ASR_BASE

Change-Id: Icf3719cc0afe3eeb3edc7fa80a2eb5199ca9dda1
diff --git a/marvell/uboot/nand_spl/nand_boot.c b/marvell/uboot/nand_spl/nand_boot.c
new file mode 100644
index 0000000..125e7f3
--- /dev/null
+++ b/marvell/uboot/nand_spl/nand_boot.c
@@ -0,0 +1,285 @@
+/*
+ * (C) Copyright 2006-2008
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/io.h>
+
+static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
+
+#define ECCSTEPS	(CONFIG_SYS_NAND_PAGE_SIZE / \
+					CONFIG_SYS_NAND_ECCSIZE)
+#define ECCTOTAL	(ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
+
+
+#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
+/*
+ * NAND command for small page NAND devices (512)
+ */
+static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
+{
+	struct nand_chip *this = mtd->priv;
+	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+
+	while (!this->dev_ready(mtd))
+		;
+
+	/* Begin command latch cycle */
+	this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	/* Set ALE and clear CLE to start address cycle */
+	/* Column address */
+	this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+	this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
+	this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
+		       NAND_CTRL_ALE); /* A[24:17] */
+#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
+	/* One more address cycle for devices > 32MiB */
+	this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
+		       NAND_CTRL_ALE); /* A[28:25] */
+#endif
+	/* Latch in address */
+	this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Wait a while for the data to be ready
+	 */
+	while (!this->dev_ready(mtd))
+		;
+
+	return 0;
+}
+#else
+/*
+ * NAND command for large page NAND devices (2k)
+ */
+static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
+{
+	struct nand_chip *this = mtd->priv;
+	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+	void (*hwctrl)(struct mtd_info *mtd, int cmd,
+			unsigned int ctrl) = this->cmd_ctrl;
+
+	while (!this->dev_ready(mtd))
+		;
+
+	/* Emulate NAND_CMD_READOOB */
+	if (cmd == NAND_CMD_READOOB) {
+		offs += CONFIG_SYS_NAND_PAGE_SIZE;
+		cmd = NAND_CMD_READ0;
+	}
+
+	/* Shift the offset from byte addressing to word addressing. */
+	if (this->options & NAND_BUSWIDTH_16)
+		offs >>= 1;
+
+	/* Begin command latch cycle */
+	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	/* Set ALE and clear CLE to start address cycle */
+	/* Column address */
+	hwctrl(mtd, offs & 0xff,
+		       NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
+	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
+	/* Row address */
+	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
+	hwctrl(mtd, ((page_addr >> 8) & 0xff),
+		       NAND_CTRL_ALE); /* A[27:20] */
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+	/* One more address cycle for devices > 128MiB */
+	hwctrl(mtd, (page_addr >> 16) & 0x0f,
+		       NAND_CTRL_ALE); /* A[31:28] */
+#endif
+	/* Latch in address */
+	hwctrl(mtd, NAND_CMD_READSTART,
+		       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Wait a while for the data to be ready
+	 */
+	while (!this->dev_ready(mtd))
+		;
+
+	return 0;
+}
+#endif
+
+static int nand_is_bad_block(struct mtd_info *mtd, int block)
+{
+	struct nand_chip *this = mtd->priv;
+
+	nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
+
+	/*
+	 * Read one byte (or two if it's a 16 bit chip).
+	 */
+	if (this->options & NAND_BUSWIDTH_16) {
+		if (readw(this->IO_ADDR_R) != 0xffff)
+			return 1;
+	} else {
+		if (readb(this->IO_ADDR_R) != 0xff)
+			return 1;
+	}
+
+	return 0;
+}
+
+#if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST)
+static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
+{
+	struct nand_chip *this = mtd->priv;
+	u_char ecc_calc[ECCTOTAL];
+	u_char ecc_code[ECCTOTAL];
+	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+	int i;
+	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+	int eccsteps = ECCSTEPS;
+	uint8_t *p = dst;
+
+	nand_command(mtd, block, page, 0, NAND_CMD_READOOB);
+	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
+	nand_command(mtd, block, page, 0, NAND_CMD_READ0);
+
+	/* Pick the ECC bytes out of the oob data */
+	for (i = 0; i < ECCTOTAL; i++)
+		ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		this->ecc.hwctl(mtd, NAND_ECC_READ);
+		this->read_buf(mtd, p, eccsize);
+		this->ecc.calculate(mtd, p, &ecc_calc[i]);
+		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+	}
+
+	return 0;
+}
+#else
+static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
+{
+	struct nand_chip *this = mtd->priv;
+	u_char ecc_calc[ECCTOTAL];
+	u_char ecc_code[ECCTOTAL];
+	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+	int i;
+	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+	int eccsteps = ECCSTEPS;
+	uint8_t *p = dst;
+
+	nand_command(mtd, block, page, 0, NAND_CMD_READ0);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		this->ecc.hwctl(mtd, NAND_ECC_READ);
+		this->read_buf(mtd, p, eccsize);
+		this->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
+
+	/* Pick the ECC bytes out of the oob data */
+	for (i = 0; i < ECCTOTAL; i++)
+		ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+	eccsteps = ECCSTEPS;
+	p = dst;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		/* No chance to do something with the possible error message
+		 * from correct_data(). We just hope that all possible errors
+		 * are corrected by this routine.
+		 */
+		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+	}
+
+	return 0;
+}
+#endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */
+
+static int nand_load(struct mtd_info *mtd, unsigned int offs,
+		     unsigned int uboot_size, uchar *dst)
+{
+	unsigned int block, lastblock;
+	unsigned int page;
+
+	/*
+	 * offs has to be aligned to a page address!
+	 */
+	block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
+	lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
+	page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
+
+	while (block <= lastblock) {
+		if (!nand_is_bad_block(mtd, block)) {
+			/*
+			 * Skip bad blocks
+			 */
+			while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
+				nand_read_page(mtd, block, page, dst);
+				dst += CONFIG_SYS_NAND_PAGE_SIZE;
+				page++;
+			}
+
+			page = 0;
+		} else {
+			lastblock++;
+		}
+
+		block++;
+	}
+
+	return 0;
+}
+
+/*
+ * The main entry for NAND booting. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-Boot image
+ * from NAND into SDRAM and starts it from there.
+ */
+void nand_boot(void)
+{
+	struct nand_chip nand_chip;
+	nand_info_t nand_info;
+	__attribute__((noreturn)) void (*uboot)(void);
+
+	/*
+	 * Init board specific nand support
+	 */
+	nand_chip.select_chip = NULL;
+	nand_info.priv = &nand_chip;
+	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
+	nand_chip.dev_ready = NULL;	/* preset to NULL */
+	nand_chip.options = 0;
+	board_nand_init(&nand_chip);
+
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(&nand_info, 0);
+
+	/*
+	 * Load U-Boot image from NAND into RAM
+	 */
+	nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
+		  (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+	nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+		  (uchar *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+	nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+		  (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(&nand_info, -1);
+
+	/*
+	 * Jump to U-Boot image
+	 */
+	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+	(*uboot)();
+}