blob: 27c17807b1a3f56daf47bd2ea65335b3afdbd35c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Support for asr spi controller dma mode
*
* Copyright (C) 2019 ASR Micro Limited
*
* Tim Wang <timwang@asrmicro.com>
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include "spi-asr.h"
#define MAX_SEG_SIZE SZ_4K
static int asr_spi_map_dma_buffer(struct spi_driver_data *drv_data,
enum dma_data_direction dir)
{
int i, nents, len = drv_data->len;
struct scatterlist *sg;
struct device *dmadev;
struct sg_table *sgt;
void *buf, *pbuf;
int desc_len;
size_t bytes;
struct page *vm_page;
bool vmalloced_buf = false;
if (dir == DMA_TO_DEVICE) {
dmadev = drv_data->tx_chan->device->dev;
sgt = &drv_data->tx_sgt;
buf = drv_data->tx;
drv_data->tx_map_len = len;
} else {
dmadev = drv_data->rx_chan->device->dev;
sgt = &drv_data->rx_sgt;
buf = drv_data->rx;
drv_data->rx_map_len = len;
}
desc_len = MAX_SEG_SIZE;
if (buf && is_vmalloc_addr(buf)) {
vmalloced_buf = true;
desc_len = min_t(unsigned long, MAX_SEG_SIZE, PAGE_SIZE);
nents = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
} else {
nents = DIV_ROUND_UP(len, desc_len);
}
if (nents != sgt->nents) {
int ret;
sg_free_table(sgt);
ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
if (ret)
return ret;
}
pbuf = buf;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
if (vmalloced_buf) {
bytes = min_t(size_t, desc_len,
min_t(size_t, len,
PAGE_SIZE - offset_in_page(pbuf)));
vm_page = vmalloc_to_page(pbuf);
if (!vm_page) {
return -ENOMEM;
}
sg_set_page(sg, vm_page,
bytes, offset_in_page(pbuf));
} else if (buf) {
bytes = min_t(size_t, len, desc_len);
sg_set_buf(sg, pbuf, bytes);
} else {
bytes = min_t(size_t, len, desc_len);
sg_set_buf(sg, drv_data->dummy, bytes);
}
pbuf += bytes;
len -= bytes;
}
nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
if (!nents)
return -ENOMEM;
return nents;
}
static void asr_spi_unmap_dma_buffer(struct spi_driver_data *drv_data,
enum dma_data_direction dir)
{
struct device *dmadev;
struct sg_table *sgt;
if (dir == DMA_TO_DEVICE) {
dmadev = drv_data->tx_chan->device->dev;
sgt = &drv_data->tx_sgt;
} else {
dmadev = drv_data->rx_chan->device->dev;
sgt = &drv_data->rx_sgt;
}
dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
}
static void asr_spi_unmap_dma_buffers(struct spi_driver_data *drv_data)
{
if (!drv_data->dma_mapped)
return;
asr_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
asr_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
drv_data->dma_mapped = 0;
}
static void asr_spi_dma_transfer_complete(struct spi_driver_data *drv_data,
bool error)
{
struct spi_message *msg = drv_data->cur_msg;
/*
* It is possible that one CPU is handling ROR interrupt and other
* just gets DMA completion. Calling pump_transfers() twice for the
* same transfer leads to problems thus we prevent concurrent calls
* by using ->dma_running.
*/
if (atomic_dec_and_test(&drv_data->dma_running)) {
/*
* If the other CPU is still handling the ROR interrupt we
* might not know about the error yet. So we re-check the
* ROR bit here before we clear the status register.
*/
if (!error) {
u32 status = asr_spi_read(drv_data, STATUS)
& drv_data->mask_sr;
error = status & STATUS_ROR;
}
/* Clear status & disable interrupts */
asr_spi_write(drv_data, FIFO_CTRL,
asr_spi_read(drv_data, FIFO_CTRL)
& ~drv_data->dma_fifo_ctrl);
asr_spi_write(drv_data, TOP_CTRL,
asr_spi_read(drv_data, TOP_CTRL)
& ~drv_data->dma_top_ctrl);
asr_spi_write(drv_data, STATUS, drv_data->clear_sr);
asr_spi_write(drv_data, TO, 0);
if (drv_data->xfer_way == XFER_SPIMEM) {
asr_spi_unmap_dma_buffers(drv_data);
complete(&drv_data->dma_completion);
return;
}
if (!error) {
asr_spi_unmap_dma_buffers(drv_data);
drv_data->tx += drv_data->tx_map_len;
drv_data->rx += drv_data->rx_map_len;
msg->actual_length += drv_data->len;
msg->state = asr_spi_next_transfer(drv_data);
} else {
/* In case we got an error we disable the SSP now */
asr_spi_write(drv_data, TOP_CTRL,
asr_spi_read(drv_data, TOP_CTRL)
& ~TOP_SSE);
msg->state = ERROR_STATE;
}
asr_spi_pump_transfers(drv_data);
}
}
static void asr_spi_dma_callback(void *data)
{
asr_spi_dma_transfer_complete(data, false);
}
static struct dma_async_tx_descriptor *
asr_spi_dma_prepare_one(struct spi_driver_data *drv_data,
enum dma_transfer_direction dir)
{
struct chip_data *chip = drv_data->cur_chip;
enum dma_slave_buswidth width;
struct dma_slave_config cfg;
struct dma_chan *chan;
struct sg_table *sgt;
int nents, ret;
switch (drv_data->n_bytes) {
case 1:
width = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
case 2:
width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
default:
width = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
}
memset(&cfg, 0, sizeof(cfg));
cfg.direction = dir;
if (dir == DMA_MEM_TO_DEV) {
cfg.dst_addr = drv_data->ssdr_physical;
cfg.dst_addr_width = width;
cfg.dst_maxburst = chip->dma_burst_size;
sgt = &drv_data->tx_sgt;
nents = drv_data->tx_nents;
chan = drv_data->tx_chan;
} else {
cfg.src_addr = drv_data->ssdr_physical;
cfg.src_addr_width = width;
cfg.src_maxburst = chip->dma_burst_size;
sgt = &drv_data->rx_sgt;
nents = drv_data->rx_nents;
chan = drv_data->rx_chan;
}
ret = dmaengine_slave_config(chan, &cfg);
if (ret) {
dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
return NULL;
}
return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
bool asr_spi_dma_is_possible(size_t len)
{
return len <= MAX_DMA_LEN;
}
int asr_spi_map_dma_buffers(struct spi_driver_data *drv_data)
{
const struct chip_data *chip = drv_data->cur_chip;
int ret;
if (!chip->enable_dma)
return 0;
/* Don't bother with DMA if we can't do even a single burst */
if (drv_data->len < chip->dma_burst_size)
return 0;
ret = asr_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
if (ret <= 0) {
dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
return 0;
}
drv_data->tx_nents = ret;
ret = asr_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
if (ret <= 0) {
asr_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
return 0;
}
drv_data->rx_nents = ret;
return 1;
}
irqreturn_t asr_spi_dma_transfer(struct spi_driver_data *drv_data)
{
u32 status;
status = asr_spi_read(drv_data, STATUS) & drv_data->mask_sr;
if ( status & STATUS_ROR ) {
dmaengine_terminate_all(drv_data->rx_chan);
dmaengine_terminate_all(drv_data->tx_chan);
asr_spi_dma_transfer_complete(drv_data, true);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
void asr_spi_slave_sw_timeout_callback(struct spi_driver_data *drv_data)
{
dmaengine_terminate_all(drv_data->rx_chan);
dmaengine_terminate_all(drv_data->tx_chan);
asr_spi_dma_transfer_complete(drv_data, true);
}
int asr_spi_dma_prepare(struct spi_driver_data *drv_data, u32 dma_burst)
{
struct dma_async_tx_descriptor *tx_desc, *rx_desc;
tx_desc = asr_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
if (!tx_desc) {
dev_err(&drv_data->pdev->dev,
"failed to get DMA TX descriptor\n");
return -EBUSY;
}
rx_desc = asr_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
if (!rx_desc) {
dev_err(&drv_data->pdev->dev,
"failed to get DMA RX descriptor\n");
return -EBUSY;
}
/* We are ready when RX completes */
rx_desc->callback = asr_spi_dma_callback;
rx_desc->callback_param = drv_data;
dmaengine_submit(rx_desc);
dmaengine_submit(tx_desc);
return 0;
}
void asr_spi_dma_start(struct spi_driver_data *drv_data)
{
if (drv_data->xfer_way == XFER_SPIMEM)
reinit_completion(&drv_data->dma_completion);
dma_async_issue_pending(drv_data->rx_chan);
dma_async_issue_pending(drv_data->tx_chan);
atomic_set(&drv_data->dma_running, 1);
}
int asr_spi_dma_setup(struct spi_driver_data *drv_data)
{
struct asr_spi_master *pdata = drv_data->master_info;
struct device *dev = &drv_data->pdev->dev;
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
drv_data->dummy = devm_kzalloc(dev, MAX_SEG_SIZE, GFP_KERNEL);
if (!drv_data->dummy)
return -ENOMEM;
drv_data->tx_chan = dma_request_slave_channel_compat(mask,
pdata->dma_filter, pdata->tx_param, dev, "tx");
if (!drv_data->tx_chan)
return -ENODEV;
drv_data->rx_chan = dma_request_slave_channel_compat(mask,
pdata->dma_filter, pdata->rx_param, dev, "rx");
if (!drv_data->rx_chan) {
dma_release_channel(drv_data->tx_chan);
drv_data->tx_chan = NULL;
return -ENODEV;
}
return 0;
}
void asr_spi_dma_release(struct spi_driver_data *drv_data)
{
if (drv_data->rx_chan) {
dmaengine_terminate_all(drv_data->rx_chan);
dma_release_channel(drv_data->rx_chan);
sg_free_table(&drv_data->rx_sgt);
drv_data->rx_chan = NULL;
}
if (drv_data->tx_chan) {
dmaengine_terminate_all(drv_data->tx_chan);
dma_release_channel(drv_data->tx_chan);
sg_free_table(&drv_data->tx_sgt);
drv_data->tx_chan = NULL;
}
}
int asr_spi_set_dma_burst_and_threshold(struct chip_data *chip,
struct spi_device *spi,
u8 bits_per_word, u32 *burst_code,
u32 *threshold)
{
/*
* If the DMA burst size is given in chip_info we use
* that, otherwise we set it to half of FIFO size; SPI
* FIFO has 16 entry, so FIFO size = 16*bits_per_word/8;
* Also we use the default FIFO thresholds for now.
*/
if (chip && chip->dma_burst_size)
*burst_code = chip->dma_burst_size;
else if (bits_per_word <= 8) {
*burst_code = 8;
}
else if (bits_per_word <= 16)
*burst_code = 16;
else
*burst_code = 32;
*threshold = FIFO_RxTresh(RX_THRESH_DFLT)
| FIFO_TxTresh(TX_THRESH_DFLT);
return 0;
}