blob: 0b96076be7a85a33f680a5cfad1a21c77bf8b4ad [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Support for asr spi controller
*
* Copyright (C) 2021 ASR Micro Limited
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/platform_data/devfreq-pxa.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/sched/clock.h>
#include <linux/clk-provider.h>
#include <soc/asr/regs-addr.h>
#include <trace/events/pxa.h>
#include <linux/miscdevice.h>
#include <linux/cputype.h>
#include <soc/asr/asrdcstat.h>
#include <linux/cpu_pm.h>
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
#include <linux/cpufreq.h>
#endif
#include "asr_memorybus.h"
#define DDR_DEVFREQ_UPTHRESHOLD 65
#define DDR_DEVFREQ_DOWNDIFFERENTIAL 5
#define DDR_DEVFREQ_HIGHCPUFREQ 800000
#define DDR_DEVFREQ_HIGHCPUFREQ_UPTHRESHOLD 30
#define DDR_DEVFREQ_EFFICIENCY 90
#define KHZ_TO_HZ 1000
#define generate_evoc(gpu, cpu) ((gpu) || (cpu))
extern struct pm_qos_object *pm_qos_array[];
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
static struct ddr_devfreq_data *ddrfreq_driver_data;
/* default using 65% as upthreshold and 5% as downdifferential */
static struct devfreq_throughput_data devfreq_throughput_data = {
.upthreshold = DDR_DEVFREQ_UPTHRESHOLD,
.downdifferential = DDR_DEVFREQ_DOWNDIFFERENTIAL,
.ddr_efficiency = DDR_DEVFREQ_EFFICIENCY,
};
static struct ddr_devfreq_data *ddrfreq_data;
#define BIT_31 (0x1 << 31)
#define BIT_2 (0x1 << 2)
#define BIT_3 (0x1 << 3)
#define BIT_4 (0x1 << 4)
#define BIT_5 (0x1 << 5)
typedef enum
{
Samsung_ID = 0x01, // 0000 0001B
Qimonda_ID = 0x02, // 0000 0010B
Elpida_ID = 0x03, // 0000 0011B
Etron_ID = 0x04, // 0000 0100B
Nanya_ID = 0x05, // 0000 0101B
Hynix_ID = 0x06, // 0000 0110B
Mosel_ID = 0x07, // 0000 0111B
Winbond_ID = 0x08, // 0000 1000B
ESMT_ID = 0x09, // 0000 1001B
Reserved_ID = 0x0A, // 0000 1010B
Spansion_ID = 0x0B, // 0000 1011B
SST_ID = 0x0C, // 0000 1100B
ZMOS_ID = 0x0D, // 0000 1101B
Intel_ID = 0x0E, // 0000 1110B
UNIC_ID = 0x1A, // 0001 1010B
JSC_ID = 0x1C, // 0001 1100B
Fidelix_ID = 0xF8, // 1111 1000B
ESMT2_ID = 0xFD, // 1111 1101B
Numonyx_ID = 0xFE, // 1111 1110B
Micron_ID = 0xFF, // 1111 1111B
Toshiba_ID = 0x03 // seems same as elpida ID
} DDR_Manufacturer_ID;
static u32 soc_chipid;
static u32 soc_ddrid;
static unsigned long ddr_set_rate(struct ddr_devfreq_data *data,
unsigned long tgt_rate);
static unsigned long old_ddrclk;
static int ddr_lock_set_min_freq(void)
{
unsigned long new_ddrclk;
struct ddr_devfreq_data *data;
data = ddrfreq_data;
new_ddrclk = data->ddr_freq_tbl[0];
mutex_lock(&data->devfreq->lock);
/* scaling to the min frequency before read ddr id */
old_ddrclk = clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
ddr_set_rate(data, new_ddrclk);
pr_info("Change ddr freq to lowest value. (%luKhz)\n", clk_get_rate(data->ddr_clk) / KHZ_TO_HZ);
return 0;
}
static int ddr_unlock_set_old_freq(void)
{
struct ddr_devfreq_data *data;
data = ddrfreq_data;
ddr_set_rate(data, old_ddrclk);
mutex_unlock(&data->devfreq->lock);
pr_info("Change ddr freq to old value. (%luKhz)\n", old_ddrclk);
return 0;
}
static void delay_long_us(u32 us)
{
int i, loops;
loops = us / 200;
for (i = 0; i < loops; i++)
udelay(200);
}
static void soc_init_ddrid(void __iomem *mc_base)
{
u32 value, cs_value1, cs_value2, temp_value[3];
u32 cs0_size, ddr_size;
u32 temp_value1 = 0xff, cs1_valid = 0;
u8 mrr_temp_value = 0;
ddr_lock_set_min_freq();
/*
* MR8 only get the size of one DDR die, need to caculate the DDR size out
*
*
* MR8 value
*
* Type Read-only OP<1:0> 00B: S4 SDRAM
01B: S2 SDRAM
10B: N NVM
11B: Reserved
* Density Read-only OP<5:2> 0000B: 64Mb
0001B: 128Mb
0010B: 256Mb
0011B: 512Mb
0100B: 1Gb
0101B: 2Gb
0110B: 4Gb
0111B: 8Gb
1000B: 16Gb
1001B: 32Gb
all others: reserved
* I/O width Read-only OP<7:6> 00B: x32
01B: x16
10B: x8
11B: not used
*
*/
/*
* step 1: read out the CS1 MR8
*/
writel(0x12010008, (mc_base + 0x024));
delay_long_us(5000);
temp_value[0] = readl((mc_base + 0x370));
pr_info("CS1 MR8 1: 0x%08x\n", temp_value[0]);
writel(0x12010008, (mc_base + 0x024));
delay_long_us(5000);
temp_value[1] = readl((mc_base + 0x370));
pr_info("CS1 MR8 2: 0x%08x\n", temp_value[1]);
if (temp_value[0] != temp_value[1]) {
temp_value1 = 0xff;
cs_value1 = temp_value1;
} else {
temp_value1 = 0x00;
cs_value1 = temp_value[0];
}
/*
* step 2: read out the CS0 MR8
*/
writel(0x11010008, (mc_base + 0x024));
delay_long_us(5000);
cs_value2 = readl((mc_base + 0x370));
pr_info("CS0 MR8: 0x%08x\n", cs_value2);
if (cs_value2 & BIT_31) {
mrr_temp_value = cs_value2 & 0xff;
pr_info("mrr_temp_value: 0x%08x\n", mrr_temp_value);
switch ((mrr_temp_value & (BIT_2 | BIT_3 | BIT_4 | BIT_5)) >> 2) {
case 0x1: // 128Mb
cs0_size = 1; // 1*16MB
break;
case 0x2: // 256Mb
cs0_size = 2; // 2*16MB
break;
case 0x3: // 512Mb
cs0_size = 4; // 4*16MB
break;
case 0x4: // 1Gb
cs0_size = 8; // 8*16MB
break;
case 0x5: // 2Gb
cs0_size = 16; // 16*16MB
break;
case 0x6: // 4Gb
cs0_size = 32; // 32*16MB
break;
case 0x0: // 64Mb, No such little DDR here
case 0x7: // No such large DDR here
case 0x8: // No such large DDR here
case 0x9: // No such large DDR here
default:
pr_info("If you see me, there should be something wrong!\n");
cs0_size = 0;
break;
}
} else {
cs0_size = 0;
pr_info("If you see me, there should be something wrong!\n");
}
/*
* CS1 MR8 might be random value in DDR phy buffer if CS1 is not exist,
* make sure CS1 MR8 to align with CS0 since CS0 MR8 is always right.
*/
if (temp_value1 == 0x00) {
if (cs_value1 != cs_value2) {
cs1_valid = 0;
} else {
cs1_valid = 1;
}
} else {
cs1_valid = 0; // CS1 invalid
}
if (cs1_valid)
ddr_size = cs0_size * 2;
else
ddr_size = cs0_size;
pr_info("ddr_size: 0x%08x\n", ddr_size);
/*
* step 3: read out the CS0 MR5
*/
writel(0x11010005, (mc_base + 0x024));
delay_long_us(5000);
value = readl((mc_base + 0x370));
pr_info("CS0 MR5: 0x%08x\n", value);
if (value & BIT_31) {
mrr_temp_value = value & 0xFF;
pr_info("mrr_temp_value: 0x%08x\n", mrr_temp_value);
switch (mrr_temp_value) {
case Samsung_ID:
pr_info("DDR Vendor: Samsung\n");
break;
case Qimonda_ID:
pr_info("DDR Vendor: Qimonda\n");
break;
/*
* NOTE:
*
* DDR vendor id of Toshiba is same as Elpida, there is no way to distinguish only use MR5.
* We only use Elpida id for now.
*
* Todo: might need to use more info to distinguish them.
*/
case Elpida_ID: // Toshiba_ID
pr_info("DDR Vendor: Elpida\n");
break;
case Etron_ID:
pr_info("DDR Vendor: Etron\n");
break;
case Nanya_ID:
pr_info("DDR Vendor: Nanya\n");
break;
case Hynix_ID:
pr_info("DDR Vendor: Hynix\n");
break;
case Mosel_ID:
pr_info("DDR Vendor: Mosel\n");
break;
case Winbond_ID:
pr_info("DDR Vendor: Winbond\n");
break;
case ESMT_ID:
pr_info("DDR Vendor: ESMT\n");
break;
case ESMT2_ID:
mrr_temp_value = ESMT_ID;
pr_info("DDR Vendor: ESMT\n");
break;
case Reserved_ID:
pr_info("DDR Vendor: Reserved\n");
break;
case Spansion_ID:
pr_info("DDR Vendor: Spansion\n");
break;
case SST_ID:
pr_info("DDR Vendor: SST\n");
break;
case ZMOS_ID:
pr_info("DDR Vendor: ZMOS\n");
break;
case Intel_ID:
pr_info("DDR Vendor: Intel\n");
break;
case JSC_ID:
mrr_temp_value = 0x13; /* to match ddr package id */
pr_info("DDR Vendor: JSC\n");
break;
case Numonyx_ID:
pr_info("DDR Vendor: Numonyx\n");
break;
case Micron_ID:
pr_info("DDR Vendor: Micron\n");
break;
case Fidelix_ID:
pr_info("DDR Vendor: Fidelix\n");
break;
case UNIC_ID:
mrr_temp_value = ZMOS_ID;
pr_info("DDR Vendor: UNIC\n");
break;
default:
pr_info("Unsupported DDR Vendor ID: 0x%08x\n", (value & 0xFF));
break;
}
}
soc_ddrid = (mrr_temp_value << 8) | (ddr_size & 0xFF);
ddr_unlock_set_old_freq();
pr_info("soc_ddrid: 0x%08x\n", soc_ddrid);
}
static void soc_init_ids(struct ddr_devfreq_data *data)
{
void __iomem *mc_base = data->dmc.hw_base;
soc_init_ddrid(mc_base);
soc_chipid = readl(regs_addr_get_va(REGS_ADDR_CIU));
pr_info("soc_chipid: 0x%08x\n", soc_chipid);
soc_chipid &= 0xffffff;
}
static ssize_t soc_id_read(struct file *filp, char __user *user_buf,
size_t count, loff_t *f_pos)
{
ssize_t ret, len = 0;
char *kbuf;
if (*f_pos)
return 0;
kbuf = kzalloc(128, GFP_KERNEL);
if (!kbuf) {
pr_err("Cannot allocate buffer!\n");
return -ENOMEM;
}
/* allow multiple calls to validate the correctness of ddrid */
soc_init_ids(ddrfreq_data);
len += sprintf(kbuf + len, "chip_id: %08x\n", soc_chipid);
len += sprintf(kbuf + len, "ddr_id: %08x\n", soc_ddrid);
ret = simple_read_from_buffer(user_buf, count, f_pos, kbuf, len);
kfree(kbuf);
return ret;
}
static const struct file_operations soc_id_fops = {
.owner = THIS_MODULE,
.read = soc_id_read,
};
static struct miscdevice soc_id_miscdev = {
MISC_DYNAMIC_MINOR,
"soc_id",
&soc_id_fops
};
static void axi_mon_init(void * __iomem aximon_base)
{
int i;
for (i = 0; i < NR_AXI_MON_PORT; i++)
writel(0x80000020, aximon_base + (AXI_MON_CTRL + (i << 4)));
}
static void get_aximon_data(void * __iomem aximon_base, struct ddr_stats_data *data)
{
int i;
for (i = 0; i < NR_AXI_MON_PORT; i++) {
writel(0x80000065, aximon_base + (AXI_MON_CTRL + (i << 4)));
data->max_read_latency[i] = readl(aximon_base + (AXI_MON_DATA + (i << 4)));
writel(0x8000006D, aximon_base + (AXI_MON_CTRL + (i << 4)));
data->max_write_latency[i] = readl(aximon_base + (AXI_MON_DATA + (i << 4)));
writel(0x80000070, aximon_base + (AXI_MON_CTRL + (i << 4)));
data->axi_read_bytes[i] = readl(aximon_base + (AXI_MON_DATA + (i << 4)));
writel(0x80000072, aximon_base + (AXI_MON_CTRL + (i << 4)));
data->axi_write_bytes[i] = readl(aximon_base + (AXI_MON_DATA + (i << 4)));
}
/* reset and begin new sampling of axi monitor counters */
for (i = 0; i < NR_AXI_MON_PORT; i++) {
writel(0x00000000, aximon_base + (AXI_MON_CTRL + (i << 4)));
writel(0x80000020, aximon_base + (AXI_MON_CTRL + (i << 4)));
}
}
static inline void __update_dev_upthreshold(unsigned int upthrd,
struct devfreq_throughput_data *gov_data)
{
int i;
for (i = 0; i < gov_data->table_len; i++) {
if (ddrfreq_driver_data->mode_4x_en) {
gov_data->throughput_table[i].up =
upthrd * devfreq_throughput_data.ddr_efficiency
* (gov_data->freq_table[i] / 100) / 100;
gov_data->throughput_table[i].down =
(upthrd - gov_data->downdifferential) *
devfreq_throughput_data.ddr_efficiency
* (gov_data->freq_table[i] / 100) / 100;
} else {
gov_data->throughput_table[i].up =
upthrd * gov_data->freq_table[i] / 100;
gov_data->throughput_table[i].down =
(upthrd - gov_data->downdifferential) *
gov_data->freq_table[i] / 100;
}
}
}
/* notifier to change the devfreq govoner's upthreshold */
static int upthreshold_freq_notifer_call(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = data;
struct ddr_devfreq_data *cur_data =
container_of(nb, struct ddr_devfreq_data, freq_transition);
struct devfreq *devfreq = cur_data->devfreq;
struct devfreq_throughput_data *gov_data;
int evoc = 0;
unsigned int upthrd;
if (val != CPUFREQ_POSTCHANGE/* &&
val != GPUFREQ_POSTCHANGE_UP &&
val != GPUFREQ_POSTCHANGE_DOWN */)
return NOTIFY_OK;
mutex_lock(&devfreq->lock);
gov_data = devfreq->data;
#if 0
if (val == GPUFREQ_POSTCHANGE_UP)
cur_data->gpu_up = 1;
else if (val == GPUFREQ_POSTCHANGE_DOWN)
cur_data->gpu_up = 0;
else
#endif
if (freq->new >= cur_data->high_upthrd_swp)
cur_data->cpu_up = 1;
else
cur_data->cpu_up = 0;
evoc = generate_evoc(cur_data->gpu_up, cur_data->cpu_up);
if (evoc)
upthrd = cur_data->high_upthrd;
else
upthrd = gov_data->upthreshold;
__update_dev_upthreshold(upthrd, gov_data);
mutex_unlock(&devfreq->lock);
trace_pxa_ddr_upthreshold(upthrd);
return NOTIFY_OK;
}
int gpufeq_register_dev_notifier(struct srcu_notifier_head *gpu_notifier_chain)
{
return srcu_notifier_chain_register(gpu_notifier_chain,
&ddrfreq_driver_data->freq_transition);
}
EXPORT_SYMBOL(gpufeq_register_dev_notifier);
#endif /* CONFIG_DDR_DEVFREQ_GOV_THROUGHPUT */
static int ddr_max;
static int __init ddr_max_setup(char *str)
{
int freq;
if (!get_option(&str, &freq))
return 0;
ddr_max = freq;
return 1;
}
__setup("ddr_max=", ddr_max_setup);
static int ddr_min = 104000;
static int __init ddr_min_setup(char *str)
{
int freq;
if (!get_option(&str, &freq))
return 0;
ddr_min = freq;
return 1;
}
__setup("ddr_min=", ddr_min_setup);
static void write_static_register(unsigned int val, unsigned int expected_val,
void *reg, unsigned int ver)
{
if (ver == MCK5 || ver == NZAS_MC)
writel(val, reg);
else
/* this should never happen */
BUG_ON(1);
}
static unsigned int read_static_register(void *reg, unsigned int ver)
{
unsigned int ret;
if (ver == MCK5 || ver == NZAS_MC)
ret = readl(reg);
else
/* this should never happen */
BUG_ON(1);
return ret;
}
static void stop_ddr_performance_counter(struct ddr_devfreq_data *data)
{
void __iomem *mc_base = data->dmc.hw_base;
struct mck_pmu_regs_offset *regs = &data->dmc.mck_regs;
unsigned int ver = data->dmc.version;
/*
* Write to Performance Counter Configuration Register to
* disable counters.
*/
write_static_register(0x0, 0x0, mc_base + regs->cfg, ver);
}
static void start_ddr_performance_counter(struct ddr_devfreq_data *data)
{
void __iomem *mc_base = data->dmc.hw_base;
struct mck_pmu_regs_offset *regs = &data->dmc.mck_regs;
unsigned int ver = data->dmc.version;
unsigned int val;
/*
* Write to Performance Counter Configuration Register to
* enable counters and choose the events for counters.
*/
switch (ver) {
case MCK5:
/*
* cnt1, event=0x00, clock cycles
* cnt2, event=0x1A, Read + Write command count
* cnt3, event=0x18, busy cycles
*/
val = ((0x00 | 0x00) << 0) | ((0x80 | 0x00) << 8) |
((0x80 | 0x1A) << 16) | ((0x80 | 0x18) << 24);
break;
case NZAS_MC:
/*
* cnt1, event=0x00, clock cycles
* cnt2, event=0x56, Read + Write command count
* cnt3, event=0x39, busy cycles
*/
val = ((0x00 | 0x00) << 0) | ((0x80 | 0x00) << 8) |
((0x80 | 0x56) << 16) | ((0x80 | 0x39) << 24);
break;
default:
/* this should never happen */
BUG_ON(1);
}
write_static_register(val, val, mc_base + regs->cfg, ver);
}
static void init_ddr_performance_counter(struct ddr_devfreq_data *data)
{
unsigned int i;
void __iomem *mc_base = data->dmc.hw_base;
struct mck_pmu_regs_offset *regs = &data->dmc.mck_regs;
unsigned int ver = data->dmc.version;
/*
* Step1: Write to Performance Counter Configuration Register to
* disable counters.
*/
write_static_register(0x0, 0x0, mc_base + regs->cfg, ver);
/*
* Step2: Write to Performance Counter Register to set the starting
* value.
*/
for (i = 0; i < data->dmc.pmucnt_in_use; i++) {
write_static_register(0x0, 0x0,
mc_base + regs->cnt_base + i * 4, ver);
}
/*
* Step3: Write to Performance Counter Status Register to clear
* overflow flag.
*/
write_static_register(0xf, 0x0, mc_base + regs->cnt_stat, ver);
/*
* Step4: Write to Performance Counter Control Register to select
* the desired settings
* bit18:16 0x0 = Divide clock by 1
* bit4 0x1 = Continue counting on any counter overflow
* bit0 0x0 = Enabled counters begin counting
*/
write_static_register(0x10, 0x10, mc_base + regs->ctrl, ver);
/* Step5: Enable Performance Counter interrupt */
write_static_register(data->intr_en_val, data->intr_en_val, mc_base + regs->intr_en, ver);
}
static int ddr_rate2_index(struct ddr_devfreq_data *data)
{
unsigned int rate;
int i;
rate = clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
for (i = 0; i < data->ddr_freq_tbl_len; i++)
if (data->ddr_freq_tbl[i] == rate)
return i;
dev_err(&data->devfreq->dev, "unknow ddr rate %d\n", rate);
return -1;
}
static unsigned int ddr_index2_rate(struct ddr_devfreq_data *data, int index)
{
if ((index >= 0) && (index < data->ddr_freq_tbl_len))
return data->ddr_freq_tbl[index];
else {
dev_err(&data->devfreq->dev,
"unknow ddr index %d\n", index);
return 0;
}
}
/*
* overflow: 1 means overflow shouled be handled, 0 means not.
* start: 1 means performance counter is started after update, 0 means not.
*/
static void ddr_perf_cnt_update(struct ddr_devfreq_data *data, u32 overflow,
u32 start)
{
struct perf_counters *ddr_ticks = data->dmc.ddr_ticks;
void *mc_base = (void *)data->dmc.hw_base;
struct mck_pmu_regs_offset *regs = &data->dmc.mck_regs;
unsigned int cnt, i, overflow_flag;
unsigned int ddr_idx = data->cur_ddr_idx;
unsigned long flags;
unsigned int ver = data->dmc.version;
if ((overflow != 1 && overflow != 0) || (start != 1 && start != 0)) {
dev_err(&data->devfreq->dev, "%s: parameter is not correct.\n",
__func__);
return;
}
if (ddr_idx >= data->ddr_freq_tbl_len) {
dev_err(&data->devfreq->dev, "%s: invalid ddr_idx %u\n",
__func__, ddr_idx);
return;
}
/*
* To make life simpler, only handle overflow case in IRQ->work path.
* So the overflow parameter will only be 1 in that path.
* If overflow is 0, keep polling here until that path complete if
* found overflow happen.
* The spin_unlock is to make sure the polling will not block the
* path we want to run.
*/
while (1) {
spin_lock_irqsave(&data->lock, flags);
/* stop counters, to keep data synchronized */
stop_ddr_performance_counter(data);
overflow_flag =
read_static_register(mc_base + regs->cnt_stat, ver)
& 0xf;
/* If overflow, bypass the polling */
if (overflow)
break;
/* If overflow happen right now, wait for handler finishing */
if (!overflow_flag)
break;
spin_unlock_irqrestore(&data->lock, flags);
/* Take a breath here to let overflow work to get cpu */
usleep_range(100, 1000);
}
/* If overflow, clear pended overflow flag in MC */
if (overflow)
write_static_register(overflow_flag, 0x0,
mc_base + regs->cnt_stat, ver);
for (i = 0; i < data->dmc.pmucnt_in_use; i++) {
cnt = read_static_register(mc_base + regs->cnt_base + i * 4,
ver);
if (overflow_flag & (1 << i)) {
dev_dbg(&data->devfreq->dev,
"DDR perf counter overflow!\n");
ddr_ticks[ddr_idx].reg[i] += (1LLU << 32);
}
ddr_ticks[ddr_idx].reg[i] += cnt;
/* reset performance counter to 0x0 */
write_static_register(0x0, 0x0,
mc_base + regs->cnt_base + i * 4, ver);
}
if (start)
start_ddr_performance_counter(data);
spin_unlock_irqrestore(&data->lock, flags);
}
static int __init ddr_perf_cnt_init(struct ddr_devfreq_data *data)
{
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
init_ddr_performance_counter(data);
start_ddr_performance_counter(data);
spin_unlock_irqrestore(&data->lock, flags);
data->cur_ddr_idx = ddr_rate2_index(data);
return 0;
}
static inline void ddr_perf_cnt_restart(struct ddr_devfreq_data *data)
{
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
start_ddr_performance_counter(data);
spin_unlock_irqrestore(&data->lock, flags);
}
/*
* get the mck total_ticks, data_ticks, speed.
*/
static void get_ddr_cycles(struct ddr_devfreq_data *data,
unsigned long *total_ticks, unsigned long *data_ticks, int *speed)
{
unsigned long flags;
unsigned int diff_ms;
unsigned long long time_stamp_cur;
static unsigned long long time_stamp_old;
struct perf_counters *ddr_ticks = data->dmc.ddr_ticks;
int i;
u64 *total_ticks_base = data->ddr_profiler.total_ticks_base;
u64 *data_ticks_base = data->ddr_profiler.data_ticks_base;
spin_lock_irqsave(&data->lock, flags);
*total_ticks = *data_ticks = 0;
for (i = 0; i < data->ddr_freq_tbl_len; i++) {
*total_ticks += ddr_ticks[i].reg[1] - total_ticks_base[i];
*data_ticks += ddr_ticks[i].reg[2] - data_ticks_base[i];
total_ticks_base[i] = ddr_ticks[i].reg[1];
data_ticks_base[i] = ddr_ticks[i].reg[2];
}
if (data->mode_4x_en)
*total_ticks = (*total_ticks) << 1;
*data_ticks = *data_ticks * data->bst_len / 2;
spin_unlock_irqrestore(&data->lock, flags);
time_stamp_cur = sched_clock();
diff_ms = (unsigned int)div_u64(time_stamp_cur - time_stamp_old,
1000000);
time_stamp_old = time_stamp_cur;
if (diff_ms != 0)
*speed = *data_ticks / diff_ms;
else
*speed = -1;
}
static int ddr_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct ddr_devfreq_data *data = dev_get_drvdata(dev);
struct devfreq *df = data->devfreq;
unsigned int workload;
unsigned long polling_jiffies;
unsigned long now = jiffies;
stat->current_frequency = clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
/*
* ignore the profiling if it is not from devfreq_monitor
* or there is no profiling
*/
polling_jiffies = msecs_to_jiffies(df->profile->polling_ms);
if (!polling_jiffies || (polling_jiffies && data->last_polled_at &&
time_before(now, (data->last_polled_at + polling_jiffies)))) {
dev_dbg(dev,
"No profiling or interval is not expired %lu, %lu, %lu\n",
polling_jiffies, now, data->last_polled_at);
return -EINVAL;
}
ddr_perf_cnt_update(data, 0, 1);
get_ddr_cycles(data, &stat->total_time,
&stat->busy_time, &stat->throughput);
if (data->axi_mon_base) {
get_aximon_data(data->axi_mon_base, &data->ddr_stats);
data->ddr_stats.ddr_cycles = stat->total_time;
data->ddr_stats.data_cycles = stat->busy_time;
}
data->last_polled_at = now;
/* Ajust the workload calculation here to align with devfreq governor */
if (stat->busy_time >= (1 << 24) || stat->total_time >= (1 << 24)) {
stat->busy_time >>= 7;
stat->total_time >>= 7;
}
workload = cal_workload(stat->busy_time, stat->total_time);
data->workload = workload;
dev_dbg(dev, "workload is %d precent\n", workload);
dev_dbg(dev, "busy time is 0x%x, %u\n", (unsigned int)stat->busy_time,
(unsigned int)stat->busy_time);
dev_dbg(dev, "total time is 0x%x, %u\n\n",
(unsigned int)stat->total_time,
(unsigned int)stat->total_time);
dev_dbg(dev, "throughput is 0x%x, throughput * 8 (speed) is %u\n\n",
(unsigned int)stat->throughput, 8 * stat->throughput);
trace_pxa_ddr_workload(workload, stat->current_frequency,
stat->throughput);
return 0;
}
static unsigned long ddr_set_rate(struct ddr_devfreq_data *data,
unsigned long tgt_rate)
{
unsigned long cur_freq, tgt_freq;
int ddr_idx;
cur_freq = clk_get_rate(data->ddr_clk);
tgt_freq = tgt_rate * KHZ_TO_HZ;
dev_dbg(&data->devfreq->dev, "%s: curfreq %lu, tgtfreq %lu\n",
__func__, cur_freq, tgt_freq);
/* update performance data before ddr clock change */
ddr_perf_cnt_update(data, 0, 0);
/* clk_set_rate will find a frequency larger or equal tgt_freq */
clk_set_rate(data->ddr_clk, tgt_freq);
/* re-init ddr performance counters after ddr clock change */
ddr_perf_cnt_restart(data);
ddr_idx = ddr_rate2_index(data);
if (ddr_idx >= 0) {
data->cur_ddr_idx = ddr_idx;
return data->ddr_freq_tbl[ddr_idx];
} else
dev_err(&data->devfreq->dev, "Failed to do ddr freq change\n");
return tgt_freq;
}
static void find_best_freq(struct ddr_devfreq_data *data, unsigned long *freq,
u32 flags)
{
int i;
unsigned long temp = *freq;
u32 *freq_table = data->ddr_freq_tbl;
u32 len = data->ddr_freq_tbl_len;
if (*freq < freq_table[0]) {
*freq = freq_table[0];
return;
}
if (flags & DEVFREQ_FLAG_LEAST_UPPER_BOUND) {
for (i = 1; i < len; i++)
if (freq_table[i - 1] <= temp
&& freq_table[i] > temp) {
*freq = freq_table[i - 1];
break;
}
} else {
for (i = 0; freq_table[i]; i++)
if (freq_table[i] >= temp) {
*freq = freq_table[i];
break;
}
}
if (i == len)
*freq = freq_table[i - 1];
}
static int ddr_target(struct device *dev, unsigned long *freq,
unsigned int flags)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
struct devfreq *df;
unsigned int *ddr_freq_table, ddr_freq_len;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
/* in normal case ddr fc will NOT be disabled */
if (unlikely(atomic_read(&data->is_disabled))) {
df = data->devfreq;
/*
* this function is called with df->locked, it is safe to
* read the polling_ms here
*/
if (df->profile->polling_ms)
dev_err(dev, "[WARN] ddr ll fc is disabled from "
"debug interface, suggest to disable "
"the profiling at first!\n");
*freq = clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
return 0;
}
ddr_freq_table = &data->ddr_freq_tbl[0];
ddr_freq_len = data->ddr_freq_tbl_len;
dev_dbg(dev, "%s: %u\n", __func__, (unsigned int)*freq);
find_best_freq(data, freq, flags);
*freq = ddr_set_rate(data, *freq);
return 0;
}
static int configure_mck_pmu_regs(struct ddr_devfreq_data *data)
{
unsigned int ver = data->dmc.version;
switch (ver) {
case MCK5:
case NZAS_MC:
data->dmc.mck_regs.cfg = MCK5_PERF_CONFIG;
data->dmc.mck_regs.cnt_stat = MCK5_PERF_STATUS;
data->dmc.mck_regs.ctrl = MCK5_PERF_CONTRL;
data->dmc.mck_regs.cnt_base = MCK5_PERF_CNT_BASE;
data->dmc.mck_regs.intr_stat = MCK5_INTR_STATUS;
data->dmc.mck_regs.intr_en = MCK5_INTR_EN;
#ifndef CONFIG_OPTEE
/* nsaid is enabled */
if ((ver == NZAS_MC) && (read_static_register(data->dmc.hw_base + DDR_TZ_RANGE0_LOW, ver) & 0x1)) {
data->dmc.mck_regs.adc_err_info = DDR_ADC_ERR_INFO;
data->dmc.mck_regs.adc_err_addr_l = DDR_ADC_ERR_ADDR_L;
data->dmc.mck_regs.adc_err_addr_h = DDR_ADC_ERR_ADDR_H;
data->dmc.mck_regs.adc_err_id = DDR_ADC_ERR_ID;
data->intr_en_val = DDR_INTR_EN_OVFL_ADC;
} else {
data->intr_en_val = DDR_INTR_EN_OVFL;
}
#else
data->intr_en_val = DDR_INTR_EN_OVFL;
#endif
pr_info("intr_en_val: 0x%x\n", data->intr_en_val);
return 0;
default:
return -EINVAL;
}
}
static int ddr_get_cur_freq(struct device *dev, unsigned long *freq)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
*freq = clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
return 0;
}
static struct devfreq_dev_profile ddr_devfreq_profile = {
/* Profiler is not enabled by default */
.polling_ms = 0,
.target = ddr_target,
.get_dev_status = ddr_get_dev_status,
.get_cur_freq = ddr_get_cur_freq,
};
/* interface to change the switch point of high aggresive upthreshold */
static ssize_t high_swp_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
struct devfreq *devfreq;
unsigned int swp;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
devfreq = data->devfreq;
if (0x1 != sscanf(buf, "%u", &swp)) {
dev_err(dev, "<ERR> wrong parameter\n");
return -E2BIG;
}
mutex_lock(&devfreq->lock);
data->high_upthrd_swp = swp;
mutex_unlock(&devfreq->lock);
return size;
}
static ssize_t high_swp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
return sprintf(buf, "%u\n", data->high_upthrd_swp);
}
/* interface to change the aggresive upthreshold value */
static ssize_t high_upthrd_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
struct devfreq *devfreq;
unsigned int high_upthrd;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
devfreq = data->devfreq;
if (0x1 != sscanf(buf, "%u", &high_upthrd)) {
dev_err(dev, "<ERR> wrong parameter\n");
return -E2BIG;
}
mutex_lock(&devfreq->lock);
data->high_upthrd = high_upthrd;
if (data->cpu_up)
__update_dev_upthreshold(high_upthrd, devfreq->data);
mutex_unlock(&devfreq->lock);
return size;
}
static ssize_t high_upthrd_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
return sprintf(buf, "%u\n", data->high_upthrd);
}
/* debug interface used to totally disable ddr fc */
static ssize_t disable_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
int is_disabled;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
if (0x1 != sscanf(buf, "%d", &is_disabled)) {
dev_err(dev, "<ERR> wrong parameter\n");
return -E2BIG;
}
is_disabled = !!is_disabled;
if (is_disabled == atomic_read(&data->is_disabled)) {
dev_info_ratelimited(dev, "[WARNING] ddr fc is already %s\n",
atomic_read(&data->is_disabled) ?
"disabled" : "enabled");
return size;
}
if (is_disabled)
atomic_inc(&data->is_disabled);
else
atomic_dec(&data->is_disabled);
dev_info(dev, "[WARNING]ddr fc is %s from debug interface!\n",
atomic_read(&data->is_disabled) ? "disabled" : "enabled");
return size;
}
static ssize_t disable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
return sprintf(buf, "ddr fc is_disabled = %d\n",
atomic_read(&data->is_disabled));
}
/*
* Debug interface used to change ddr rate.
* It will ignore all devfreq and Qos requests.
* Use interface disable_ddr_fc prior to it.
*/
static ssize_t ddr_freq_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
int freq;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
if (!atomic_read(&data->is_disabled)) {
dev_err(dev, "<ERR> It will change ddr rate,"
"disable ddr fc at first\n");
return -EPERM;
}
if (0x1 != sscanf(buf, "%d", &freq)) {
dev_err(dev, "<ERR> wrong parameter, "
"echo freq > ddr_freq to set ddr rate(unit Khz)\n");
return -E2BIG;
}
ddr_set_rate(data, freq);
dev_dbg(dev, "ddr freq read back: %lu\n",
clk_get_rate(data->ddr_clk) / KHZ_TO_HZ);
return size;
}
static ssize_t ddr_freq_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
return sprintf(buf, "current ddr freq is: %lu\n",
clk_get_rate(data->ddr_clk) / KHZ_TO_HZ);
}
/* debug interface to enable/disable perf counter during AP suspend */
static ssize_t stop_perf_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
int is_stopped;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
if (0x1 != sscanf(buf, "%d", &is_stopped)) {
dev_err(dev, "<ERR> wrong parameter\n");
return -E2BIG;
}
is_stopped = !!is_stopped;
if (is_stopped == atomic_read(&data->is_stopped)) {
dev_info(dev, "perf counter has been already %s in suspend\n",
atomic_read(&data->is_stopped) ? "off" : "on");
return size;
}
if (is_stopped)
atomic_inc(&data->is_stopped);
else
atomic_dec(&data->is_stopped);
dev_info(dev, "perf counter is %s from debug interface!\n",
atomic_read(&data->is_stopped) ? "off" : "on");
return size;
}
static ssize_t stop_perf_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
return sprintf(buf, "perf counter is_stopped = %d\n",
atomic_read(&data->is_stopped));
}
/* used to collect ddr cnt during 20ms */
int ddr_profiling_show(struct clk_dc_stat_info *dc_stat_info)
{
struct ddr_devfreq_data *data;
struct perf_counters *ddr_ticks, *ddr_ticks_base, *ddr_ticks_diff;
int i, j, k, len = 0;
unsigned long flags;
unsigned int ver;
unsigned int glob_ratio, idle_ratio, busy_ratio, data_ratio, util_ratio;
unsigned int tmp_total, tmp_rw_cmd, tmp_busy;
unsigned int tmp_data_cycle, cnttime_ms, cnttime_ms_ddr;
u64 glob_ticks;
data = ddrfreq_data;
ddr_ticks = data->dmc.ddr_ticks;
ddr_ticks_base = data->ddr_stats.ddr_ticks_base;
ddr_ticks_diff = data->ddr_stats.ddr_ticks_diff;
ver = data->dmc.version;
idle_ratio = busy_ratio = data_ratio = util_ratio = 0;
/* If ddr stat is working, need get latest data */
if (data->ddr_stats.is_ddr_stats_working) {
ktime_get_ts64(&data->stop_ts);
ddr_perf_cnt_update(data, 0, 1);
spin_lock_irqsave(&data->lock, flags);
for (i = 0; i < data->ddr_freq_tbl_len; i++)
for (j = 0; j < data->dmc.pmucnt_in_use; j++)
ddr_ticks_diff[i].reg[j] =
ddr_ticks[i].reg[j] -
ddr_ticks_base[i].reg[j];
spin_unlock_irqrestore(&data->lock, flags);
}
cnttime_ms = (data->stop_ts.tv_sec - data->start_ts.tv_sec) * MSEC_PER_SEC +
(data->stop_ts.tv_nsec - data->start_ts.tv_nsec) / NSEC_PER_MSEC;
cnttime_ms_ddr = 0;
for (i = 0; i < data->ddr_freq_tbl_len; i++) {
cnttime_ms_ddr += div_u64(ddr_ticks_diff[i].reg[1],
ddr_index2_rate(data, i));
}
/* ddr duty cycle show */
glob_ticks = 0;
spin_lock_irqsave(&data->lock, flags);
for (i = 0; i < data->ddr_freq_tbl_len; i++)
glob_ticks += ddr_ticks_diff[i].reg[1];
k = 0;
while ((glob_ticks >> k) > 0x7FFF)
k++;
for (i = 0; i < data->ddr_freq_tbl_len; i++) {
if ((u32)(glob_ticks >> k) != 0)
glob_ratio = (u32)(ddr_ticks_diff[i].reg[1] >> k)
* 100000 / (u32)(glob_ticks >> k) + 5;
else
glob_ratio = 0;
j = 0;
while ((ddr_ticks_diff[i].reg[1] >> j) > 0x7FFF)
j++;
tmp_total = ddr_ticks_diff[i].reg[1] >> j;
tmp_rw_cmd = ddr_ticks_diff[i].reg[2] >> j;
if (ver == MCK5 || ver == NZAS_MC)
tmp_busy = ddr_ticks_diff[i].reg[3] >> j;
else
/* this should never happen */
BUG_ON(1);
if (tmp_total != 0) {
tmp_data_cycle = tmp_rw_cmd * data->bst_len / 2;
if (data->mode_4x_en)
tmp_data_cycle = tmp_data_cycle >> 1;
data_ratio = tmp_data_cycle * 100000 / tmp_total + 5;
if (ver == MCK5 || ver == NZAS_MC) {
busy_ratio = tmp_busy * 100000 / tmp_total + 5;
idle_ratio = (tmp_total - tmp_busy)
* 100000 / tmp_total + 5;
util_ratio = tmp_data_cycle * 100000
/ tmp_busy + 5;
}
} else {
idle_ratio = 0;
busy_ratio = 0;
data_ratio = 0;
util_ratio = 0;
}
dc_stat_info->ops_dcstat[i].ddr_glob_ratio = glob_ratio;
dc_stat_info->ops_dcstat[i].ddr_idle_ratio = idle_ratio;
dc_stat_info->ops_dcstat[i].ddr_busy_ratio = busy_ratio;
dc_stat_info->ops_dcstat[i].ddr_data_ratio = data_ratio;
dc_stat_info->ops_dcstat[i].ddr_util_ratio = util_ratio;
}
spin_unlock_irqrestore(&data->lock, flags);
return len;
}
/* used to collect ddr cnt during a time */
int ddr_profiling_store(int start)
{
struct ddr_devfreq_data *data;
unsigned int cap_flag, i, j;
unsigned long flags;
struct perf_counters *ddr_ticks_base;
struct perf_counters *ddr_ticks_diff;
data = ddrfreq_data;
ddr_ticks_base = data->ddr_stats.ddr_ticks_base;
ddr_ticks_diff = data->ddr_stats.ddr_ticks_diff;
cap_flag = start;
if (cap_flag == 1) {
ddr_perf_cnt_update(data, 0, 1);
spin_lock_irqsave(&data->lock, flags);
for (i = 0; i < data->ddr_freq_tbl_len; i++) {
memcpy(ddr_ticks_base[i].reg,
data->dmc.ddr_ticks[i].reg,
sizeof(u64) * data->dmc.pmucnt_in_use);
}
spin_unlock_irqrestore(&data->lock, flags);
ktime_get_ts64(&data->start_ts);
data->ddr_stats.is_ddr_stats_working = 1;
} else if (cap_flag == 0 && data->ddr_stats.is_ddr_stats_working == 1) {
data->ddr_stats.is_ddr_stats_working = 0;
ktime_get_ts64(&data->stop_ts);
ddr_perf_cnt_update(data, 0, 1);
/* When stop ddr stats, get a snapshot of current result */
spin_lock_irqsave(&data->lock, flags);
for (i = 0; i < data->ddr_freq_tbl_len; i++)
for (j = 0; j < data->dmc.pmucnt_in_use; j++)
ddr_ticks_diff[i].reg[j] =
data->dmc.ddr_ticks[i].reg[j] -
ddr_ticks_base[i].reg[j];
spin_unlock_irqrestore(&data->lock, flags);
}
return 0;
}
static ssize_t normal_upthrd_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", devfreq_throughput_data.upthreshold);
}
static ssize_t normal_upthrd_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
struct devfreq *devfreq;
unsigned int normal_upthrd;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
devfreq = data->devfreq;
if (0x1 != sscanf(buf, "%u", &normal_upthrd)) {
dev_err(dev, "<ERR> wrong parameter\n");
return -E2BIG;
}
mutex_lock(&devfreq->lock);
devfreq_throughput_data.upthreshold = normal_upthrd;
if (!data->cpu_up)
__update_dev_upthreshold(normal_upthrd, devfreq->data);
mutex_unlock(&devfreq->lock);
return size;
}
static ssize_t upthrd_downdiff_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", devfreq_throughput_data.downdifferential);
}
static ssize_t upthrd_downdiff_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
struct devfreq *devfreq;
unsigned int upthrd_downdiff;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
devfreq = data->devfreq;
if (0x1 != sscanf(buf, "%u", &upthrd_downdiff)) {
dev_err(dev, "<ERR> wrong parameter\n");
return -E2BIG;
}
mutex_lock(&devfreq->lock);
devfreq_throughput_data.downdifferential = upthrd_downdiff;
if (data->cpu_up)
__update_dev_upthreshold(data->high_upthrd, devfreq->data);
else
__update_dev_upthreshold(devfreq_throughput_data.upthreshold,
devfreq->data);
mutex_unlock(&devfreq->lock);
return size;
}
static ssize_t ddr_workload_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
int i, count = 0;
u64 axi_total_bytes = 0;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
if (data->axi_mon_base && data->devfreq->profile->polling_ms) {
count += sprintf(buf + count, "AXI R TPT:\n");
for (i = 0; i < NR_AXI_MON_PORT; i++) {
count += sprintf(buf + count, "Port%d: %15d Kbytes / s\n",
i, (data->ddr_stats.axi_read_bytes[i] / 1024)
* (16 * 1000 / data->devfreq->profile->polling_ms));
axi_total_bytes += data->ddr_stats.axi_read_bytes[i];
}
count += sprintf(buf + count, "AXI W TPT:\n");
for (i = 0; i < NR_AXI_MON_PORT; i++) {
count += sprintf(buf + count, "Port%d: %15d Kbytes / s\n",
i, (data->ddr_stats.axi_write_bytes[i] / 1024)
* (16 * 1000 / data->devfreq->profile->polling_ms));
axi_total_bytes += data->ddr_stats.axi_write_bytes[i];
}
count += sprintf(buf + count, "AXI_tp_rate: %lld / 100\n",
div_u64((axi_total_bytes * 25), (data->ddr_stats.ddr_cycles >> 4)));
count += sprintf(buf + count, "ddr efficiency: %lld / 100\n\n",
div_u64((axi_total_bytes * 25), (data->ddr_stats.data_cycles >> 4)));
count += sprintf(buf + count, "max read latency:\n");
for (i = 0; i < NR_AXI_MON_PORT; i++)
count += sprintf(buf + count, "Port%d: %15d\n",
i, data->ddr_stats.max_read_latency[i]);
count += sprintf(buf + count, "max write latency:\n");
for (i = 0; i < NR_AXI_MON_PORT; i++)
count += sprintf(buf + count, "Port%d: %15d\n",
i, data->ddr_stats.max_write_latency[i]);
}
count += sprintf(buf + count, "ddr workload: %3d / 100\n", data->workload);
return count;
}
static struct pm_qos_request ddrfreq_qos_boot_max;
static struct pm_qos_request ddrfreq_qos_boot_min;
static DEVICE_ATTR(stop_perf_in_suspend, S_IRUGO | S_IWUSR,
stop_perf_show, stop_perf_store);
static DEVICE_ATTR(high_upthrd_swp, S_IRUGO | S_IWUSR,
high_swp_show, high_swp_store);
static DEVICE_ATTR(high_upthrd, S_IRUGO | S_IWUSR,
high_upthrd_show, high_upthrd_store);
static DEVICE_ATTR(disable_ddr_fc, S_IRUGO | S_IWUSR,
disable_show, disable_store);
static DEVICE_ATTR(ddr_freq, S_IRUGO | S_IWUSR,
ddr_freq_show, ddr_freq_store);
static DEVICE_ATTR(normal_upthrd, S_IRUGO | S_IWUSR,
normal_upthrd_show, normal_upthrd_store);
static DEVICE_ATTR(upthrd_downdiff, S_IRUGO | S_IWUSR,
upthrd_downdiff_show, upthrd_downdiff_store);
static DEVICE_ATTR(workload, S_IRUGO, ddr_workload_show, NULL);
/*
* Overflow interrupt handler
* Basing on DE's suggestion, the flow to clear interrutp is:
* 1. Disable interrupt.
* 2. Read interrupt status to clear it.
* 3. Enable interrupt again.
* But DE also suggest to clear overflow flag here. By confirming, the only
* side effect not to clear the flag is the next overflow event, no matter
* same event triggering the interrupt or not, will not trigger interrupt
* again. Since the work will check all overflow events and clear, there
* will be no issue not to clear the overflow event on top half.
*/
static irqreturn_t ddrc_overflow_handler(int irq, void *dev_id)
{
struct ddr_devfreq_data *data = dev_id;
void *mc_base = (void *)data->dmc.hw_base;
struct mck_pmu_regs_offset *regs = &data->dmc.mck_regs;
unsigned int ver = data->dmc.version;
u32 int_flag;
/*
* Step1: Write to SDRAM Interrupt Enable Register to disable
* interrupt
*/
write_static_register(0x0, 0x0, mc_base + regs->intr_en, ver);
/* Step2: Read SDRAM Interrupt Status Register to clear interrupt */
int_flag = read_static_register(mc_base + regs->intr_stat, ver) & data->intr_en_val;
if (NZAS_MC == ver)
write_static_register(int_flag, 0x0, mc_base + regs->intr_stat, ver);
if (!int_flag) {
if (!cpu_is_asr1828())
pr_err("No pended MC interrupt when handling it.\n"
"This should not happen.\n");
write_static_register(data->intr_en_val, data->intr_en_val, mc_base + regs->intr_en, ver);
return IRQ_HANDLED;
}
#ifndef CONFIG_OPTEE
if (int_flag & 0x4) {
pr_err("ddr error: 0x%08x 0x%08x 0x%08x 0x%08x\n",
read_static_register(mc_base + regs->adc_err_info, ver),
read_static_register(mc_base + regs->adc_err_addr_l, ver),
read_static_register(mc_base + regs->adc_err_addr_h, ver),
read_static_register(mc_base + regs->adc_err_id, ver));
/* clear error info */
write_static_register((read_static_register(mc_base + regs->adc_err_info, ver) | DDR_ADC_INFO_CLR),
(read_static_register(mc_base + regs->adc_err_info, ver) | DDR_ADC_INFO_CLR),
(mc_base + regs->adc_err_info), ver);
}
#endif
/*
* Step3: Write to SDRAM Interrupt Enable Register to enable
* interrupt again
*/
write_static_register(data->intr_en_val, data->intr_en_val, mc_base + regs->intr_en, ver);
/* overflow */
if (int_flag & 0x1)
schedule_work(&data->overflow_work);
return IRQ_HANDLED;
}
/*
* Queued work for overflow interrupt.
* When update, the overflow flag will be checked and cleared.
*/
static void ddrc_overflow_worker(struct work_struct *work)
{
struct ddr_devfreq_data *data = container_of(work,
struct ddr_devfreq_data, overflow_work);
u32 overflow_flag;
void *mc_base = (void *)data->dmc.hw_base;
struct mck_pmu_regs_offset *regs = &data->dmc.mck_regs;
unsigned int ver = data->dmc.version;
/* Check if there is unexpected behavior */
overflow_flag = read_static_register(mc_base + regs->cnt_stat, ver)
& 0xf;
if (!overflow_flag) {
if (ver == MCK5 || ver == NZAS_MC) {
pr_warn("No overflag pended when interrupt happen.\n"
"This should rarely happen.\n");
} else
/* this should never happen */
BUG_ON(1);
}
/* update stat and clear overflow flag */
ddr_perf_cnt_update(data, 1, 1);
}
#ifdef CONFIG_CPU_ASR1903
int devfreq_cpu_pm_notify(unsigned long pm_action)
{
static bool devfreq_pm_flag = false;
if (ddrfreq_data) {
if (pm_action == CPU_PM_ENTER) {
ddr_perf_cnt_update(ddrfreq_data, 0, 0);
devfreq_pm_flag = true;
} else if ((pm_action == CPU_PM_EXIT) && (devfreq_pm_flag == true)) {
init_ddr_performance_counter(ddrfreq_data);
ddr_perf_cnt_restart(ddrfreq_data);
devfreq_pm_flag = false;
}
}
return NOTIFY_OK;
}
#endif
static int ddr_devfreq_probe(struct platform_device *pdev)
{
int i = 0, res;
int ret = 0;
struct device *dev = &pdev->dev;
struct ddr_devfreq_data *data = NULL;
struct devfreq_frequency_table *tbl;
unsigned int reg_info[2];
unsigned int freq_qos = 0;
unsigned int tmp, ver, pmucnt_in_use;
struct resource *irqres;
void __iomem *apmu_base = NULL;
struct resource *r;
data = devm_kzalloc(dev, sizeof(struct ddr_devfreq_data), GFP_KERNEL);
if (data == NULL) {
dev_err(dev, "Cannot allocate memory for devfreq data.\n");
return -ENOMEM;
}
data->ddr_clk = __clk_lookup("ddr");
if (IS_ERR(data->ddr_clk)) {
dev_err(dev, "Cannot get clk ptr.\n");
return PTR_ERR(data->ddr_clk);
}
if (IS_ENABLED(CONFIG_OF)) {
if (of_property_read_u32_array(pdev->dev.of_node,
"reg", reg_info, 2)) {
dev_err(dev, "Failed to get register info\n");
return -ENODATA;
}
} else {
reg_info[0] = DEFAULT_MCK_BASE_ADDR;
reg_info[1] = DEFAULT_MCK_REG_SIZE;
}
/* axi monitor registers */
r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!r) {
dev_err(&pdev->dev, "%s: no aximonitor defined\n", __func__);
} else {
data->axi_mon_base = ioremap(r->start, resource_size(r));
axi_mon_init(data->axi_mon_base);
}
if (cpu_is_asr1901() || cpu_is_asr1906() || cpu_is_asr18xx() || cpu_is_asr1903()) {
apmu_base = regs_addr_get_va(REGS_ADDR_APMU);
if (cpu_is_asr1901() || cpu_is_asr1906() || (apmu_base && (readl(apmu_base +
APMU_MC_HW_SLP_TYPE) & MODE_4X_EN))) {
data->mode_4x_en = 1;
pr_info("ddr clk 4x mode enabled\n");
}
}
data->dmc.hw_base = ioremap(reg_info[0], reg_info[1]);
/* read MCK controller version */
data->dmc.version = MCK_UNKNOWN;
tmp = readl(data->dmc.hw_base);
ver = (tmp & MCK5_VER_MASK) >> MCK5_VER_SHIFT;
if (cpu_is_asr1901() || cpu_is_asr1906())
ver = NZAS_MC;
if (ver == MCK5 || ver == NZAS_MC) {
data->dmc.version = ver;
data->dmc.pmucnt_in_use = DEFAULT_PERCNT_IN_USE;
}
if (data->dmc.version == MCK_UNKNOWN) {
dev_err(dev, "Unsupported mck version!\n");
return -EINVAL;
}
dev_info(dev, "dmcu%d controller is detected!\n", ver);
configure_mck_pmu_regs(data);
/* get ddr burst length */
if (data->dmc.version == NZAS_MC) {
data->bst_len = 1 << ((read_static_register(data->dmc.hw_base +
NZAS_MC_MC_Control_0, ver) & NZAS_MC_MC_Control_0_BL_MASK)
>> NZAS_MC_MC_Control_0_BL_SHIFT);
} else if (data->dmc.version == MCK5) {
data->bst_len = 1 << ((read_static_register(data->dmc.hw_base +
MCK5_CH0_SDRAM_CFG1, ver) & MCK5_CH0_SDRAM_CFG1_BL_MASK)
>> MCK5_CH0_SDRAM_CFG1_BL_SHIFT);
}
dev_info(dev, "ddr burst length = %d\n", data->bst_len);
/* save ddr frequency tbl */
i = 0;
tbl = devfreq_frequency_get_table(DEVFREQ_DDR);
if (tbl) {
while (tbl->frequency != DEVFREQ_TABLE_END) {
data->ddr_freq_tbl[i] = tbl->frequency;
tbl++;
i++;
}
data->ddr_freq_tbl_len = i;
}
ddr_devfreq_profile.initial_freq =
clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
/* set the frequency table of devfreq profile */
if (data->ddr_freq_tbl_len) {
ddr_devfreq_profile.freq_table = (unsigned long *)data->ddr_freq_tbl;
ddr_devfreq_profile.max_state = data->ddr_freq_tbl_len;
for (i = 0; i < data->ddr_freq_tbl_len; i++)
dev_pm_opp_add(dev, data->ddr_freq_tbl[i], 1000);
}
/* allocate memory for performnace counter related arrays */
pmucnt_in_use = data->dmc.pmucnt_in_use;
for (i = 0; i < data->ddr_freq_tbl_len; i++) {
data->dmc.ddr_ticks[i].reg = devm_kzalloc(dev,
sizeof(u64) * pmucnt_in_use, GFP_KERNEL);
if (data->dmc.ddr_ticks[i].reg == NULL) {
dev_err(dev, "Cannot allocate memory for perf_cnt.\n");
return -ENOMEM;
}
data->ddr_stats.ddr_ticks_base[i].reg = devm_kzalloc(dev,
sizeof(u64) * pmucnt_in_use, GFP_KERNEL);
if (data->ddr_stats.ddr_ticks_base[i].reg == NULL) {
dev_err(dev, "Cannot allocate memory for ddr_stats.\n");
return -ENOMEM;
}
data->ddr_stats.ddr_ticks_diff[i].reg = devm_kzalloc(dev,
sizeof(u64) * pmucnt_in_use, GFP_KERNEL);
if (data->ddr_stats.ddr_ticks_diff[i].reg == NULL) {
dev_err(dev, "Cannot allocate memory for ddr_stats.\n");
return -ENOMEM;
}
}
irqres = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irqres)
return -ENODEV;
data->irq = irqres->start;
if (cpu_is_asr1828())
ret = request_irq(data->irq, ddrc_overflow_handler, IRQF_SHARED, dev_name(dev),
data);
else
ret = request_irq(data->irq, ddrc_overflow_handler, 0, dev_name(dev),
data);
if (ret) {
dev_err(dev, "Cannot request irq for MC!\n");
return -ENODEV;
}
INIT_WORK(&data->overflow_work, ddrc_overflow_worker);
/*
* Initilize the devfreq QoS if freq-qos flag is enabled.
* By default, the flag is disabled.
*/
freq_qos = 0;
if (IS_ENABLED(CONFIG_OF)) {
if (of_property_read_bool(pdev->dev.of_node, "marvell,qos"))
freq_qos = 1;
}
if (freq_qos) {
ddr_devfreq_profile.min_qos_type = PM_QOS_DDR_DEVFREQ_MIN;
ddr_devfreq_profile.max_qos_type = PM_QOS_DDR_DEVFREQ_MAX;
}
/* by default, disable performance counter when AP enters suspend */
atomic_set(&data->is_stopped, 1);
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
devfreq_throughput_data.freq_table = data->ddr_freq_tbl;
devfreq_throughput_data.table_len = data->ddr_freq_tbl_len;
devfreq_throughput_data.throughput_table =
kzalloc(devfreq_throughput_data.table_len
* sizeof(struct throughput_threshold), GFP_KERNEL);
if (NULL == devfreq_throughput_data.throughput_table) {
dev_err(dev,
"Cannot allocate memory for throughput table\n");
return -ENOMEM;
}
for (i = 0; i < devfreq_throughput_data.table_len; i++) {
if (data->mode_4x_en) {
devfreq_throughput_data.throughput_table[i].up =
devfreq_throughput_data.upthreshold
* devfreq_throughput_data.ddr_efficiency
* (devfreq_throughput_data.freq_table[i] / 100) / 100;
devfreq_throughput_data.throughput_table[i].down =
(devfreq_throughput_data.upthreshold
- devfreq_throughput_data.downdifferential)
* devfreq_throughput_data.ddr_efficiency
* (devfreq_throughput_data.freq_table[i] / 100) / 100;
} else {
devfreq_throughput_data.throughput_table[i].up =
devfreq_throughput_data.upthreshold
* devfreq_throughput_data.freq_table[i] / 100;
devfreq_throughput_data.throughput_table[i].down =
(devfreq_throughput_data.upthreshold
- devfreq_throughput_data.downdifferential)
* devfreq_throughput_data.freq_table[i] / 100;
}
}
#endif /* CONFIG_DEVFREQ_GOV_THROUGHPUT */
spin_lock_init(&data->lock);
data->devfreq = devfreq_add_device(&pdev->dev, &ddr_devfreq_profile,
"throughput", &devfreq_throughput_data);
if (IS_ERR(data->devfreq)) {
dev_err(dev, "devfreq add error !\n");
ret = (unsigned long)data->devfreq;
goto err_devfreq_add;
}
data->high_upthrd_swp = DDR_DEVFREQ_HIGHCPUFREQ;
data->high_upthrd = DDR_DEVFREQ_HIGHCPUFREQ_UPTHRESHOLD;
data->cpu_up = 0;
data->gpu_up = 0;
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
data->freq_transition.notifier_call = upthreshold_freq_notifer_call;
ddrfreq_driver_data = data;
#endif /* CONFIG_DEVFREQ_GOV_THROUGHPUT */
ddrfreq_data = data;
/* init default devfreq min_freq and max_freq */
data->devfreq->min_freq = data->devfreq->qos_min_freq =
data->ddr_freq_tbl[0];
data->devfreq->max_freq = data->devfreq->qos_max_freq =
data->ddr_freq_tbl[data->ddr_freq_tbl_len - 1];
data->last_polled_at = jiffies;
res = device_create_file(&pdev->dev, &dev_attr_disable_ddr_fc);
if (res) {
dev_err(dev,
"device attr disable_ddr_fc create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create0;
}
res = device_create_file(&pdev->dev, &dev_attr_ddr_freq);
if (res) {
dev_err(dev, "device attr ddr_freq create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create1;
}
res = device_create_file(&pdev->dev, &dev_attr_stop_perf_in_suspend);
if (res) {
dev_err(dev,
"device attr stop_perf_in_suspend create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create2;
}
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
res = device_create_file(&pdev->dev, &dev_attr_high_upthrd_swp);
if (res) {
dev_err(dev,
"device attr high_upthrd_swp create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create3;
}
res = device_create_file(&pdev->dev, &dev_attr_high_upthrd);
if (res) {
dev_err(dev,
"device attr high_upthrd create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create4;
}
/*
* register the notifier to cpufreq driver,
* it is triggered when core freq-chg is done
*/
cpufreq_register_notifier(&data->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
res = device_create_file(&pdev->dev, &dev_attr_normal_upthrd);
if (res) {
dev_err(dev,
"device attr normal_upthrd create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create5;
}
res = device_create_file(&pdev->dev, &dev_attr_upthrd_downdiff);
if (res) {
dev_err(dev,
"device attr upthrd_downdiff create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create6;
}
res = device_create_file(&pdev->dev, &dev_attr_workload);
if (res) {
dev_err(dev,
"device attr workload create fail: %d\n", res);
ret = -ENOENT;
goto err_file_create7;
}
platform_set_drvdata(pdev, data);
ddr_perf_cnt_init(data);
if (ddr_max) {
tmp = data->ddr_freq_tbl[data->ddr_freq_tbl_len - 1];
for (i = 1; i < data->ddr_freq_tbl_len; i++)
if ((data->ddr_freq_tbl[i - 1] <= ddr_max) &&
(data->ddr_freq_tbl[i] > ddr_max)) {
tmp = data->ddr_freq_tbl[i - 1];
break;
}
ddrfreq_qos_boot_max.name = "boot_ddr_max";
pm_qos_add_request(&ddrfreq_qos_boot_max,
PM_QOS_DDR_DEVFREQ_MAX, tmp);
}
if (ddr_min) {
tmp = data->ddr_freq_tbl[0];
for (i = 1; i < data->ddr_freq_tbl_len + 1; i++)
if (data->ddr_freq_tbl[i - 1] >= ddr_min) {
tmp = data->ddr_freq_tbl[i - 1];
break;
}
ddrfreq_qos_boot_min.name = "boot_ddr_min";
pm_qos_add_request(&ddrfreq_qos_boot_min,
PM_QOS_DDR_DEVFREQ_MIN, tmp);
}
ret = misc_register(&soc_id_miscdev);
if (ret) {
pr_err("%s: fail to register misc dev\n", __func__);
goto err_file_create7;
}
return 0;
err_file_create7:
device_remove_file(&pdev->dev, &dev_attr_upthrd_downdiff);
err_file_create6:
device_remove_file(&pdev->dev, &dev_attr_normal_upthrd);
err_file_create5:
device_remove_file(&pdev->dev, &dev_attr_high_upthrd);
err_file_create4:
device_remove_file(&pdev->dev, &dev_attr_high_upthrd_swp);
err_file_create3:
device_remove_file(&pdev->dev, &dev_attr_stop_perf_in_suspend);
err_file_create2:
device_remove_file(&pdev->dev, &dev_attr_ddr_freq);
err_file_create1:
device_remove_file(&pdev->dev, &dev_attr_disable_ddr_fc);
err_file_create0:
devfreq_remove_device(data->devfreq);
err_devfreq_add:
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
kfree(devfreq_throughput_data.throughput_table);
#endif /* CONFIG_DEVFREQ_GOV_THROUGHPUT */
free_irq(data->irq, data);
return ret;
}
static int ddr_devfreq_remove(struct platform_device *pdev)
{
struct ddr_devfreq_data *data = platform_get_drvdata(pdev);
device_remove_file(&pdev->dev, &dev_attr_disable_ddr_fc);
device_remove_file(&pdev->dev, &dev_attr_ddr_freq);
device_remove_file(&pdev->dev, &dev_attr_stop_perf_in_suspend);
device_remove_file(&pdev->dev, &dev_attr_high_upthrd_swp);
device_remove_file(&pdev->dev, &dev_attr_high_upthrd);
device_remove_file(&pdev->dev, &dev_attr_normal_upthrd);
device_remove_file(&pdev->dev, &dev_attr_upthrd_downdiff);
devfreq_remove_device(data->devfreq);
#ifdef CONFIG_DEVFREQ_GOV_THROUGHPUT
kfree(devfreq_throughput_data.throughput_table);
#endif /* CONFIG_DEVFREQ_GOV_THROUGHPUT */
free_irq(data->irq, data);
cancel_work_sync(&data->overflow_work);
return 0;
}
static const struct of_device_id devfreq_ddr_dt_match[] = {
{.compatible = "marvell,devfreq-ddr" },
{},
};
MODULE_DEVICE_TABLE(of, devfreq_ddr_dt_match);
#ifdef CONFIG_PM
static unsigned long saved_ddrclk;
static int mck_suspend(struct device *dev)
{
struct list_head *list_min;
struct plist_node *node;
struct pm_qos_request *req;
unsigned int qos_min, i = 0;
unsigned long new_ddrclk, cp_request = 0;
struct platform_device *pdev;
struct ddr_devfreq_data *data;
unsigned long flags;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
new_ddrclk = data->ddr_freq_tbl[0];
mutex_lock(&data->devfreq->lock);
/* scaling to the min frequency before entering suspend */
saved_ddrclk = clk_get_rate(data->ddr_clk) / KHZ_TO_HZ;
qos_min = (unsigned int)pm_qos_request(PM_QOS_DDR_DEVFREQ_MIN);
list_min = &pm_qos_array[PM_QOS_DDR_DEVFREQ_MIN]
->constraints->list.node_list;
list_for_each_entry(node, list_min, node_list) {
req = container_of(node, struct pm_qos_request, node);
if (req->name && !strcmp(req->name, "cp") &&
(node->prio > data->ddr_freq_tbl[0])) {
dev_info(dev, "%s request min qos\n",
req->name);
cp_request = 1;
break;
}
}
/* if CP request QOS min, set rate as CP request */
if (cp_request) {
do {
if (node->prio == data->ddr_freq_tbl[i]) {
new_ddrclk = data->ddr_freq_tbl[i];
break;
}
i++;
} while (i < data->ddr_freq_tbl_len);
if (i == data->ddr_freq_tbl_len)
dev_err(dev, "DDR qos value is wrong!\n");
}
ddr_set_rate(data, new_ddrclk);
pr_pm_debug("Change ddr freq to lowest value. (cur: %luKhz)\n",
clk_get_rate(data->ddr_clk) / KHZ_TO_HZ);
if (atomic_read(&data->is_stopped)) {
dev_dbg(dev, "disable perf_counter before suspend!\n");
spin_lock_irqsave(&data->lock, flags);
stop_ddr_performance_counter(data);
spin_unlock_irqrestore(&data->lock, flags);
}
mutex_unlock(&data->devfreq->lock);
return 0;
}
static int mck_resume(struct device *dev)
{
struct platform_device *pdev;
struct ddr_devfreq_data *data;
unsigned long flags;
pdev = container_of(dev, struct platform_device, dev);
data = platform_get_drvdata(pdev);
mutex_lock(&data->devfreq->lock);
if (atomic_read(&data->is_stopped)) {
dev_dbg(dev, "restart perf_counter after resume!\n");
spin_lock_irqsave(&data->lock, flags);
start_ddr_performance_counter(data);
spin_unlock_irqrestore(&data->lock, flags);
}
/* scaling to saved frequency after exiting suspend */
ddr_set_rate(data, saved_ddrclk);
pr_pm_debug("Change ddr freq to saved value. (cur: %luKhz)\n",
clk_get_rate(data->ddr_clk) / KHZ_TO_HZ);
mutex_unlock(&data->devfreq->lock);
return 0;
}
static const struct dev_pm_ops mck_pm_ops = {
.suspend = mck_suspend,
.resume = mck_resume,
};
#endif
static struct platform_driver ddr_devfreq_driver = {
.probe = ddr_devfreq_probe,
.remove = ddr_devfreq_remove,
.driver = {
.name = "devfreq-ddr",
.of_match_table = of_match_ptr(devfreq_ddr_dt_match),
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &mck_pm_ops,
#endif
},
};
static int __init ddr_devfreq_init(void)
{
return platform_driver_register(&ddr_devfreq_driver);
}
fs_initcall(ddr_devfreq_init);
static void __exit ddr_devfreq_exit(void)
{
platform_driver_unregister(&ddr_devfreq_driver);
}
module_exit(ddr_devfreq_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("asr memorybus devfreq driver");