ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/uboot/drivers/mtd/nand/davinci_nand.c b/marvell/uboot/drivers/mtd/nand/davinci_nand.c
new file mode 100644
index 0000000..5b17d7b
--- /dev/null
+++ b/marvell/uboot/drivers/mtd/nand/davinci_nand.c
@@ -0,0 +1,650 @@
+/*
+ * NAND driver for TI DaVinci based boards.
+ *
+ * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
+ *
+ * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
+ */
+
+/*
+ *
+ * linux/drivers/mtd/nand/nand_davinci.c
+ *
+ * NAND Flash Driver
+ *
+ * Copyright (C) 2006 Texas Instruments.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device found on the
+ *   DaVinci board which utilizes the Samsung k9k2g08 part.
+ *
+ Modifications:
+ ver. 1.0: Feb 2005, Vinod/Sudhakar
+ -
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <nand.h>
+#include <asm/arch/nand_defs.h>
+#include <asm/arch/emif_defs.h>
+
+/* Definitions for 4-bit hardware ECC */
+#define NAND_TIMEOUT			10240
+#define NAND_ECC_BUSY			0xC
+#define NAND_4BITECC_MASK		0x03FF03FF
+#define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
+#define ECC_STATE_NO_ERR		0x0
+#define ECC_STATE_TOO_MANY_ERRS		0x1
+#define ECC_STATE_ERR_CORR_COMP_P	0x2
+#define ECC_STATE_ERR_CORR_COMP_N	0x3
+
+/*
+ * Exploit the little endianness of the ARM to do multi-byte transfers
+ * per device read. This can perform over twice as quickly as individual
+ * byte transfers when buffer alignment is conducive.
+ *
+ * NOTE: This only works if the NAND is not connected to the 2 LSBs of
+ * the address bus. On Davinci EVM platforms this has always been true.
+ */
+static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	const u32 *nand = chip->IO_ADDR_R;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((int)buf & 0x3) != 0) {
+		if (((int)buf & 0x1) != 0) {
+			if (len) {
+				*buf = readb(nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((int)buf & 0x3) != 0) {
+			if (len >= 2) {
+				*(u16 *)buf = readw(nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		*(u32 *)buf = __raw_readl(nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			*(u16 *)buf = readw(nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			*buf = readb(nand);
+	}
+}
+
+static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				   int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	const u32 *nand = chip->IO_ADDR_W;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((int)buf & 0x3) != 0) {
+		if (((int)buf & 0x1) != 0) {
+			if (len) {
+				writeb(*buf, nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((int)buf & 0x3) != 0) {
+			if (len >= 2) {
+				writew(*(u16 *)buf, nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		__raw_writel(*(u32 *)buf, nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			writew(*(u16 *)buf, nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			writeb(*buf, nand);
+	}
+}
+
+static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
+		unsigned int ctrl)
+{
+	struct		nand_chip *this = mtd->priv;
+	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
+
+		if (ctrl & NAND_CLE)
+			IO_ADDR_W |= MASK_CLE;
+		if (ctrl & NAND_ALE)
+			IO_ADDR_W |= MASK_ALE;
+		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, IO_ADDR_W);
+}
+
+#ifdef CONFIG_SYS_NAND_HW_ECC
+
+static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
+{
+	u_int32_t	ecc = 0;
+
+	ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
+				CONFIG_SYS_NAND_CS - 2]));
+
+	return ecc;
+}
+
+static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	u_int32_t	val;
+
+	/* reading the ECC result register resets the ECC calculation */
+	nand_davinci_readecc(mtd);
+
+	val = __raw_readl(&davinci_emif_regs->nandfcr);
+	val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
+	val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
+	__raw_writel(val, &davinci_emif_regs->nandfcr);
+}
+
+static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+		u_char *ecc_code)
+{
+	u_int32_t		tmp;
+
+	tmp = nand_davinci_readecc(mtd);
+
+	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
+	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
+	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
+
+	/* Invert so that erased block ECC is correct */
+	tmp = ~tmp;
+
+	*ecc_code++ = tmp;
+	*ecc_code++ = tmp >>  8;
+	*ecc_code++ = tmp >> 16;
+
+	/* NOTE:  the above code matches mainline Linux:
+	 *	.PQR.stu ==> ~PQRstu
+	 *
+	 * MontaVista/TI kernels encode those bytes differently, use
+	 * complicated (and allegedly sometimes-wrong) correction code,
+	 * and usually shipped with U-Boot that uses software ECC:
+	 *	.PQR.stu ==> PsQRtu
+	 *
+	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
+	 * be possible to (a) change the mangling above, (b) reverse
+	 * that mangling in nand_davinci_correct_data() below.
+	 */
+
+	return 0;
+}
+
+static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
+		u_char *read_ecc, u_char *calc_ecc)
+{
+	struct nand_chip *this = mtd->priv;
+	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
+					  (read_ecc[2] << 16);
+	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
+					  (calc_ecc[2] << 16);
+	u_int32_t diff = ecc_calc ^ ecc_nand;
+
+	if (diff) {
+		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
+			/* Correctable error */
+			if ((diff >> (12 + 3)) < this->ecc.size) {
+				uint8_t find_bit = 1 << ((diff >> 12) & 7);
+				uint32_t find_byte = diff >> (12 + 3);
+
+				dat[find_byte] ^= find_bit;
+				MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
+					 "bit ECC error at offset: %d, bit: "
+					 "%d\n", find_byte, find_bit);
+				return 1;
+			} else {
+				return -1;
+			}
+		} else if (!(diff & (diff - 1))) {
+			/* Single bit ECC error in the ECC itself,
+			   nothing to fix */
+			MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
+				 "ECC.\n");
+			return 1;
+		} else {
+			/* Uncorrectable error */
+			MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
+			return -1;
+		}
+	}
+	return 0;
+}
+#endif /* CONFIG_SYS_NAND_HW_ECC */
+
+#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
+static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
+#if defined(CONFIG_SYS_NAND_PAGE_2K)
+	.eccbytes = 40,
+#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
+	.eccpos = {
+		6,   7,  8,  9, 10,	11, 12, 13, 14, 15,
+		22, 23, 24, 25, 26,	27, 28, 29, 30, 31,
+		38, 39, 40, 41, 42,	43, 44, 45, 46, 47,
+		54, 55, 56, 57, 58,	59, 60, 61, 62, 63,
+	},
+	.oobfree = {
+		{2, 4}, {16, 6}, {32, 6}, {48, 6},
+	},
+#else
+	.eccpos = {
+		24, 25, 26, 27, 28,
+		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
+		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
+		59, 60, 61, 62, 63,
+		},
+	.oobfree = {
+		{.offset = 2, .length = 22, },
+	},
+#endif	/* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
+#elif defined(CONFIG_SYS_NAND_PAGE_4K)
+	.eccbytes = 80,
+	.eccpos = {
+		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+		58, 59, 60, 61, 62, 63,	64, 65, 66, 67,
+		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
+		78, 79,	80, 81, 82, 83,	84, 85, 86, 87,
+		88, 89, 90, 91, 92, 93,	94, 95, 96, 97,
+		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
+		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
+		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+		},
+	.oobfree = {
+		{.offset = 2, .length = 46, },
+	},
+#endif
+};
+
+static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	u32 val;
+
+	switch (mode) {
+	case NAND_ECC_WRITE:
+	case NAND_ECC_READ:
+		/*
+		 * Start a new ECC calculation for reading or writing 512 bytes
+		 * of data.
+		 */
+		val = __raw_readl(&davinci_emif_regs->nandfcr);
+		val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
+		val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
+		val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
+		val |= DAVINCI_NANDFCR_4BIT_ECC_START;
+		__raw_writel(val, &davinci_emif_regs->nandfcr);
+		break;
+	case NAND_ECC_READSYN:
+		val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
+		break;
+	default:
+		break;
+	}
+}
+
+static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
+{
+	int i;
+
+	for (i = 0; i < 4; i++) {
+		ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
+			NAND_4BITECC_MASK;
+	}
+
+	return 0;
+}
+
+static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
+					   const uint8_t *dat,
+					   uint8_t *ecc_code)
+{
+	unsigned int hw_4ecc[4];
+	unsigned int i;
+
+	nand_davinci_4bit_readecc(mtd, hw_4ecc);
+
+	/*Convert 10 bit ecc value to 8 bit */
+	for (i = 0; i < 2; i++) {
+		unsigned int hw_ecc_low = hw_4ecc[i * 2];
+		unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
+
+		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
+		*ecc_code++ = hw_ecc_low & 0xFF;
+
+		/*
+		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
+		 * (count1=1) and 6 bits from val2 (count1=0) or
+		 * val5 (count1=1)
+		 */
+		*ecc_code++ =
+		    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
+
+		/*
+		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
+		 * 4 bits from val3 (count1=0) or val6 (count1=1)
+		 */
+		*ecc_code++ =
+		    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
+
+		/*
+		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
+		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
+		 */
+		*ecc_code++ =
+		    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
+
+		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
+		*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
+	}
+
+	return 0;
+}
+
+static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
+					  uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	int i;
+	unsigned int hw_4ecc[4];
+	unsigned int iserror;
+	unsigned short *ecc16;
+	unsigned int numerrors, erroraddress, errorvalue;
+	u32 val;
+
+	/*
+	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
+	 * will assume we are looking at an erased page and we should ignore
+	 * the ECC.
+	 */
+	for (i = 0; i < 10; i++) {
+		if (read_ecc[i] != 0xFF)
+			break;
+	}
+	if (i == 10)
+		return 0;
+
+	/* Convert 8 bit in to 10 bit */
+	ecc16 = (unsigned short *)&read_ecc[0];
+
+	/*
+	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
+	 * Write each parity value one at a time starting from 4bit_ecc_val8
+	 * to 4bit_ecc_val1.
+	 */
+
+	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
+	__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
+	__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
+	__raw_writel((ecc16[3] >> 2) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
+	__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
+			&davinci_emif_regs->nand4biteccload);
+
+	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
+	__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
+	__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
+	__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 10 bits from 0th and 1st bytes */
+	__raw_writel((ecc16[0]) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/*
+	 * Perform a dummy read to the EMIF Revision Code and Status register.
+	 * This is required to ensure time for syndrome calculation after
+	 * writing the ECC values in previous step.
+	 */
+
+	val = __raw_readl(&davinci_emif_regs->nandfsr);
+
+	/*
+	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
+	 * A syndrome value of 0 means no bit errors. If the syndrome is
+	 * non-zero then go further otherwise return.
+	 */
+	nand_davinci_4bit_readecc(mtd, hw_4ecc);
+
+	if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
+		return 0;
+
+	/*
+	 * Clear any previous address calculation by doing a dummy read of an
+	 * error address register.
+	 */
+	val = __raw_readl(&davinci_emif_regs->nanderradd1);
+
+	/*
+	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
+	 * register to 1.
+	 */
+	__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
+			&davinci_emif_regs->nandfcr);
+
+	/*
+	 * Wait for the corr_state field (bits 8 to 11) in the
+	 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
+	 * Otherwise ECC calculation has not even begun and the next loop might
+	 * fail because of a false positive!
+	 */
+	i = NAND_TIMEOUT;
+	do {
+		val = __raw_readl(&davinci_emif_regs->nandfsr);
+		val &= 0xc00;
+		i--;
+	} while ((i > 0) && !val);
+
+	/*
+	 * Wait for the corr_state field (bits 8 to 11) in the
+	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
+	 */
+	i = NAND_TIMEOUT;
+	do {
+		val = __raw_readl(&davinci_emif_regs->nandfsr);
+		val &= 0xc00;
+		i--;
+	} while ((i > 0) && val);
+
+	iserror = __raw_readl(&davinci_emif_regs->nandfsr);
+	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
+	iserror = iserror >> 8;
+
+	/*
+	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
+	 * corrected (five or more errors).  The number of errors
+	 * calculated (err_num field) differs from the number of errors
+	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
+	 * correction complete (errors on bit 8 or 9).
+	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
+	 * complete (error exists).
+	 */
+
+	if (iserror == ECC_STATE_NO_ERR) {
+		val = __raw_readl(&davinci_emif_regs->nanderrval1);
+		return 0;
+	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
+		val = __raw_readl(&davinci_emif_regs->nanderrval1);
+		return -1;
+	}
+
+	numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
+			& 0x3) + 1;
+
+	/* Read the error address, error value and correct */
+	for (i = 0; i < numerrors; i++) {
+		if (i > 1) {
+			erroraddress =
+			    ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
+			      (16 * (i & 1))) & 0x3FF);
+			erroraddress = ((512 + 7) - erroraddress);
+			errorvalue =
+			    ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
+			      (16 * (i & 1))) & 0xFF);
+		} else {
+			erroraddress =
+			    ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
+			      (16 * (i & 1))) & 0x3FF);
+			erroraddress = ((512 + 7) - erroraddress);
+			errorvalue =
+			    ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
+			      (16 * (i & 1))) & 0xFF);
+		}
+		/* xor the corrupt data with error value */
+		if (erroraddress < 512)
+			dat[erroraddress] ^= errorvalue;
+	}
+
+	return numerrors;
+}
+#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
+
+static int nand_davinci_dev_ready(struct mtd_info *mtd)
+{
+	return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
+}
+
+static void nand_flash_init(void)
+{
+	/* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
+	 * Instead, have your board_init() set EMIF timings, based on its
+	 * knowledge of the clocks and what devices are hooked up ... and
+	 * don't even do that unless no UBL handled it.
+	 */
+#ifdef CONFIG_SOC_DM644X
+	u_int32_t	acfg1 = 0x3ffffffc;
+
+	/*------------------------------------------------------------------*
+	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
+	 *                                                                  *
+	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
+	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
+	 *                                                                  *
+	 *------------------------------------------------------------------*/
+	 acfg1 = 0
+		| (0 << 31)	/* selectStrobe */
+		| (0 << 30)	/* extWait */
+		| (1 << 26)	/* writeSetup	10 ns */
+		| (3 << 20)	/* writeStrobe	40 ns */
+		| (1 << 17)	/* writeHold	10 ns */
+		| (1 << 13)	/* readSetup	10 ns */
+		| (5 << 7)	/* readStrobe	60 ns */
+		| (1 << 4)	/* readHold	10 ns */
+		| (3 << 2)	/* turnAround	?? ns */
+		| (0 << 0)	/* asyncSize	8-bit bus */
+		;
+
+	__raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
+
+	/* NAND flash on CS2 */
+	__raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
+#endif
+}
+
+void davinci_nand_init(struct nand_chip *nand)
+{
+	nand->chip_delay  = 0;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	nand->bbt_options	  |= NAND_BBT_USE_FLASH;
+#endif
+#ifdef CONFIG_SYS_NAND_HW_ECC
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.size = 512;
+	nand->ecc.bytes = 3;
+	nand->ecc.strength = 1;
+	nand->ecc.calculate = nand_davinci_calculate_ecc;
+	nand->ecc.correct  = nand_davinci_correct_data;
+	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
+#else
+	nand->ecc.mode = NAND_ECC_SOFT;
+#endif /* CONFIG_SYS_NAND_HW_ECC */
+#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
+	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
+	nand->ecc.size = 512;
+	nand->ecc.bytes = 10;
+	nand->ecc.strength = 4;
+	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
+	nand->ecc.correct = nand_davinci_4bit_correct_data;
+	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
+	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
+#endif
+	/* Set address of hardware control function */
+	nand->cmd_ctrl = nand_davinci_hwcontrol;
+
+	nand->read_buf = nand_davinci_read_buf;
+	nand->write_buf = nand_davinci_write_buf;
+
+	nand->dev_ready = nand_davinci_dev_ready;
+
+	nand_flash_init();
+}
+
+int board_nand_init(struct nand_chip *chip) __attribute__((weak));
+
+int board_nand_init(struct nand_chip *chip)
+{
+	davinci_nand_init(chip);
+	return 0;
+}