blob: acaac2553e517ea0f34afbd1cce107c32cbaf531 [file] [log] [blame]
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk-provider.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <crypto/scatterwalk.h>
#include <linux/of_device.h>
#include <linux/mutex.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <crypto/hmac.h>
#include <crypto/md5.h>
#include <crypto/sha.h>
#include "asr-bcm.h"
#include "asr-sha.h"
// #define ASR_BCM_SHA_TEST
static struct asr_bcm_sha *asr_sha_local = NULL;
static inline u32 asr_sha_read(struct asr_bcm_sha *dd, u32 offset)
{
u32 value = readl_relaxed(dd->io_base + offset);
return value;
}
static inline void asr_sha_write(struct asr_bcm_sha *dd,
u32 offset, u32 value)
{
writel_relaxed(value, dd->io_base + offset);
}
/* ------- bcm sha hardware operation -------- */
static void hash_sw_reset(struct asr_bcm_sha *dd)
{
uint32_t val;
val = (0x1 << 0x3);
asr_sha_write(dd, HASH_CONTROL, val);
val = 0x0;
asr_sha_write(dd, HASH_CONTROL, val);
return;
}
static int hash_set_mode(struct asr_bcm_sha *dd, \
HASH_MODE_T mode, HASH_ALGO_T algo)
{
uint32_t val;
val = asr_sha_read(dd, HASH_CONFIG);
val &= ~0xf;
val |= algo;
if (mode == HASH_HMAC)
val |= (0x1 << 0x3);
asr_sha_write(dd, HASH_CONFIG, val);
return 0;
}
static int hash_kick(struct asr_bcm_sha *dd)
{
uint32_t val;
uint32_t cnt;
val = asr_sha_read(dd, HASH_COMMAND);
val |= (0x1 << 0x0);
asr_sha_write(dd, HASH_COMMAND, val);
cnt = 1;
/* wait for command */
do {
val = asr_sha_read(dd, HASH_STATUS);
if (cnt == 1000000) {
dev_err(dd->dev, "hash kick wait busy %u times..0x%08x\n", cnt, val);
return -1;
}
val &= 0xE;
udelay(1);
cnt++;
} while(val != 0);
cnt = 1;
do {
val = asr_sha_read(dd, HASH_STATUS);
if (cnt == 1000000) {
dev_err(dd->dev, "hash kick wait busy %u times..0x%08x\n", cnt, val);
return -1;
}
val &= 0x1;
udelay(1);
cnt++;
} while(val == 0);
/* clear status so next command can be issued */
asr_sha_write(dd, HASH_STATUS, val);
return 0;
}
static int hash_config_op(struct asr_bcm_sha *dd, HASH_OP_MODE_T op_mode)
{
uint32_t val;
int ret = 0;
if (op_mode < HASH_INIT || op_mode > HASH_FINAL)
return -1;
val = asr_sha_read(dd, HASH_CONTROL);
val &= ~(0x3 << 0x0);
val |= op_mode;
asr_sha_write(dd, HASH_CONTROL, val);
ret = hash_kick(dd);
return ret;
}
static int hash_save_context(struct asr_sha_reqctx *ctx, int alg)
{
int i;
struct hash_state *md = &ctx->md;
struct asr_bcm_sha *dd = ctx->dd;
switch(alg) {
case HASH_SHA384:
case HASH_SHA512:
for (i = 0; i < 8; i++) {
md->sha512.state[i] = asr_sha_read(dd, HASH_DIGEST(i));
md->sha512.state[i+8] = asr_sha_read(dd, HASH_DIGEST_H(i));
}
break;
case HASH_SHA256:
case HASH_SHA224:
for (i = 0; i < 8; i++) {
md->sha256.state[i] = asr_sha_read(dd, HASH_DIGEST(i));
}
break;
case HASH_SHA1:
for (i = 0; i < 5; i++) {
md->sha1.state[i] = asr_sha_read(dd, HASH_DIGEST(i));
}
break;
case HASH_MD5:
for (i = 0; i < 4; i++) {
md->md5.state[i] = asr_sha_read(dd, HASH_DIGEST(i));
}
break;
default:
dev_err(dd->dev, "hash save context: invalid alg!\r\n");
return -1;
}
return 0;
}
static int hash_restore_context(struct asr_sha_reqctx *ctx, int alg)
{
int i;
struct hash_state *md = &ctx->md;
struct asr_bcm_sha *dd = ctx->dd;
switch(alg) {
case HASH_SHA384:
case HASH_SHA512:
for (i = 0; i < 8; i++) {
asr_sha_write(dd, HASH_DIGEST(i), md->sha512.state[i]);
asr_sha_write(dd, HASH_DIGEST_H(i), md->sha512.state[i+8]);
}
break;
case HASH_SHA256:
case HASH_SHA224:
for (i = 0; i < 8; i++) {
asr_sha_write(dd, HASH_DIGEST(i), md->sha256.state[i]);
}
break;
case HASH_SHA1:
for (i = 0; i < 5; i++) {
asr_sha_write(dd, HASH_DIGEST(i), md->sha1.state[i]);
}
break;
case HASH_MD5:
for (i = 0; i < 4; i++) {
asr_sha_write(dd, HASH_DIGEST(i), md->md5.state[i]);
}
break;
default:
dev_err(dd->dev, "hash restore context: invalid alg!\r\n");
return -1;
}
return 0;
}
static inline void sha_cache_operation(void *addr, int size)
{
__cpuc_flush_dcache_area(addr, size);
}
static int hash_compress_aligned(struct asr_sha_reqctx *ctx, int alg, uint8_t *in, int data_len)
{
int ret = 0;
struct asr_bcm_sha *dd = ctx->dd;
struct asr_bcm_dev *dev_dd = container_of(dd, struct asr_bcm_dev, asr_sha);
struct asr_bcm_ops *bcm_ops = dev_dd->bcm_ops;
bcm_ops->dev_get(dev_dd);
if (((uint32_t)in & 0x3) || (data_len == 0))
return -1;
adec_engine_hw_reset(dev_dd, ACC_ENG_HASH);
hash_sw_reset(dd);
ret = hash_set_mode(dd, HASH_SIMPLE, alg);
if (ret)
goto error;
adec_engine_hw_reset(dev_dd, ACC_ENG_DMA);
abus_set_mode(dev_dd, ABUS_GRP_A_HASH, ABUS_GRP_B_AES, ABUS_CROSS, ABUS_STRAIGHT);
dma_input_config(dev_dd, 0, 0);
ret = hash_restore_context(ctx, alg);
if (ret)
goto error;
ret = dma_input_address(dev_dd, (uint32_t)virt_to_phys((void *)in), \
ROUND_UP_TO_WORD_CNT(data_len), 0);
if (ret)
goto error;
sha_cache_operation(in, (ROUND_UP_TO_WORD_CNT(data_len) << 2));
dma_input_start(dev_dd);
asr_sha_write(dd, HASH_INCOME_SEG_SZ, data_len);
ret = hash_config_op(dd, HASH_UPDATE);
if (ret) {
dma_input_stop(dev_dd);
goto error;
}
dma_wait_input_finish(dev_dd);
dma_input_stop(dev_dd);
ret = hash_save_context(ctx, alg);
if (ret)
goto error;
error:
bcm_ops->dev_put(dev_dd);
return ret;
}
static int hash_compress(struct asr_sha_reqctx *ctx, int alg, uint8_t *in, int blks, int blk_sz)
{
uint8_t *dma_in = NULL;
int data_len = blks * blk_sz;
int ret, n;
uint8_t *ptr_in;
if (((uint32_t)in & 0x3) == 0) {
dma_in = in;
ret = hash_compress_aligned(ctx, alg, dma_in, data_len);
return ret;
}
n = min(data_len, HASH_ALIGN_BUF_SIZE);
dma_in = (uint8_t *)kmalloc((n + 0x10), GFP_KERNEL);
if (!dma_in) {
ret = -1;
goto exit;
}
dma_in = (uint8_t *)(((uint32_t)(dma_in)) & (~0x3));
ptr_in = in;
do {
n = min(data_len, HASH_ALIGN_BUF_SIZE);
memcpy((void *)dma_in, (void *)ptr_in, n);
ret = hash_compress_aligned(ctx, alg, dma_in, n);
if (ret) {
goto exit;
}
data_len -= n;
ptr_in +=n;
} while(data_len > 0);
exit:
if (dma_in)
kfree(dma_in);
return ret;
}
static int hash_tail_process(struct asr_sha_reqctx *ctx, uint8_t *out, int out_size, \
uint64_t total_size, int tail_size, unsigned char *dma_addr, int alg)
{
int ret = 0;
int reg_val, i;
struct asr_bcm_sha *dd = ctx->dd;
struct asr_bcm_dev *dev_dd = container_of(dd, struct asr_bcm_dev, asr_sha);
struct asr_bcm_ops *bcm_ops = dev_dd->bcm_ops;
bcm_ops->dev_get(dev_dd);
adec_engine_hw_reset(dev_dd, ACC_ENG_HASH);
hash_sw_reset(dd);
ret = hash_set_mode(dd, HASH_SIMPLE, alg);
if (ret)
goto error;
adec_engine_hw_reset(dev_dd, ACC_ENG_DMA);
abus_set_mode(dev_dd, ABUS_GRP_A_HASH, ABUS_GRP_B_AES, ABUS_CROSS, ABUS_STRAIGHT);
dma_input_config(dev_dd, 0, 0);
ret = hash_restore_context(ctx, alg);
if (ret)
goto error;
ret = dma_input_address(dev_dd, (uint32_t)virt_to_phys((void *)dma_addr), \
ROUND_UP_TO_WORD_CNT(tail_size), 0);
if (ret)
goto error;
if (tail_size) {
sha_cache_operation(dma_addr, (ROUND_UP_TO_WORD_CNT(tail_size) << 2));
dma_input_start(dev_dd);
}
asr_sha_write(dd, HASH_INCOME_SEG_SZ, tail_size);
asr_sha_write(dd, HASH_TOTAL_MSG_SZ_L, (total_size & 0xffffffff));
asr_sha_write(dd, HASH_TOTAL_MSG_SZ_H, (total_size >> 32));
reg_val = asr_sha_read(dd, HASH_CONTROL);
reg_val |= (0x1 << 0x2);
asr_sha_write(dd, HASH_CONTROL, reg_val);
ret = hash_config_op(dd, HASH_FINAL);
if (ret) {
if (tail_size)
dma_input_stop(dev_dd);
goto error;
}
if (tail_size) {
dma_wait_input_finish(dev_dd);
dma_input_stop(dev_dd);
}
/* copy digest out */
if (alg == HASH_SHA384 || alg == HASH_SHA512) {
for (i = 0; i < (out_size / 8); i++) {
reg_val = asr_sha_read(dd, HASH_DIGEST(i));
out[4 + i * 8] = (uint8_t)(reg_val & 0xFF);
out[5 + i * 8] = (uint8_t)((reg_val >> 8) & 0xFF);
out[6 + i * 8] = (uint8_t)((reg_val >> 16) & 0xFF);
out[7 + i * 8] = (uint8_t)((reg_val >> 24) & 0xFF);
reg_val = asr_sha_read(dd, HASH_DIGEST_H(i));
out[0 + i * 8] = (uint8_t)(reg_val & 0xFF);
out[1 + i * 8] = (uint8_t)((reg_val >> 8) & 0xFF);
out[2 + i * 8] = (uint8_t)((reg_val >> 16) & 0xFF);
out[3 + i * 8] = (uint8_t)((reg_val >> 24) & 0xFF);
}
} else {
for (i = 0; i < (out_size / 4); i++) {
reg_val = asr_sha_read(dd, HASH_DIGEST(i));
out[0 + i * 4] = (uint8_t)(reg_val & 0xFF);
out[1 + i * 4] = (uint8_t)((reg_val >> 8) & 0xFF);
out[2 + i * 4] = (uint8_t)((reg_val >> 16) & 0xFF);
out[3 + i * 4] = (uint8_t)((reg_val >> 24) & 0xFF);
}
}
error:
bcm_ops->dev_put(dev_dd);
return ret;
}
static int hash_init(struct asr_sha_reqctx *ctx, int alg)
{
int ret;
struct asr_bcm_sha *dd = ctx->dd;
struct asr_bcm_dev *dev_dd = container_of(dd, struct asr_bcm_dev, asr_sha);
struct asr_bcm_ops *bcm_ops = dev_dd->bcm_ops;
bcm_ops->dev_get(dev_dd);
adec_engine_hw_reset(dev_dd, ACC_ENG_HASH);
hash_sw_reset(dd);
ret = hash_set_mode(dd, HASH_SIMPLE, alg);
if (ret)
goto error;
ret = hash_config_op(dd, HASH_INIT);
if (ret)
goto error;
ret = hash_save_context(ctx, alg);
if (ret)
goto error;
error:
bcm_ops->dev_put(dev_dd);
return ret;
}
/* Only block algnie is processed at a time */
static int hash_process(struct asr_sha_reqctx *ctx, int alg, uint8_t *in, uint32_t inlen)
{
int err;
uint32_t n, blocks;
struct hash_state *md = &ctx->md;
if (md->curlen > sizeof(md->buf)) {
return -1;
}
while (inlen > 0) {
if (md->curlen == 0 && inlen >= md->block_size) {
blocks = inlen / md->block_size;
err = hash_compress(ctx, alg, in, blocks, md->block_size);
if (err)
return err;
md->length += blocks * md->block_size * 8;
in += blocks * md->block_size;
inlen -= blocks * md->block_size;
} else {
n = min(inlen, (md->block_size - md->curlen));
memcpy(md->buf + md->curlen, in, n);
md->curlen += n;
in += n;
inlen -= n;
if (md->curlen == md->block_size) {
err = hash_compress(ctx, alg, md->buf, 1, md->block_size);
if (err)
return err;
md->length += 8*md->block_size;
md->curlen = 0;
}
}
}
return 0;
}
static int hash_done(struct asr_sha_reqctx *ctx, int alg, uint8_t *out)
{
uint32_t out_len;
struct hash_state *md = &ctx->md;
struct asr_bcm_sha *dd = ctx->dd;
switch(alg) {
case HASH_SHA512:
out_len = HASH_LEN_SHA512;
break;
case HASH_SHA384:
out_len = HASH_LEN_SHA384;
break;
case HASH_SHA256:
out_len = HASH_LEN_SHA256;
break;
case HASH_SHA224:
out_len = HASH_LEN_SHA224;
break;
case HASH_SHA1:
out_len = HASH_LEN_SHA1;
break;
case HASH_MD5:
out_len = HASH_LEN_MD5;
break;
default:
dev_err(dd->dev, "err: not support hash alg\n");
return -1;
}
return hash_tail_process(ctx, out, out_len, \
(md->length / 8 + md->curlen), md->curlen, md->buf, alg);
}
/* ------- end -------- */
static size_t asr_sha_append_sg(struct asr_sha_reqctx *ctx)
{
size_t count;
while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
count = min(ctx->sg->length - ctx->offset, ctx->total);
count = min(count, ctx->buflen - ctx->bufcnt);
if (count <= 0) {
/*
* Check if count <= 0 because the buffer is full or
* because the sg length is 0. In the latest case,
* check if there is another sg in the list, a 0 length
* sg doesn't necessarily mean the end of the sg list.
*/
if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
ctx->sg = sg_next(ctx->sg);
continue;
} else {
break;
}
}
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
ctx->offset, count, 0);
ctx->bufcnt += count;
ctx->offset += count;
ctx->total -= count;
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
else
ctx->total = 0;
}
}
return 0;
}
static int asr_sha_handle_queue(struct asr_bcm_sha *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct asr_sha_ctx *ctx;
unsigned long flags;
bool start_async;
int err = 0, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->queue, req);
if (SHA_FLAGS_BUSY & dd->flags) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= SHA_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req) {
return ret;
}
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(async_req->tfm);
dd->req = ahash_request_cast(async_req);
start_async = (dd->req != req);
dd->is_async = start_async;
dd->force_complete = false;
/* WARNING: ctx->start() MAY change dd->is_async. */
err = ctx->start(dd);
return (start_async) ? ret : err;
}
static int asr_sha_enqueue(struct ahash_request *req, unsigned int op)
{
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
struct asr_bcm_sha *dd = ctx->dd;
ctx->op = op;
return asr_sha_handle_queue(dd, req);
}
static void asr_sha_copy_ready_hash(struct ahash_request *req)
{
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->result)
return;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_MD5:
memcpy(req->result, ctx->digest, MD5_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA1:
memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA224:
memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA256:
memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA384:
memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA512:
memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
break;
default:
return;
}
}
static inline int asr_sha_complete(struct asr_bcm_sha *dd, int err)
{
struct ahash_request *req = dd->req;
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
dd->flags &= ~(SHA_FLAGS_BUSY);
ctx->flags &= ~(SHA_FLAGS_FINAL);
if ((dd->is_async || dd->force_complete) && req->base.complete)
req->base.complete(&req->base, err);
/* handle new request */
tasklet_schedule(&dd->queue_task);
return err;
}
static int asr_sha_buff_init(struct asr_bcm_sha *dd, uint32_t len)
{
struct ahash_request *req = dd->req;
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
ctx->buffer = (void *)__get_free_pages(GFP_KERNEL, get_order(len));
if (!ctx->buffer) {
dev_err(dd->dev, "unable to alloc pages.\n");
return -ENOMEM;
}
ctx->buflen = PAGE_SIZE << get_order(len);
return 0;
}
static void asr_sha_buff_cleanup(struct asr_bcm_sha *dd, uint32_t len)
{
struct ahash_request *req = dd->req;
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
free_pages((unsigned long)ctx->buffer, get_order(len));
ctx->buflen = 0;
}
static int sha_init_req(struct asr_sha_reqctx *ctx)
{
int ret = 0;
/* hardware: hash init */
ret = hash_init(ctx, ctx->md.alg);
if (ret)
return -EINVAL;
return 0;
}
static int sha_update_req(struct asr_sha_reqctx *ctx)
{
int ret = 0;
int bufcnt;
uint32_t buflen = ctx->total;
ret = asr_sha_buff_init(ctx->dd, ctx->total);
if (ret)
return -ENOMEM;
asr_sha_append_sg(ctx);
bufcnt = ctx->bufcnt;
ctx->bufcnt = 0;
/* hashware: hash process */
ret = hash_process(ctx, ctx->md.alg, ctx->buffer, bufcnt);
if (ret)
ret = -EINVAL;
asr_sha_buff_cleanup(ctx->dd, buflen);
return ret;
}
static void sha_finish_req(struct asr_sha_reqctx *ctx, int *err)
{
uint8_t *hash = (uint8_t *)ctx->digest;
if (!(*err) && (ctx->flags & SHA_FLAGS_FINAL)) {
*err = hash_done(ctx, ctx->md.alg, (uint8_t *)hash);
asr_sha_copy_ready_hash(ctx->dd->req);
ctx->flags &= (~SHA_FLAGS_FINAL);
} else {
ctx->flags |= SHA_FLAGS_ERROR;
}
}
static void sha_next_req(struct asr_sha_reqctx *ctx, int *err)
{
if (likely(!(*err) && (SHA_FLAGS_FINAL & ctx->flags)))
sha_finish_req(ctx, err);
(void)asr_sha_complete(ctx->dd, *err);
}
static int asr_sha_start(struct asr_bcm_sha *dd)
{
int err = 0;
struct ahash_request *req = dd->req;
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
mutex_lock(&dd->queue_lock);
if ((ctx->flags & SHA_FLAGS_INIT)) {
err = sha_init_req(ctx);
ctx->flags &= (~SHA_FLAGS_INIT);
if (err) {
mutex_unlock(&dd->queue_lock);
return err;
}
}
if (ctx->op == SHA_OP_UPDATE) {
err = sha_update_req(ctx);
if (!err && (ctx->flags & SHA_FLAGS_FINUP))
/* no final() after finup() */
sha_finish_req(ctx, &err);
} else if (ctx->op == SHA_OP_FINAL) {
sha_finish_req(ctx, &err);
}
if (unlikely(err != -EINPROGRESS)) {
/* Task will not finish it, so do it here */
sha_next_req(ctx, &err);
}
mutex_unlock(&dd->queue_lock);
return err;
}
static int asr_sha_cra_init(struct crypto_tfm *tfm)
{
struct asr_sha_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct asr_sha_reqctx));
ctx->start = asr_sha_start;
return 0;
}
static void asr_sha_cra_exit(struct crypto_tfm *tfm)
{
struct asr_sha_ctx *ctx = crypto_tfm_ctx(tfm);
memset(ctx, 0, sizeof(*ctx));
}
static inline void asr_sha_get(struct asr_bcm_sha *dd)
{
mutex_lock(&dd->sha_lock);
}
static inline void asr_sha_put(struct asr_bcm_sha *dd)
{
if(mutex_is_locked(&dd->sha_lock))
mutex_unlock(&dd->sha_lock);
}
static int asr_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
struct asr_bcm_sha *dd = asr_sha_local;
asr_sha_get(dd);
ctx->dd = dd;
memset(&ctx->md, 0, sizeof(ctx->md));
ctx->flags = 0;
switch (crypto_ahash_digestsize(tfm)) {
case MD5_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_MD5;
ctx->md.alg = HASH_MD5;
ctx->md.block_size = MD5_HMAC_BLOCK_SIZE;
break;
case SHA1_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA1;
ctx->md.alg = HASH_SHA1;
ctx->md.block_size = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA224;
ctx->md.alg = HASH_SHA224;
ctx->md.block_size = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA256;
ctx->md.alg = HASH_SHA256;
ctx->md.block_size = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA384;
ctx->md.alg = HASH_SHA384;
ctx->md.block_size = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA512;
ctx->md.alg = HASH_SHA512;
ctx->md.block_size = SHA512_BLOCK_SIZE;
break;
default:
asr_sha_put(dd);
return -EINVAL;
}
ctx->bufcnt = 0;
ctx->flags |= SHA_FLAGS_INIT;
asr_sha_put(dd);
return 0;
}
static int asr_sha_update(struct ahash_request *req)
{
int ret = 0;
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
asr_sha_get(ctx->dd);
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->offset = 0;
ret = asr_sha_enqueue(req, SHA_OP_UPDATE);
asr_sha_put(ctx->dd);
return ret;
}
static int asr_sha_final(struct ahash_request *req)
{
int ret = 0;
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
asr_sha_get(ctx->dd);
ctx->flags |= SHA_FLAGS_FINAL;
if (ctx->flags & SHA_FLAGS_ERROR) {
asr_sha_put(ctx->dd);
return 0; /* uncompleted hash is not needed */
}
ret = asr_sha_enqueue(req, SHA_OP_FINAL);
asr_sha_put(ctx->dd);
return ret;
}
static int asr_sha_finup(struct ahash_request *req)
{
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= SHA_FLAGS_FINUP;
err1 = asr_sha_update(req);
if (err1 == -EINPROGRESS ||
(err1 == -EBUSY && (ahash_request_flags(req) &
CRYPTO_TFM_REQ_MAY_BACKLOG))) {
asr_sha_put(ctx->dd);
return err1;
}
/*
* final() has to be always called to cleanup resources
* even if udpate() failed, except EINPROGRESS
*/
err2 = asr_sha_final(req);
return err1 ?: err2;
}
static int asr_sha_digest(struct ahash_request *req)
{
return asr_sha_init(req) ?: asr_sha_finup(req);
}
static int asr_sha_export(struct ahash_request *req, void *out)
{
const struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(out, ctx, sizeof(*ctx));
return 0;
}
static int asr_sha_import(struct ahash_request *req, const void *in)
{
struct asr_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(ctx, in, sizeof(*ctx));
return 0;
}
static struct ahash_alg sha_algs[] = {
/* md5 */
{
.init = asr_sha_init,
.update = asr_sha_update,
.final = asr_sha_final,
.finup = asr_sha_finup,
.digest = asr_sha_digest,
.export = asr_sha_export,
.import = asr_sha_import,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct asr_sha_reqctx),
.base = {
.cra_name = "md5",
.cra_driver_name = "asr-md5",
.cra_priority = ASR_SHA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct asr_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = asr_sha_cra_init,
.cra_exit = asr_sha_cra_exit,
}
}
},
/* sha1 */
{
.init = asr_sha_init,
.update = asr_sha_update,
.final = asr_sha_final,
.finup = asr_sha_finup,
.digest = asr_sha_digest,
.export = asr_sha_export,
.import = asr_sha_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct asr_sha_reqctx),
.base = {
.cra_name = "sha1",
.cra_driver_name = "asr-sha1",
.cra_priority = ASR_SHA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct asr_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = asr_sha_cra_init,
.cra_exit = asr_sha_cra_exit,
}
}
},
/* sha224 */
{
.init = asr_sha_init,
.update = asr_sha_update,
.final = asr_sha_final,
.finup = asr_sha_finup,
.digest = asr_sha_digest,
.export = asr_sha_export,
.import = asr_sha_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct asr_sha_reqctx),
.base = {
.cra_name = "sha224",
.cra_driver_name = "asr-sha224",
.cra_priority = ASR_SHA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct asr_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = asr_sha_cra_init,
.cra_exit = asr_sha_cra_exit,
}
}
},
/* sha256 */
{
.init = asr_sha_init,
.update = asr_sha_update,
.final = asr_sha_final,
.finup = asr_sha_finup,
.digest = asr_sha_digest,
.export = asr_sha_export,
.import = asr_sha_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct asr_sha_reqctx),
.base = {
.cra_name = "sha256",
.cra_driver_name = "asr-sha256",
.cra_priority = ASR_SHA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct asr_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = asr_sha_cra_init,
.cra_exit = asr_sha_cra_exit,
}
}
},
/* sha384 */
{
.init = asr_sha_init,
.update = asr_sha_update,
.final = asr_sha_final,
.finup = asr_sha_finup,
.digest = asr_sha_digest,
.export = asr_sha_export,
.import = asr_sha_import,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct asr_sha_reqctx),
.base = {
.cra_name = "sha384",
.cra_driver_name = "asr-sha384",
.cra_priority = ASR_SHA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct asr_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = asr_sha_cra_init,
.cra_exit = asr_sha_cra_exit,
}
}
},
/* sha512 */
{
.init = asr_sha_init,
.update = asr_sha_update,
.final = asr_sha_final,
.finup = asr_sha_finup,
.digest = asr_sha_digest,
.export = asr_sha_export,
.import = asr_sha_import,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct asr_sha_reqctx),
.base = {
.cra_name = "sha512",
.cra_driver_name = "asr-sha512",
.cra_priority = ASR_SHA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct asr_sha_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = asr_sha_cra_init,
.cra_exit = asr_sha_cra_exit,
}
}
},
};
static void asr_sha_queue_task(unsigned long data)
{
struct asr_bcm_sha *dd = (struct asr_bcm_sha *)data;
asr_sha_handle_queue(dd, NULL);
}
#ifdef ASR_BCM_SHA_TEST
static int bcm_sha_test(struct asr_bcm_sha *dd);
#endif
int asr_bcm_sha_register(struct asr_bcm_dev *bcm_dd)
{
int err, i, j;
struct asr_bcm_sha *sha_dd;
sha_dd = &bcm_dd->asr_sha;
sha_dd->dev = bcm_dd->dev;
sha_dd->io_base = bcm_dd->io_base;
sha_dd->phys_base = bcm_dd->phys_base;
asr_sha_local = sha_dd;
spin_lock_init(&sha_dd->lock);
mutex_init(&sha_dd->sha_lock);
mutex_init(&sha_dd->queue_lock);
tasklet_init(&sha_dd->queue_task, asr_sha_queue_task,
(unsigned long)sha_dd);
crypto_init_queue(&sha_dd->queue, ASR_SHA_QUEUE_LENGTH);
for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
err = crypto_register_ahash(&sha_algs[i]);
if (err)
goto err_sha_algs;
}
#ifdef ASR_BCM_SHA_TEST
bcm_sha_test(sha_dd);
#endif
return 0;
err_sha_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_algs[j]);
return err;
}
EXPORT_SYMBOL_GPL(asr_bcm_sha_register);
int asr_bcm_sha_unregister(struct asr_bcm_dev *bcm_dd)
{
int i;
struct asr_bcm_sha *sha_dd = &bcm_dd->asr_sha;
for (i = 0; i < ARRAY_SIZE(sha_algs); i++)
crypto_unregister_ahash(&sha_algs[i]);
tasklet_kill(&sha_dd->queue_task);
return 0;
}
EXPORT_SYMBOL_GPL(asr_bcm_sha_unregister);
#ifdef ASR_BCM_SHA_TEST
static int bcm_sha_test(struct asr_bcm_sha *dd)
{
int ret = 0;
const struct {
const char *msg;
uint8_t hash[20];
} sha1_tests[] = {
{
"abc",
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06,
0x81, 0x6a, 0xba, 0x3e, 0x25, 0x71,
0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0,
0xd8, 0x9d
}
},
{
"asjhsdjljfdsdjjkdfwyqeuwouzxkmcxjkmwqds"
"jklfdfjlkdfkfsfkjlfskjdflioherfjjfdjkfd"
"nkfdfdojjodfjdfjflj;sljjlfkklnfnkgbhhoi"
"gfhigfopojpfjojpoffkjlfskjdflioherfjjfd"
"jkfdnkfdfdojjodfjdfjfljnfnkgbhhoigfhigf"
"oponfnkgbhhoigfhigfopojpfjoewiroiowiods"
"djkisijdknknkskdnknflnnesniewinoinknmdn"
"kknknsdnjjfsnnkfnkknslnklknfnknkflksnlk"
"lskldklklklnmlflmlmlfmlfml",
{
0xc4, 0x53, 0xca, 0x24, 0xfa, 0xe5,
0x39, 0x53, 0x08, 0x8c, 0x57, 0x1a,
0x96, 0xe9, 0x64, 0x7f, 0xd5, 0xf9,
0x13, 0x91
}
}
};
struct asr_sha_reqctx ctx1;
struct asr_sha_reqctx ctx2;
unsigned char out_sha1_1[20] = {0};
unsigned char out_sha1_2[20] = {0};
memset(&ctx1.md, 0, sizeof(ctx1.md));
ctx1.md.block_size = BLOCK_ALGIN_SIZE;
ctx1.dd = dd;
memset(&ctx2.md, 0, sizeof(ctx2.md));
ctx2.md.block_size = BLOCK_ALGIN_SIZE;
ctx2.dd = dd;
ret = hash_init(&ctx1, HASH_SHA1);
if (ret) {
return ret;
}
ret = hash_init(&ctx2, HASH_SHA1);
if (ret) {
return ret;
}
ret = hash_process(&ctx1, HASH_SHA1, (uint8_t *)sha1_tests[0].msg, strlen(sha1_tests[0].msg));
if (ret) {
return ret;
}
ret = hash_done(&ctx1, HASH_SHA1, out_sha1_1);
if (ret) {
return ret;
}
ret = hash_process(&ctx2, HASH_SHA1, (uint8_t *)sha1_tests[1].msg, strlen(sha1_tests[1].msg));
if (ret) {
return ret;
}
ret = hash_done(&ctx2, HASH_SHA1, out_sha1_2);
if (ret) {
return ret;
}
if (memcmp(out_sha1_1, sha1_tests[0].hash, sizeof(out_sha1_1))) {
printk("sha1 test 0 failed");
} else {
printk("sha1 test 0 pass");
}
if (memcmp(out_sha1_2, sha1_tests[1].hash, sizeof(out_sha1_2))) {
printk("sha1 test 1 failed");
} else {
printk("sha1 test 1 pass");
}
return 0;
}
#endif
MODULE_LICENSE("GPL");
MODULE_AUTHOR("wangyonggan <yongganwang@asrmicro.com>");
MODULE_DESCRIPTION("ASR bcm sha driver");