ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/linux/mm/util.c b/marvell/linux/mm/util.c
new file mode 100644
index 0000000..289e38a
--- /dev/null
+++ b/marvell/linux/mm/util.c
@@ -0,0 +1,953 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/compiler.h>
+#include <linux/export.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/task_stack.h>
+#include <linux/security.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/mman.h>
+#include <linux/hugetlb.h>
+#include <linux/vmalloc.h>
+#include <linux/userfaultfd_k.h>
+#include <linux/elf.h>
+#include <linux/elf-randomize.h>
+#include <linux/personality.h>
+#include <linux/random.h>
+#include <linux/processor.h>
+#include <linux/sizes.h>
+#include <linux/compat.h>
+
+#include <linux/uaccess.h>
+
+#include "internal.h"
+
+/**
+ * kfree_const - conditionally free memory
+ * @x: pointer to the memory
+ *
+ * Function calls kfree only if @x is not in .rodata section.
+ */
+void kfree_const(const void *x)
+{
+	if (!is_kernel_rodata((unsigned long)x))
+		kfree(x);
+}
+EXPORT_SYMBOL(kfree_const);
+
+/**
+ * kstrdup - allocate space for and copy an existing string
+ * @s: the string to duplicate
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Return: newly allocated copy of @s or %NULL in case of error
+ */
+char *kstrdup(const char *s, gfp_t gfp)
+{
+	size_t len;
+	char *buf;
+
+	if (!s)
+		return NULL;
+
+	len = strlen(s) + 1;
+	buf = kmalloc_track_caller(len, gfp);
+	if (buf)
+		memcpy(buf, s, len);
+	return buf;
+}
+EXPORT_SYMBOL(kstrdup);
+
+/**
+ * kstrdup_const - conditionally duplicate an existing const string
+ * @s: the string to duplicate
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
+ *
+ * Return: source string if it is in .rodata section otherwise
+ * fallback to kstrdup.
+ */
+const char *kstrdup_const(const char *s, gfp_t gfp)
+{
+	if (is_kernel_rodata((unsigned long)s))
+		return s;
+
+	return kstrdup(s, gfp);
+}
+EXPORT_SYMBOL(kstrdup_const);
+
+/**
+ * kstrndup - allocate space for and copy an existing string
+ * @s: the string to duplicate
+ * @max: read at most @max chars from @s
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Note: Use kmemdup_nul() instead if the size is known exactly.
+ *
+ * Return: newly allocated copy of @s or %NULL in case of error
+ */
+char *kstrndup(const char *s, size_t max, gfp_t gfp)
+{
+	size_t len;
+	char *buf;
+
+	if (!s)
+		return NULL;
+
+	len = strnlen(s, max);
+	buf = kmalloc_track_caller(len+1, gfp);
+	if (buf) {
+		memcpy(buf, s, len);
+		buf[len] = '\0';
+	}
+	return buf;
+}
+EXPORT_SYMBOL(kstrndup);
+
+/**
+ * kmemdup - duplicate region of memory
+ *
+ * @src: memory region to duplicate
+ * @len: memory region length
+ * @gfp: GFP mask to use
+ *
+ * Return: newly allocated copy of @src or %NULL in case of error
+ */
+void *kmemdup(const void *src, size_t len, gfp_t gfp)
+{
+	void *p;
+
+	p = kmalloc_track_caller(len, gfp);
+	if (p)
+		memcpy(p, src, len);
+	return p;
+}
+EXPORT_SYMBOL(kmemdup);
+
+/**
+ * kmemdup_nul - Create a NUL-terminated string from unterminated data
+ * @s: The data to stringify
+ * @len: The size of the data
+ * @gfp: the GFP mask used in the kmalloc() call when allocating memory
+ *
+ * Return: newly allocated copy of @s with NUL-termination or %NULL in
+ * case of error
+ */
+char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
+{
+	char *buf;
+
+	if (!s)
+		return NULL;
+
+	buf = kmalloc_track_caller(len + 1, gfp);
+	if (buf) {
+		memcpy(buf, s, len);
+		buf[len] = '\0';
+	}
+	return buf;
+}
+EXPORT_SYMBOL(kmemdup_nul);
+
+/**
+ * memdup_user - duplicate memory region from user space
+ *
+ * @src: source address in user space
+ * @len: number of bytes to copy
+ *
+ * Return: an ERR_PTR() on failure.  Result is physically
+ * contiguous, to be freed by kfree().
+ */
+void *memdup_user(const void __user *src, size_t len)
+{
+	void *p;
+
+	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
+	if (!p)
+		return ERR_PTR(-ENOMEM);
+
+	if (copy_from_user(p, src, len)) {
+		kfree(p);
+		return ERR_PTR(-EFAULT);
+	}
+
+	return p;
+}
+EXPORT_SYMBOL(memdup_user);
+
+/**
+ * vmemdup_user - duplicate memory region from user space
+ *
+ * @src: source address in user space
+ * @len: number of bytes to copy
+ *
+ * Return: an ERR_PTR() on failure.  Result may be not
+ * physically contiguous.  Use kvfree() to free.
+ */
+void *vmemdup_user(const void __user *src, size_t len)
+{
+	void *p;
+
+	p = kvmalloc(len, GFP_USER);
+	if (!p)
+		return ERR_PTR(-ENOMEM);
+
+	if (copy_from_user(p, src, len)) {
+		kvfree(p);
+		return ERR_PTR(-EFAULT);
+	}
+
+	return p;
+}
+EXPORT_SYMBOL(vmemdup_user);
+
+/**
+ * strndup_user - duplicate an existing string from user space
+ * @s: The string to duplicate
+ * @n: Maximum number of bytes to copy, including the trailing NUL.
+ *
+ * Return: newly allocated copy of @s or an ERR_PTR() in case of error
+ */
+char *strndup_user(const char __user *s, long n)
+{
+	char *p;
+	long length;
+
+	length = strnlen_user(s, n);
+
+	if (!length)
+		return ERR_PTR(-EFAULT);
+
+	if (length > n)
+		return ERR_PTR(-EINVAL);
+
+	p = memdup_user(s, length);
+
+	if (IS_ERR(p))
+		return p;
+
+	p[length - 1] = '\0';
+
+	return p;
+}
+EXPORT_SYMBOL(strndup_user);
+
+/**
+ * memdup_user_nul - duplicate memory region from user space and NUL-terminate
+ *
+ * @src: source address in user space
+ * @len: number of bytes to copy
+ *
+ * Return: an ERR_PTR() on failure.
+ */
+void *memdup_user_nul(const void __user *src, size_t len)
+{
+	char *p;
+
+	/*
+	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
+	 * cause pagefault, which makes it pointless to use GFP_NOFS
+	 * or GFP_ATOMIC.
+	 */
+	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
+	if (!p)
+		return ERR_PTR(-ENOMEM);
+
+	if (copy_from_user(p, src, len)) {
+		kfree(p);
+		return ERR_PTR(-EFAULT);
+	}
+	p[len] = '\0';
+
+	return p;
+}
+EXPORT_SYMBOL(memdup_user_nul);
+
+void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
+		struct vm_area_struct *prev, struct rb_node *rb_parent)
+{
+	struct vm_area_struct *next;
+
+	vma->vm_prev = prev;
+	if (prev) {
+		next = prev->vm_next;
+		prev->vm_next = vma;
+	} else {
+		mm->mmap = vma;
+		if (rb_parent)
+			next = rb_entry(rb_parent,
+					struct vm_area_struct, vm_rb);
+		else
+			next = NULL;
+	}
+	vma->vm_next = next;
+	if (next)
+		next->vm_prev = vma;
+}
+
+/* Check if the vma is being used as a stack by this task */
+int vma_is_stack_for_current(struct vm_area_struct *vma)
+{
+	struct task_struct * __maybe_unused t = current;
+
+	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
+}
+
+#ifndef STACK_RND_MASK
+#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
+#endif
+
+unsigned long randomize_stack_top(unsigned long stack_top)
+{
+	unsigned long random_variable = 0;
+
+	if (current->flags & PF_RANDOMIZE) {
+		random_variable = get_random_long();
+		random_variable &= STACK_RND_MASK;
+		random_variable <<= PAGE_SHIFT;
+	}
+#ifdef CONFIG_STACK_GROWSUP
+	return PAGE_ALIGN(stack_top) + random_variable;
+#else
+	return PAGE_ALIGN(stack_top) - random_variable;
+#endif
+}
+
+/**
+ * randomize_page - Generate a random, page aligned address
+ * @start:	The smallest acceptable address the caller will take.
+ * @range:	The size of the area, starting at @start, within which the
+ *		random address must fall.
+ *
+ * If @start + @range would overflow, @range is capped.
+ *
+ * NOTE: Historical use of randomize_range, which this replaces, presumed that
+ * @start was already page aligned.  We now align it regardless.
+ *
+ * Return: A page aligned address within [start, start + range).  On error,
+ * @start is returned.
+ */
+unsigned long randomize_page(unsigned long start, unsigned long range)
+{
+	if (!PAGE_ALIGNED(start)) {
+		range -= PAGE_ALIGN(start) - start;
+		start = PAGE_ALIGN(start);
+	}
+
+	if (start > ULONG_MAX - range)
+		range = ULONG_MAX - start;
+
+	range >>= PAGE_SHIFT;
+
+	if (range == 0)
+		return start;
+
+	return start + (get_random_long() % range << PAGE_SHIFT);
+}
+
+#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
+unsigned long arch_randomize_brk(struct mm_struct *mm)
+{
+	/* Is the current task 32bit ? */
+	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
+		return randomize_page(mm->brk, SZ_32M);
+
+	return randomize_page(mm->brk, SZ_1G);
+}
+
+unsigned long arch_mmap_rnd(void)
+{
+	unsigned long rnd;
+
+#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
+	if (is_compat_task())
+		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
+	else
+#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
+		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
+
+	return rnd << PAGE_SHIFT;
+}
+
+static int mmap_is_legacy(struct rlimit *rlim_stack)
+{
+	if (current->personality & ADDR_COMPAT_LAYOUT)
+		return 1;
+
+	if (rlim_stack->rlim_cur == RLIM_INFINITY)
+		return 1;
+
+	return sysctl_legacy_va_layout;
+}
+
+/*
+ * Leave enough space between the mmap area and the stack to honour ulimit in
+ * the face of randomisation.
+ */
+#define MIN_GAP		(SZ_128M)
+#define MAX_GAP		(STACK_TOP / 6 * 5)
+
+static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
+{
+	unsigned long gap = rlim_stack->rlim_cur;
+	unsigned long pad = stack_guard_gap;
+
+	/* Account for stack randomization if necessary */
+	if (current->flags & PF_RANDOMIZE)
+		pad += (STACK_RND_MASK << PAGE_SHIFT);
+
+	/* Values close to RLIM_INFINITY can overflow. */
+	if (gap + pad > gap)
+		gap += pad;
+
+	if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
+		gap = MIN_GAP;
+	else if (gap > MAX_GAP)
+		gap = MAX_GAP;
+
+	return PAGE_ALIGN(STACK_TOP - gap - rnd);
+}
+
+void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
+{
+	unsigned long random_factor = 0UL;
+
+	if (current->flags & PF_RANDOMIZE)
+		random_factor = arch_mmap_rnd();
+
+	if (mmap_is_legacy(rlim_stack)) {
+		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
+		mm->get_unmapped_area = arch_get_unmapped_area;
+	} else {
+		mm->mmap_base = mmap_base(random_factor, rlim_stack);
+		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
+	}
+}
+#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
+void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
+{
+	mm->mmap_base = TASK_UNMAPPED_BASE;
+	mm->get_unmapped_area = arch_get_unmapped_area;
+}
+#endif
+
+/**
+ * __account_locked_vm - account locked pages to an mm's locked_vm
+ * @mm:          mm to account against
+ * @pages:       number of pages to account
+ * @inc:         %true if @pages should be considered positive, %false if not
+ * @task:        task used to check RLIMIT_MEMLOCK
+ * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
+ *
+ * Assumes @task and @mm are valid (i.e. at least one reference on each), and
+ * that mmap_sem is held as writer.
+ *
+ * Return:
+ * * 0       on success
+ * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
+ */
+int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
+			struct task_struct *task, bool bypass_rlim)
+{
+	unsigned long locked_vm, limit;
+	int ret = 0;
+
+	lockdep_assert_held_write(&mm->mmap_sem);
+
+	locked_vm = mm->locked_vm;
+	if (inc) {
+		if (!bypass_rlim) {
+			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
+			if (locked_vm + pages > limit)
+				ret = -ENOMEM;
+		}
+		if (!ret)
+			mm->locked_vm = locked_vm + pages;
+	} else {
+		WARN_ON_ONCE(pages > locked_vm);
+		mm->locked_vm = locked_vm - pages;
+	}
+
+	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
+		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
+		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
+		 ret ? " - exceeded" : "");
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(__account_locked_vm);
+
+/**
+ * account_locked_vm - account locked pages to an mm's locked_vm
+ * @mm:          mm to account against, may be NULL
+ * @pages:       number of pages to account
+ * @inc:         %true if @pages should be considered positive, %false if not
+ *
+ * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
+ *
+ * Return:
+ * * 0       on success, or if mm is NULL
+ * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
+ */
+int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
+{
+	int ret;
+
+	if (pages == 0 || !mm)
+		return 0;
+
+	down_write(&mm->mmap_sem);
+	ret = __account_locked_vm(mm, pages, inc, current,
+				  capable(CAP_IPC_LOCK));
+	up_write(&mm->mmap_sem);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(account_locked_vm);
+
+unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
+	unsigned long len, unsigned long prot,
+	unsigned long flag, unsigned long pgoff)
+{
+	unsigned long ret;
+	struct mm_struct *mm = current->mm;
+	unsigned long populate;
+	LIST_HEAD(uf);
+
+	ret = security_mmap_file(file, prot, flag);
+	if (!ret) {
+		if (down_write_killable(&mm->mmap_sem))
+			return -EINTR;
+		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
+				    &populate, &uf);
+		up_write(&mm->mmap_sem);
+		userfaultfd_unmap_complete(mm, &uf);
+		if (populate)
+			mm_populate(ret, populate);
+	}
+	return ret;
+}
+
+unsigned long vm_mmap(struct file *file, unsigned long addr,
+	unsigned long len, unsigned long prot,
+	unsigned long flag, unsigned long offset)
+{
+	if (unlikely(offset + PAGE_ALIGN(len) < offset))
+		return -EINVAL;
+	if (unlikely(offset_in_page(offset)))
+		return -EINVAL;
+
+	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
+}
+EXPORT_SYMBOL(vm_mmap);
+
+/**
+ * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
+ * failure, fall back to non-contiguous (vmalloc) allocation.
+ * @size: size of the request.
+ * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
+ * @node: numa node to allocate from
+ *
+ * Uses kmalloc to get the memory but if the allocation fails then falls back
+ * to the vmalloc allocator. Use kvfree for freeing the memory.
+ *
+ * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
+ * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
+ * preferable to the vmalloc fallback, due to visible performance drawbacks.
+ *
+ * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
+ * fall back to vmalloc.
+ *
+ * Return: pointer to the allocated memory of %NULL in case of failure
+ */
+void *kvmalloc_node(size_t size, gfp_t flags, int node)
+{
+	gfp_t kmalloc_flags = flags;
+	void *ret;
+
+	/*
+	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
+	 * so the given set of flags has to be compatible.
+	 */
+	if ((flags & GFP_KERNEL) != GFP_KERNEL)
+		return kmalloc_node(size, flags, node);
+
+	/*
+	 * We want to attempt a large physically contiguous block first because
+	 * it is less likely to fragment multiple larger blocks and therefore
+	 * contribute to a long term fragmentation less than vmalloc fallback.
+	 * However make sure that larger requests are not too disruptive - no
+	 * OOM killer and no allocation failure warnings as we have a fallback.
+	 */
+	if (size > PAGE_SIZE) {
+		kmalloc_flags |= __GFP_NOWARN;
+
+		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
+			kmalloc_flags |= __GFP_NORETRY;
+	}
+
+	ret = kmalloc_node(size, kmalloc_flags, node);
+
+	/*
+	 * It doesn't really make sense to fallback to vmalloc for sub page
+	 * requests
+	 */
+	if (ret || size <= PAGE_SIZE)
+		return ret;
+
+	return __vmalloc_node_flags_caller(size, node, flags,
+			__builtin_return_address(0));
+}
+EXPORT_SYMBOL(kvmalloc_node);
+
+/**
+ * kvfree() - Free memory.
+ * @addr: Pointer to allocated memory.
+ *
+ * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
+ * It is slightly more efficient to use kfree() or vfree() if you are certain
+ * that you know which one to use.
+ *
+ * Context: Either preemptible task context or not-NMI interrupt.
+ */
+void kvfree(const void *addr)
+{
+	if (is_vmalloc_addr(addr))
+		vfree(addr);
+	else
+		kfree(addr);
+}
+EXPORT_SYMBOL(kvfree);
+
+/**
+ * kvfree_sensitive - Free a data object containing sensitive information.
+ * @addr: address of the data object to be freed.
+ * @len: length of the data object.
+ *
+ * Use the special memzero_explicit() function to clear the content of a
+ * kvmalloc'ed object containing sensitive data to make sure that the
+ * compiler won't optimize out the data clearing.
+ */
+void kvfree_sensitive(const void *addr, size_t len)
+{
+	if (likely(!ZERO_OR_NULL_PTR(addr))) {
+		memzero_explicit((void *)addr, len);
+		kvfree(addr);
+	}
+}
+EXPORT_SYMBOL(kvfree_sensitive);
+
+static inline void *__page_rmapping(struct page *page)
+{
+	unsigned long mapping;
+
+	mapping = (unsigned long)page->mapping;
+	mapping &= ~PAGE_MAPPING_FLAGS;
+
+	return (void *)mapping;
+}
+
+/* Neutral page->mapping pointer to address_space or anon_vma or other */
+void *page_rmapping(struct page *page)
+{
+	page = compound_head(page);
+	return __page_rmapping(page);
+}
+
+/*
+ * Return true if this page is mapped into pagetables.
+ * For compound page it returns true if any subpage of compound page is mapped.
+ */
+bool page_mapped(struct page *page)
+{
+	int i;
+
+	if (likely(!PageCompound(page)))
+		return atomic_read(&page->_mapcount) >= 0;
+	page = compound_head(page);
+	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
+		return true;
+	if (PageHuge(page))
+		return false;
+	for (i = 0; i < compound_nr(page); i++) {
+		if (atomic_read(&page[i]._mapcount) >= 0)
+			return true;
+	}
+	return false;
+}
+EXPORT_SYMBOL(page_mapped);
+
+struct anon_vma *page_anon_vma(struct page *page)
+{
+	unsigned long mapping;
+
+	page = compound_head(page);
+	mapping = (unsigned long)page->mapping;
+	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
+		return NULL;
+	return __page_rmapping(page);
+}
+
+struct address_space *page_mapping(struct page *page)
+{
+	struct address_space *mapping;
+
+	page = compound_head(page);
+
+	/* This happens if someone calls flush_dcache_page on slab page */
+	if (unlikely(PageSlab(page)))
+		return NULL;
+
+	if (unlikely(PageSwapCache(page))) {
+		swp_entry_t entry;
+
+		entry.val = page_private(page);
+		return swap_address_space(entry);
+	}
+
+	mapping = page->mapping;
+	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
+		return NULL;
+
+	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
+}
+EXPORT_SYMBOL(page_mapping);
+
+/*
+ * For file cache pages, return the address_space, otherwise return NULL
+ */
+struct address_space *page_mapping_file(struct page *page)
+{
+	if (unlikely(PageSwapCache(page)))
+		return NULL;
+	return page_mapping(page);
+}
+
+/* Slow path of page_mapcount() for compound pages */
+int __page_mapcount(struct page *page)
+{
+	int ret;
+
+	ret = atomic_read(&page->_mapcount) + 1;
+	/*
+	 * For file THP page->_mapcount contains total number of mapping
+	 * of the page: no need to look into compound_mapcount.
+	 */
+	if (!PageAnon(page) && !PageHuge(page))
+		return ret;
+	page = compound_head(page);
+	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
+	if (PageDoubleMap(page))
+		ret--;
+	return ret;
+}
+EXPORT_SYMBOL_GPL(__page_mapcount);
+
+int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
+int sysctl_overcommit_ratio __read_mostly = 50;
+unsigned long sysctl_overcommit_kbytes __read_mostly;
+int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
+unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
+unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
+
+int overcommit_ratio_handler(struct ctl_table *table, int write,
+			     void __user *buffer, size_t *lenp,
+			     loff_t *ppos)
+{
+	int ret;
+
+	ret = proc_dointvec(table, write, buffer, lenp, ppos);
+	if (ret == 0 && write)
+		sysctl_overcommit_kbytes = 0;
+	return ret;
+}
+
+int overcommit_kbytes_handler(struct ctl_table *table, int write,
+			     void __user *buffer, size_t *lenp,
+			     loff_t *ppos)
+{
+	int ret;
+
+	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
+	if (ret == 0 && write)
+		sysctl_overcommit_ratio = 0;
+	return ret;
+}
+
+/*
+ * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
+ */
+unsigned long vm_commit_limit(void)
+{
+	unsigned long allowed;
+
+	if (sysctl_overcommit_kbytes)
+		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
+	else
+		allowed = ((totalram_pages() - hugetlb_total_pages())
+			   * sysctl_overcommit_ratio / 100);
+	allowed += total_swap_pages;
+
+	return allowed;
+}
+
+/*
+ * Make sure vm_committed_as in one cacheline and not cacheline shared with
+ * other variables. It can be updated by several CPUs frequently.
+ */
+struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
+
+/*
+ * The global memory commitment made in the system can be a metric
+ * that can be used to drive ballooning decisions when Linux is hosted
+ * as a guest. On Hyper-V, the host implements a policy engine for dynamically
+ * balancing memory across competing virtual machines that are hosted.
+ * Several metrics drive this policy engine including the guest reported
+ * memory commitment.
+ */
+unsigned long vm_memory_committed(void)
+{
+	return percpu_counter_read_positive(&vm_committed_as);
+}
+EXPORT_SYMBOL_GPL(vm_memory_committed);
+
+/*
+ * Check that a process has enough memory to allocate a new virtual
+ * mapping. 0 means there is enough memory for the allocation to
+ * succeed and -ENOMEM implies there is not.
+ *
+ * We currently support three overcommit policies, which are set via the
+ * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
+ *
+ * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
+ * Additional code 2002 Jul 20 by Robert Love.
+ *
+ * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
+ *
+ * Note this is a helper function intended to be used by LSMs which
+ * wish to use this logic.
+ */
+int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
+{
+	long allowed;
+
+	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
+			-(s64)vm_committed_as_batch * num_online_cpus(),
+			"memory commitment underflow");
+
+	vm_acct_memory(pages);
+
+	/*
+	 * Sometimes we want to use more memory than we have
+	 */
+	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
+		return 0;
+
+	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
+		if (pages > totalram_pages() + total_swap_pages)
+			goto error;
+		return 0;
+	}
+
+	allowed = vm_commit_limit();
+	/*
+	 * Reserve some for root
+	 */
+	if (!cap_sys_admin)
+		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
+
+	/*
+	 * Don't let a single process grow so big a user can't recover
+	 */
+	if (mm) {
+		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
+
+		allowed -= min_t(long, mm->total_vm / 32, reserve);
+	}
+
+	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
+		return 0;
+error:
+	vm_unacct_memory(pages);
+
+	return -ENOMEM;
+}
+
+/**
+ * get_cmdline() - copy the cmdline value to a buffer.
+ * @task:     the task whose cmdline value to copy.
+ * @buffer:   the buffer to copy to.
+ * @buflen:   the length of the buffer. Larger cmdline values are truncated
+ *            to this length.
+ *
+ * Return: the size of the cmdline field copied. Note that the copy does
+ * not guarantee an ending NULL byte.
+ */
+int get_cmdline(struct task_struct *task, char *buffer, int buflen)
+{
+	int res = 0;
+	unsigned int len;
+	struct mm_struct *mm = get_task_mm(task);
+	unsigned long arg_start, arg_end, env_start, env_end;
+	if (!mm)
+		goto out;
+	if (!mm->arg_end)
+		goto out_mm;	/* Shh! No looking before we're done */
+
+	spin_lock(&mm->arg_lock);
+	arg_start = mm->arg_start;
+	arg_end = mm->arg_end;
+	env_start = mm->env_start;
+	env_end = mm->env_end;
+	spin_unlock(&mm->arg_lock);
+
+	len = arg_end - arg_start;
+
+	if (len > buflen)
+		len = buflen;
+
+	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
+
+	/*
+	 * If the nul at the end of args has been overwritten, then
+	 * assume application is using setproctitle(3).
+	 */
+	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
+		len = strnlen(buffer, res);
+		if (len < res) {
+			res = len;
+		} else {
+			len = env_end - env_start;
+			if (len > buflen - res)
+				len = buflen - res;
+			res += access_process_vm(task, env_start,
+						 buffer+res, len,
+						 FOLL_FORCE);
+			res = strnlen(buffer, res);
+		}
+	}
+out_mm:
+	mmput(mm);
+out:
+	return res;
+}
+
+int memcmp_pages(struct page *page1, struct page *page2)
+{
+	char *addr1, *addr2;
+	int ret;
+
+	addr1 = kmap_atomic(page1);
+	addr2 = kmap_atomic(page2);
+	ret = memcmp(addr1, addr2, PAGE_SIZE);
+	kunmap_atomic(addr2);
+	kunmap_atomic(addr1);
+	return ret;
+}