goto out_unlock;
+	}
+
+	if (mode & FALLOC_FL_PUNCH_HOLE) {
+		error = xfs_free_file_space(ip, offset, len);
+		if (error)
+			goto out_unlock;
+	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
+		unsigned int blksize_mask = i_blocksize(inode) - 1;
+
+		if (offset & blksize_mask || len & blksize_mask) {
+			error = -EINVAL;
+			goto out_unlock;
+		}
+
+		/*
+		 * There is no need to overlap collapse range with EOF,
+		 * in which case it is effectively a truncate operation
+		 */
+		if (offset + len >= i_size_read(inode)) {
+			error = -EINVAL;
+			goto out_unlock;
+		}
+
+		new_size = i_size_read(inode) - len;
+
+		error = xfs_collapse_file_space(ip, offset, len);
+		if (error)
+			goto out_unlock;
+	} else if (mode & FALLOC_FL_INSERT_RANGE) {
+		unsigned int	blksize_mask = i_blocksize(inode) - 1;
+		loff_t		isize = i_size_read(inode);
+
+		if (offset & blksize_mask || len & blksize_mask) {
+			error = -EINVAL;
+			goto out_unlock;
+		}
+
+		/*
+		 * New inode size must not exceed ->s_maxbytes, accounting for
+		 * possible signed overflow.
+		 */
+		if (inode->i_sb->s_maxbytes - isize < len) {
+			error = -EFBIG;
+			goto out_unlock;
+		}
+		new_size = isize + len;
+
+		/* Offset should be less than i_size */
+		if (offset >= isize) {
+			error = -EINVAL;
+			goto out_unlock;
+		}
+		do_file_insert = true;
+	} else {
+		flags |= XFS_PREALLOC_SET;
+
+		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+		    offset + len > i_size_read(inode)) {
+			new_size = offset + len;
+			error = inode_newsize_ok(inode, new_size);
+			if (error)
+				goto out_unlock;
+		}
+
+		if (mode & FALLOC_FL_ZERO_RANGE) {
+			error = xfs_zero_file_space(ip, offset, len);
+		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
+			error = xfs_reflink_unshare(ip, offset, len);
+			if (error)
+				goto out_unlock;
+
+			if (!xfs_is_always_cow_inode(ip)) {
+				error = xfs_alloc_file_space(ip, offset, len,
+						XFS_BMAPI_PREALLOC);
+			}
+		} else {
+			/*
+			 * If always_cow mode we can't use preallocations and
+			 * thus should not create them.
+			 */
+			if (xfs_is_always_cow_inode(ip)) {
+				error = -EOPNOTSUPP;
+				goto out_unlock;
+			}
+
+			error = xfs_alloc_file_space(ip, offset, len,
+						     XFS_BMAPI_PREALLOC);
+		}
+		if (error)
+			goto out_unlock;
+	}
+
+	if (file->f_flags & O_DSYNC)
+		flags |= XFS_PREALLOC_SYNC;
+
+	error = xfs_update_prealloc_flags(ip, flags);
+	if (error)
+		goto out_unlock;
+
+	/* Change file size if needed */
+	if (new_size) {
+		struct iattr iattr;
+
+		iattr.ia_valid = ATTR_SIZE;
+		iattr.ia_size = new_size;
+		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
+		if (error)
+			goto out_unlock;
+	}
+
+	/*
+	 * Perform hole insertion now that the file size has been
+	 * updated so that if we crash during the operation we don't
+	 * leave shifted extents past EOF and hence losing access to
+	 * the data that is contained within them.
+	 */
+	if (do_file_insert)
+		error = xfs_insert_file_space(ip, offset, len);
+
+out_unlock:
+	xfs_iunlock(ip, iolock);
+	return error;
+}
+
+STATIC int
+xfs_file_fadvise(
+	struct file	*file,
+	loff_t		start,
+	loff_t		end,
+	int		advice)
+{
+	struct xfs_inode *ip = XFS_I(file_inode(file));
+	int ret;
+	int lockflags = 0;
+
+	/*
+	 * Operations creating pages in page cache need protection from hole
+	 * punching and similar ops
+	 */
+	if (advice == POSIX_FADV_WILLNEED) {
+		lockflags = XFS_IOLOCK_SHARED;
+		xfs_ilock(ip, lockflags);
+	}
+	ret = generic_fadvise(file, start, end, advice);
+	if (lockflags)
+		xfs_iunlock(ip, lockflags);
+	return ret;
+}
+
+/* Does this file, inode, or mount want synchronous writes? */
+static inline bool xfs_file_sync_writes(struct file *filp)
+{
+	struct xfs_inode	*ip = XFS_I(file_inode(filp));
+
+	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
+		return true;
+	if (filp->f_flags & (__O_SYNC | O_DSYNC))
+		return true;
+	if (IS_SYNC(file_inode(filp)))
+		return true;
+
+	return false;
+}
+
+STATIC loff_t
+xfs_file_remap_range(
+	struct file		*file_in,
+	loff_t			pos_in,
+	struct file		*file_out,
+	loff_t			pos_out,
+	loff_t			len,
+	unsigned int		remap_flags)
+{
+	struct inode		*inode_in = file_inode(file_in);
+	struct xfs_inode	*src = XFS_I(inode_in);
+	struct inode		*inode_out = file_inode(file_out);
+	struct xfs_inode	*dest = XFS_I(inode_out);
+	struct xfs_mount	*mp = src->i_mount;
+	loff_t			remapped = 0;
+	xfs_extlen_t		cowextsize;
+	int			ret;
+
+	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
+		return -EINVAL;
+
+	if (!xfs_sb_version_hasreflink(&mp->m_sb))
+		return -EOPNOTSUPP;
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	/* Prepare and then clone file data. */
+	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
+			&len, remap_flags);
+	if (ret < 0 || len == 0)
+		return ret;
+
+	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
+
+	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
+			&remapped);
+	if (ret)
+		goto out_unlock;
+
+	/*
+	 * Carry the cowextsize hint from src to dest if we're sharing the
+	 * entire source file to the entire destination file, the source file
+	 * has a cowextsize hint, and the destination file does not.
+	 */
+	cowextsize = 0;
+	if (pos_in == 0 && len == i_size_read(inode_in) &&
+	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
+	    pos_out == 0 && len >= i_size_read(inode_out) &&
+	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
+		cowextsize = src->i_d.di_cowextsize;
+
+	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
+			remap_flags);
+	if (ret)
+		goto out_unlock;
+
+	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
+		xfs_log_force_inode(dest);
+out_unlock:
+	xfs_reflink_remap_unlock(file_in, file_out);
+	if (ret)
+		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
+	/*
+	 * If the caller did not set CAN_SHORTEN, then it is not prepared to
+	 * handle partial results -- either the whole remap succeeds, or we
+	 * must say why it did not.  In this case, any error should be returned
+	 * to the caller.
+	 */
+	if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
+		return ret;
+	return remapped > 0 ? remapped : ret;
+}
+
+STATIC int
+xfs_file_open(
+	struct inode	*inode,
+	struct file	*file)
+{
+	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
+		return -EFBIG;
+	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
+		return -EIO;
+	file->f_mode |= FMODE_NOWAIT;
+	return 0;
+}
+
+STATIC int
+xfs_dir_open(
+	struct inode	*inode,
+	struct file	*file)
+{
+	struct xfs_inode *ip = XFS_I(inode);
+	int		mode;
+	int		error;
+
+	error = xfs_file_open(inode, file);
+	if (error)
+		return error;
+
+	/*
+	 * If there are any blocks, read-ahead block 0 as we're almost
+	 * certain to have the next operation be a read there.
+	 */
+	mode = xfs_ilock_data_map_shared(ip);
+	if (ip->i_d.di_nextents > 0)
+		error = xfs_dir3_data_readahead(ip, 0, -1);
+	xfs_iunlock(ip, mode);
+	return error;
+}
+
+STATIC int
+xfs_file_release(
+	struct inode	*inode,
+	struct file	*filp)
+{
+	return xfs_release(XFS_I(inode));
+}
+
+STATIC int
+xfs_file_readdir(
+	struct file	*file,
+	struct dir_context *ctx)
+{
+	struct inode	*inode = file_inode(file);
+	xfs_inode_t	*ip = XFS_I(inode);
+	size_t		bufsize;
+
+	/*
+	 * The Linux API doesn't pass down the total size of the buffer
+	 * we read into down to the filesystem.  With the filldir concept
+	 * it's not needed for correct information, but the XFS dir2 leaf
+	 * code wants an estimate of the buffer size to calculate it's
+	 * readahead window and size the buffers used for mapping to
+	 * physical blocks.
+	 *
+	 * Try to give it an estimate that's good enough, maybe at some
+	 * point we can change the ->readdir prototype to include the
+	 * buffer size.  For now we use the current glibc buffer size.
+	 */
+	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
+
+	return xfs_readdir(NULL, ip, ctx, bufsize);
+}
+
+STATIC loff_t
+xfs_file_llseek(
+	struct file	*file,
+	loff_t		offset,
+	int		whence)
+{
+	struct inode		*inode = file->f_mapping->host;
+
+	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
+		return -EIO;
+
+	switch (whence) {
+	default:
+		return generic_file_llseek(file, offset, whence);
+	case SEEK_HOLE:
+		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
+		break;
+	case SEEK_DATA:
+		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
+		break;
+	}
+
+	if (offset < 0)
+		return offset;
+	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
+}
+
+/*
+ * Locking for serialisation of IO during page faults. This results in a lock
+ * ordering of:
+ *
+ * mmap_sem (MM)
+ *   sb_start_pagefault(vfs, freeze)
+ *     i_mmaplock (XFS - truncate serialisation)
+ *       page_lock (MM)
+ *         i_lock (XFS - extent map serialisation)
+ */
+static vm_fault_t
+__xfs_filemap_fault(
+	struct vm_fault		*vmf,
+	enum page_entry_size	pe_size,
+	bool			write_fault)
+{
+	struct inode		*inode = file_inode(vmf->vma->vm_file);
+	struct xfs_inode	*ip = XFS_I(inode);
+	vm_fault_t		ret;
+
+	trace_xfs_filemap_fault(ip, pe_size, write_fault);
+
+	if (write_fault) {
+		sb_start_pagefault(inode->i_sb);
+		file_update_time(vmf->vma->vm_file);
+	}
+
+	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+	if (IS_DAX(inode)) {
+		pfn_t pfn;
+
+		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
+		if (ret & VM_FAULT_NEEDDSYNC)
+			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
+	} else {
+		if (write_fault)
+			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
+		else
+			ret = filemap_fault(vmf);
+	}
+	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+
+	if (write_fault)
+		sb_end_pagefault(inode->i_sb);
+	return ret;
+}
+
+static inline bool
+xfs_is_write_fault(
+	struct vm_fault		*vmf)
+{
+	return (vmf->flags & FAULT_FLAG_WRITE) &&
+	       (vmf->vma->vm_flags & VM_SHARED);
+}
+
+static vm_fault_t
+xfs_filemap_fault(
+	struct vm_fault		*vmf)
+{
+	/* DAX can shortcut the normal fault path on write faults! */
+	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
+			IS_DAX(file_inode(vmf->vma->vm_file)) &&
+			xfs_is_write_fault(vmf));
+}
+
+static vm_fault_t
+xfs_filemap_huge_fault(
+	struct vm_fault		*vmf,
+	enum page_entry_size	pe_size)
+{
+	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
+		return VM_FAULT_FALLBACK;
+
+	/* DAX can shortcut the normal fault path on write faults! */
+	return __xfs_filemap_fault(vmf, pe_size,
+			xfs_is_write_fault(vmf));
+}
+
+static vm_fault_t
+xfs_filemap_page_mkwrite(
+	struct vm_fault		*vmf)
+{
+	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
+}
+
+/*
+ * pfn_mkwrite was originally intended to ensure we capture time stamp updates
+ * on write faults. In reality, it needs to serialise against truncate and
+ * prepare memory for writing so handle is as standard write fault.
+ */
+static vm_fault_t
+xfs_filemap_pfn_mkwrite(
+	struct vm_fault		*vmf)
+{
+
+	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
+}
+
+static void
+xfs_filemap_map_pages(
+	struct vm_fault		*vmf,
+	pgoff_t			start_pgoff,
+	pgoff_t			end_pgoff)
+{
+	struct inode		*inode = file_inode(vmf->vma->vm_file);
+
+	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+	filemap_map_pages(vmf, start_pgoff, end_pgoff);
+	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+}
+
+static const struct vm_operations_struct xfs_file_vm_ops = {
+	.fault		= xfs_filemap_fault,
+	.huge_fault	= xfs_filemap_huge_fault,
+	.map_pages	= xfs_filemap_map_pages,
+	.page_mkwrite	= xfs_filemap_page_mkwrite,
+	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
+};
+
+STATIC int
+xfs_file_mmap(
+	struct file	*filp,
+	struct vm_area_struct *vma)
+{
+	struct dax_device 	*dax_dev;
+
+	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
+	/*
+	 * We don't support synchronous mappings for non-DAX files and
+	 * for DAX files if underneath dax_device is not synchronous.
+	 */
+	if (!daxdev_mapping_supported(vma, dax_dev))
+		return -EOPNOTSUPP;
+
+	file_accessed(filp);
+	vma->vm_ops = &xfs_file_vm_ops;
+	if (IS_DAX(file_inode(filp)))
+		vma->vm_flags |= VM_HUGEPAGE;
+	return 0;
+}
+
+const struct file_operations xfs_file_operations = {
+	.llseek		= xfs_file_llseek,
+	.read_iter	= xfs_file_read_iter,
+	.write_iter	= xfs_file_write_iter,
+	.splice_read	= generic_file_splice_read,
+	.splice_write	= iter_file_splice_write,
+	.iopoll		= iomap_dio_iopoll,
+	.unlocked_ioctl	= xfs_file_ioctl,
+#ifdef CONFIG_COMPAT
+	.compat_ioctl	= xfs_file_compat_ioctl,
+#endif
+	.mmap		= xfs_file_mmap,
+	.mmap_supported_flags = MAP_SYNC,
+	.open		= xfs_file_open,
+	.release	= xfs_file_release,
+	.fsync		= xfs_file_fsync,
+	.get_unmapped_area = thp_get_unmapped_area,
+	.fallocate	= xfs_file_fallocate,
+	.fadvise	= xfs_file_fadvise,
+	.remap_file_range = xfs_file_remap_range,
+};
+
+const struct file_operations xfs_dir_file_operations = {
+	.open		= xfs_dir_open,
+	.read		= generic_read_dir,
+	.iterate_shared	= xfs_file_readdir,
+	.llseek		= generic_file_llseek,
+	.unlocked_ioctl	= xfs_file_ioctl,
+#ifdef CONFIG_COMPAT
+	.compat_ioctl	= xfs_file_compat_ioctl,
+#endif
+	.fsync		= xfs_dir_fsync,
+};