blob: e5f92aae444fbfc07d792c03142987f771db1543 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Support for asr spi controller
*
* Copyright (C) 2019 ASR Micro Limited
*
* Tim Wang <timwang@asrmicro.com>
*/
#include <linux/err.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/acpi.h>
#include "spi-asr.h"
MODULE_AUTHOR("Tim Wang");
MODULE_DESCRIPTION("ASR SPI Controller");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:asr-spi");
#define TIMOUT_DFLT 8000
#define TIMOUT_DFLT_SLAVE 10000
#define SLAVE_RX_TIMER_MS 1000
static BLOCKING_NOTIFIER_HEAD(removed_notifier_list);
/* #define CONFIG_ASR_SSP_DEBUG 1 */
static bool asr_spi_txfifo_full(const struct spi_driver_data *drv_data)
{
return !(asr_spi_read(drv_data, STATUS) & STATUS_TNF);
}
static u32 asr_configure_topctrl(const struct spi_driver_data *drv_data, u8 bits)
{
/*
* set Motorola Frame Format
* set DSS
*/
return TOP_FRF_Motorola | TOP_DSS(bits);
}
static void set_dvfm_constraint(struct spi_driver_data *drv_data)
{
#ifdef CONFIG_PM
if (drv_data->qos_idle_value != PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE)
pm_qos_update_request(&drv_data->qos_idle,
drv_data->qos_idle_value);
#endif
}
static void unset_dvfm_constraint(struct spi_driver_data *drv_data)
{
#ifdef CONFIG_PM
if (drv_data->qos_idle_value != PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE)
pm_qos_update_request(&drv_data->qos_idle,
PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE);
#endif
}
static void init_dvfm_constraint(struct spi_driver_data *drv_data)
{
#ifdef CONFIG_PM
drv_data->qos_idle.name = "spi-asr";
pm_qos_add_request(&drv_data->qos_idle, PM_QOS_CPUIDLE_BLOCK,
PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE);
#endif
}
static void deinit_dvfm_constraint(struct spi_driver_data *drv_data)
{
#ifdef CONFIG_PM
pm_qos_remove_request(&drv_data->qos_idle);
#endif
}
static void cs_assert(struct spi_driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
drv_data->cs_assert = 1;
if (chip->cs_control) {
chip->cs_control(ASR_CS_ASSERT);
return;
}
if (drv_data->hold_frame_low || drv_data->cs_comb_ctrl) {
asr_spi_write(drv_data, TOP_CTRL, asr_spi_read(drv_data, TOP_CTRL) | TOP_HOLD_FRAME_LOW );
return;
}
if (gpio_is_valid(chip->gpio_cs)) {
gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
return;
}
}
static void cs_deassert(struct spi_driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
drv_data->cs_assert = 0;
if (chip->cs_control) {
chip->cs_control(ASR_CS_DEASSERT);
return;
}
if (drv_data->hold_frame_low || drv_data->cs_comb_ctrl) {
asr_spi_write(drv_data, TOP_CTRL, asr_spi_read(drv_data, TOP_CTRL) & ~TOP_HOLD_FRAME_LOW );
return;
}
if (gpio_is_valid(chip->gpio_cs)) {
gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
return;
}
}
/* clear all rx fifo useless data */
int asr_spi_flush(struct spi_driver_data *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
do {
while (asr_spi_read(drv_data, STATUS) & STATUS_RNE)
asr_spi_read(drv_data, DATAR);
} while ((asr_spi_read(drv_data, STATUS) & STATUS_BSY) && --limit);
asr_spi_write(drv_data, STATUS, STATUS_ROR);
return limit;
}
static int null_writer(struct spi_driver_data *drv_data)
{
u8 n_bytes = drv_data->n_bytes;
if (asr_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
asr_spi_write(drv_data, DATAR, 0);
drv_data->tx += n_bytes;
return 1;
}
static int null_reader(struct spi_driver_data *drv_data)
{
u8 n_bytes = drv_data->n_bytes;
while ((asr_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
asr_spi_read(drv_data, DATAR);
drv_data->rx += n_bytes;
}
return drv_data->rx == drv_data->rx_end;
}
static int u8_writer(struct spi_driver_data *drv_data)
{
if (asr_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
asr_spi_write(drv_data, DATAR, *(u8 *)(drv_data->tx));
++drv_data->tx;
return 1;
}
static int u8_reader(struct spi_driver_data *drv_data)
{
while ((asr_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u8 *)(drv_data->rx) = asr_spi_read(drv_data, DATAR);
++drv_data->rx;
}
return drv_data->rx == drv_data->rx_end;
}
static int u16_writer(struct spi_driver_data *drv_data)
{
if (asr_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
asr_spi_write(drv_data, DATAR, *(u16 *)(drv_data->tx));
drv_data->tx += 2;
return 1;
}
static int u16_reader(struct spi_driver_data *drv_data)
{
while ((asr_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u16 *)(drv_data->rx) = asr_spi_read(drv_data, DATAR);
drv_data->rx += 2;
}
return drv_data->rx == drv_data->rx_end;
}
static int u32_writer(struct spi_driver_data *drv_data)
{
if (asr_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
asr_spi_write(drv_data, DATAR, *(u32 *)(drv_data->tx));
drv_data->tx += 4;
return 1;
}
static int u32_reader(struct spi_driver_data *drv_data)
{
while ((asr_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u32 *)(drv_data->rx) = asr_spi_read(drv_data, DATAR);
drv_data->rx += 4;
}
return drv_data->rx == drv_data->rx_end;
}
void *asr_spi_next_transfer(struct spi_driver_data *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
struct spi_transfer *trans = drv_data->cur_transfer;
/* Move to next transfer */
if (trans->transfer_list.next != &msg->transfers) {
drv_data->cur_transfer =
list_entry(trans->transfer_list.next,
struct spi_transfer,
transfer_list);
return RUNNING_STATE;
} else
return DONE_STATE;
}
/* caller already set message->status; dma and pio irqs are blocked */
static void giveback(struct spi_driver_data *drv_data)
{
struct spi_transfer* last_transfer;
struct spi_message *msg;
msg = drv_data->cur_msg;
drv_data->cur_msg = NULL;
drv_data->cur_transfer = NULL;
last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
transfer_list);
/* Delay if requested before any change in chip select */
if (last_transfer->delay_usecs)
udelay(last_transfer->delay_usecs);
/* Drop chip select UNLESS cs_change is true or we are returning
* a message with an error, or next message is for another chip
*/
if (!last_transfer->cs_change)
cs_deassert(drv_data);
else if(!drv_data->unqueued_transfer) {
struct spi_message *next_msg;
/* Holding of cs was hinted, but we need to make sure
* the next message is for the same chip. Don't waste
* time with the following tests unless this was hinted.
*
* We cannot postpone this until pump_messages, because
* after calling msg->complete (below) the driver that
* sent the current message could be unloaded, which
* could invalidate the cs_control() callback...
*/
/* get a pointer to the next message, if any */
next_msg = spi_get_next_queued_message(drv_data->master);
/* see if the next and current messages point
* to the same chip
*/
if (next_msg && next_msg->spi != msg->spi)
next_msg = NULL;
if (!next_msg || msg->state == ERROR_STATE)
cs_deassert(drv_data);
}
drv_data->cur_chip = NULL;
if (drv_data->unqueued_transfer) {
if (msg->complete)
msg->complete(msg->context);
if (msg->spi->master->auto_runtime_pm) {
pm_runtime_mark_last_busy(&drv_data->pdev->dev);
pm_runtime_put_autosuspend(&drv_data->pdev->dev);
}
}
else {
spi_finalize_current_message(drv_data->master);
}
unset_dvfm_constraint(drv_data);
if (drv_data->slave_mode)
del_timer(&drv_data->slave_rx_timer);
}
static int asr_rxfifo_wait_not_empty(struct spi_driver_data *drv_data)
{
u32 status = 0;
int timeout = 1000000;
do {
if(--timeout <= 0)
return -ETIMEDOUT;
status = asr_spi_read(drv_data, STATUS);
}while(!(status & STATUS_RNE));
return 0;
}
static int asr_txfifo_wait_empty(struct spi_driver_data *drv_data)
{
int timeout = 1000000;
u32 status = 0, entries = 0;
do {
if(--timeout <= 0)
return -ETIMEDOUT;
status = asr_spi_read(drv_data, STATUS);
entries = (status & STATUS_TFL_MASK) >> STATUS_TFL_BASE;
}while((entries != 0) || (!(status & STATUS_TNF)));
return 0;
}
static int asr_txfifo_wait_not_empty(struct spi_driver_data *drv_data)
{
int timeout = 1000;
u32 status = 0, entries = 0;
do {
status = asr_spi_read(drv_data, STATUS);
entries = (status & STATUS_TFL_MASK) >> STATUS_TFL_BASE;
if (entries) //not empty and not full
break;
else if (!(status & STATUS_TNF)) //full
break;
}while(--timeout);
if (timeout)
return 0;
return -ETIMEDOUT;
}
static void reset_fifo_ctrl(struct spi_driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
u32 fifo_ctrl = 0;
fifo_ctrl |= chip->threshold;
asr_spi_write(drv_data, FIFO_CTRL, fifo_ctrl);
}
static void reset_int_en(struct spi_driver_data *drv_data)
{
u32 int_en = 0;
int_en = asr_spi_read(drv_data, INT_EN);
int_en &= ~drv_data->int_cr;
asr_spi_write(drv_data, INT_EN, int_en);
}
static int asr_spi_pio_xfer(struct spi_driver_data *drv_data, int polling)
{
int ret = 0;
int timeout =0, write_time = 0;
if (drv_data->len > ( drv_data->n_bytes * PIO_FIFO_ENTRY_NUM) ||
drv_data->pio_cs_auto_deasert )
{
do {
if (drv_data->read(drv_data))
return 1;
if (drv_data->pio_cs_auto_deasert) {
asr_txfifo_wait_empty(drv_data);
if(drv_data->pio_interval_us)
udelay(drv_data->pio_interval_us);
}
if (drv_data->cs_comb_ctrl && !drv_data->cs_assert)
{
ret = drv_data->write(drv_data);
WARN_ON_ONCE(asr_txfifo_wait_not_empty(drv_data));
cs_assert(drv_data);
if (ret)
continue;
else
break;
}
} while (drv_data->write(drv_data));
} else {
asr_txfifo_wait_empty(drv_data);
do {
write_time ++;
} while (drv_data->write(drv_data) && write_time < PIO_FIFO_ENTRY_NUM);
if (drv_data->cs_comb_ctrl && !drv_data->cs_assert)
{
WARN_ON_ONCE(asr_txfifo_wait_not_empty(drv_data));
cs_assert(drv_data);
}
asr_rxfifo_wait_not_empty(drv_data);
if (drv_data->read(drv_data))
return 1;
}
if (polling) {
timeout = msecs_to_jiffies(drv_data->len);
while (timeout--) {
asr_rxfifo_wait_not_empty(drv_data);
if (drv_data->read(drv_data))
return 1;
}
}
return (drv_data->rx == drv_data->rx_end);
}
static void int_error_stop(struct spi_driver_data *drv_data, const char* msg)
{
/* Stop and reset SSP */
asr_spi_write(drv_data, STATUS, drv_data->clear_sr);
reset_fifo_ctrl(drv_data);
reset_int_en(drv_data);
asr_spi_write(drv_data, TO, 0);
asr_spi_flush(drv_data);
asr_spi_write(drv_data, TOP_CTRL,
asr_spi_read(drv_data, TOP_CTRL) & ~(TOP_SSE | TOP_HOLD_FRAME_LOW));
dev_err(&drv_data->pdev->dev, "%s\n", msg);
drv_data->cur_msg->state = ERROR_STATE;
asr_spi_pump_transfers(drv_data);
}
static void int_transfer_complete(struct spi_driver_data *drv_data)
{
/* Stop SSP */
asr_spi_write(drv_data, STATUS, drv_data->clear_sr);
reset_fifo_ctrl(drv_data);
reset_int_en(drv_data);
asr_spi_write(drv_data, TO, 0);
/* Update total byte transferred return count actual bytes read */
drv_data->cur_msg->actual_length += drv_data->len -
(drv_data->rx_end - drv_data->rx);
/* Transfer delays and chip select release are
* handled in pump_transfers or giveback
*/
/* Move to next transfer */
drv_data->cur_msg->state = asr_spi_next_transfer(drv_data);
/* Handle end of message */
if (drv_data->cur_msg->state == DONE_STATE) {
drv_data->cur_msg->status = 0;
giveback(drv_data);
} else {
asr_spi_pump_transfers(drv_data);
}
}
static irqreturn_t interrupt_transfer(struct spi_driver_data *drv_data)
{
u32 irq_mask = (asr_spi_read(drv_data, INT_EN) & INT_EN_TIE) ?
drv_data->mask_sr : drv_data->mask_sr & ~STATUS_TFS;
u32 irq_status = asr_spi_read(drv_data, STATUS) & irq_mask;
if (irq_status & STATUS_ROR) {
int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
return IRQ_HANDLED;
}
if (irq_status & STATUS_TINT) {
asr_spi_write(drv_data, STATUS, STATUS_TINT);
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
}
if (asr_spi_pio_xfer(drv_data, 0)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
if (drv_data->tx == drv_data->tx_end) {
u32 int_en;
int_en = asr_spi_read(drv_data, INT_EN);
int_en &= ~INT_EN_TIE;
asr_spi_write(drv_data, INT_EN, int_en);
}
/* We did something */
return IRQ_HANDLED;
}
static irqreturn_t ssp_int(int irq, void *dev_id)
{
struct spi_driver_data *drv_data = dev_id;
u32 int_en;
u32 mask = drv_data->mask_sr;
u32 int_status;
/*
* The IRQ might be shared with other peripherals so we must first
* check that are we RPM suspended or not. If we are we assume that
* the IRQ was not for us (we shouldn't be RPM suspended when the
* interrupt is enabled).
*/
if (pm_runtime_suspended(&drv_data->pdev->dev))
return IRQ_NONE;
/*
* If the device is not yet in RPM suspended state and we get an
* interrupt that is meant for another device, check if status bits
* are all set to one. That means that the device is already
* powered off.
*/
int_status = asr_spi_read(drv_data, STATUS);
if (int_status == ~0)
return IRQ_NONE;
int_en = asr_spi_read(drv_data, INT_EN);
/* Ignore possible writes if we don't need to write */
if (!(int_en & INT_EN_TIE))
mask &= ~STATUS_TFS;
/* Ignore RX timeout interrupt if it is disabled */
if (!(int_en & INT_EN_TINTE))
mask &= ~STATUS_TINT;
if (int_status & (STATUS_ROR | STATUS_TUR )) {
dev_warn(&drv_data->pdev->dev, "ROR or TUR 0x%x\n", int_status);
}
if (!(int_status & mask))
return IRQ_NONE;
if (!drv_data->cur_msg) {
asr_spi_write(drv_data, TOP_CTRL,
asr_spi_read(drv_data, TOP_CTRL)
& ~(TOP_SSE | TOP_HOLD_FRAME_LOW));
asr_spi_write(drv_data, INT_EN,
asr_spi_read(drv_data, INT_EN)
& ~drv_data->int_cr);
asr_spi_write(drv_data, TO, 0);
asr_spi_write(drv_data, STATUS, drv_data->clear_sr);
dev_err(&drv_data->pdev->dev,
"bad message state in interrupt handler\n");
/* Never fail */
return IRQ_HANDLED;
}
return drv_data->transfer_handler(drv_data);
}
static void slave_rx_timer_expired(struct timer_list *t) {
struct spi_driver_data *drv_data = from_timer(drv_data, t, slave_rx_timer);
#ifdef CONFIG_ASR_SSP_DEBUG
pr_err("%s\n", __func__);
pr_err("spi top = 0x%x\n", asr_spi_read(drv_data, TOP_CTRL));
pr_err("fifo = 0x%x\n", asr_spi_read(drv_data, FIFO_CTRL));
pr_err("int_en = 0x%x\n", asr_spi_read(drv_data, INT_EN));
pr_err("to = 0x%x\n", asr_spi_read(drv_data, TO));
#endif
if(drv_data->dma_mapped)
asr_spi_slave_sw_timeout_callback(drv_data);
}
static int asr_spi_xfer_prepare(struct spi_driver_data *drv_data,
u8 buswidth, int pio, int polling)
{
struct chip_data *chip = NULL;
u8 bits = 0;
u32 top_ctrl;
u32 fifo_ctrl;
u32 int_en = 0;
int mode; /* 0: dma, 1: pio */
u32 dma_thresh = drv_data->cur_chip->dma_threshold;
u32 dma_burst = drv_data->cur_chip->dma_burst_size;
bits = buswidth;
chip = drv_data->cur_chip;
mode = pio;
drv_data->n_bytes = chip->n_bytes;
drv_data->write = drv_data->tx ? chip->write : null_writer;
drv_data->read = drv_data->rx ? chip->read : null_reader;
if (bits <= 8) {
drv_data->n_bytes = 1;
drv_data->read = drv_data->read != null_reader ?
u8_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u8_writer : null_writer;
} else if (bits <= 16) {
drv_data->n_bytes = 2;
drv_data->read = drv_data->read != null_reader ?
u16_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u16_writer : null_writer;
} else if (bits <= 32) {
drv_data->n_bytes = 4;
drv_data->read = drv_data->read != null_reader ?
u32_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u32_writer : null_writer;
}
top_ctrl = asr_configure_topctrl(drv_data, bits);
dev_dbg(&drv_data->master->dev, "%u Hz, %s\n",
drv_data->master->max_speed_hz,
chip->enable_dma ? "DMA" : "PIO");
top_ctrl |= chip->top_ctrl;
fifo_ctrl = chip->fifo_ctrl;
if (drv_data->ssp_enhancement) {
/*
* If transfer length is times of 4, then use
* 32 bit fifo width with endian swap support
*/
if (drv_data->len % 4 == 0 && bits <= 16) {
if (bits <= 8)
fifo_ctrl |= FIFO_WR_ENDIAN_8BITS |
FIFO_RD_ENDIAN_8BITS;
else if (bits <= 16)
fifo_ctrl |= FIFO_WR_ENDIAN_16BITS |
FIFO_RD_ENDIAN_16BITS;
bits = 32;
drv_data->n_bytes = 4;
if(drv_data->rx)
drv_data->read = u32_reader;
if(drv_data->tx)
drv_data->write = u32_writer;
top_ctrl &= ~TOP_DSS_MASK;
top_ctrl |= TOP_DSS(32);
}
}
drv_data->dma_mapped = 0;
if (!pio && asr_spi_dma_is_possible(drv_data->len)) {
if (chip->enable_dma) {
if (asr_spi_set_dma_burst_and_threshold(chip,
NULL,
bits, &dma_burst,
&dma_thresh))
dev_warn_ratelimited(&drv_data->master->dev,
"DMA burst size reduced to match bits_per_word\n");
}
drv_data->dma_mapped = asr_spi_map_dma_buffers(drv_data);
}
if (drv_data->dma_mapped) {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = asr_spi_dma_transfer;
asr_spi_dma_prepare(drv_data, dma_burst);
/* Clear status and start DMA engine */
fifo_ctrl |= chip->fifo_ctrl | dma_thresh | drv_data->dma_fifo_ctrl;
top_ctrl |= chip->top_ctrl | drv_data->dma_top_ctrl;
asr_spi_write(drv_data, STATUS, drv_data->clear_sr);
asr_spi_dma_start(drv_data);
int_en = asr_spi_read(drv_data, INT_EN) | drv_data->dma_cr;
} else {
mode = 1;
fifo_ctrl = fifo_ctrl | chip->fifo_ctrl | chip->threshold;
if (polling || drv_data->xfer_way == XFER_SPIMEM) {
int_en = asr_spi_read(drv_data, INT_EN) & ~drv_data->int_cr;
} else {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = interrupt_transfer;
int_en = asr_spi_read(drv_data, INT_EN) | drv_data->int_cr;
}
asr_spi_write(drv_data, STATUS, drv_data->clear_sr);
}
asr_spi_write(drv_data, TO, chip->timeout);
set_dvfm_constraint(drv_data); /*disable system to idle while DMA */
if (drv_data->slave_mode)
top_ctrl |= TOP_SSE | TOP_SCLKDIR | TOP_SFRMDIR;
else
top_ctrl |= drv_data->hold_frame_low;
/*
* This part changed the logic
* 1. clear SSE
* 2. write TOP_CTRL and other register
* 3. set SSE in the end of this function
*/
top_ctrl &= ~TOP_SSE;
if (drv_data->cs_comb_ctrl)
top_ctrl &= ~TOP_HOLD_FRAME_LOW;
asr_spi_write(drv_data, TOP_CTRL, top_ctrl);
asr_spi_write(drv_data, FIFO_CTRL, fifo_ctrl);
asr_spi_write(drv_data, INT_EN, int_en);
if (drv_data->one_cycle_delay)
asr_spi_write(drv_data, MISC_CTRL, 1);
#ifdef CONFIG_ASR_SSP_DEBUG
dev_err(&drv_data->master->dev, "spi top = 0x%x\n", top_ctrl);
dev_err(&drv_data->master->dev, "fifo = 0x%x\n", asr_spi_read(drv_data, FIFO_CTRL));
dev_err(&drv_data->master->dev, "int_en = 0x%x\n", asr_spi_read(drv_data, INT_EN));
dev_err(&drv_data->master->dev, "to = 0x%x\n", asr_spi_read(drv_data, TO));
#endif
return mode;
}
static void asr_spi_xfer_start(struct spi_driver_data *drv_data)
{
u32 top_ctrl;
if (!drv_data->cs_comb_ctrl)
cs_assert(drv_data);
top_ctrl = asr_spi_read(drv_data, TOP_CTRL);
top_ctrl |= TOP_SSE;
asr_spi_write(drv_data, TOP_CTRL, top_ctrl);
if (drv_data->cs_comb_ctrl && drv_data->dma_mapped) {
WARN_ON_ONCE(asr_txfifo_wait_not_empty(drv_data));
cs_assert(drv_data);
}
}
static void asr_spi_xfer_pause(struct spi_driver_data *drv_data)
{
u32 top_ctrl;
top_ctrl = asr_spi_read(drv_data, TOP_CTRL);
top_ctrl &= ~TOP_SSE;
asr_spi_write(drv_data, TOP_CTRL, top_ctrl);
}
static void asr_spi_xfer_stop(struct spi_driver_data *drv_data)
{
u32 top_ctrl;
top_ctrl = asr_spi_read(drv_data, TOP_CTRL);
top_ctrl &= ~TOP_SSE;
asr_spi_write(drv_data, TOP_CTRL, top_ctrl);
cs_deassert(drv_data);
}
static void pump_transfers(unsigned long data)
{
struct spi_driver_data *drv_data = (struct spi_driver_data *)data;
struct spi_message *message = NULL;
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
struct chip_data *chip = NULL;
u8 bits = 0;
if (drv_data->slave_mode && drv_data->slave_rxtimer_to_ms)
mod_timer(&drv_data->slave_rx_timer,
jiffies + msecs_to_jiffies(drv_data->slave_rxtimer_to_ms));
/* Get current state information */
message = drv_data->cur_msg;
transfer = drv_data->cur_transfer;
chip = drv_data->cur_chip;
/* Handle for abort */
if (message->state == ERROR_STATE) {
message->status = -EIO;
giveback(drv_data);
return;
}
/* Handle end of message */
if (message->state == DONE_STATE) {
message->status = 0;
giveback(drv_data);
return;
}
/* Delay if requested at end of transfer before CS change */
if (message->state == RUNNING_STATE) {
previous = list_entry(transfer->transfer_list.prev,
struct spi_transfer,
transfer_list);
if (previous->delay_usecs)
udelay(previous->delay_usecs);
/* Drop chip select only if cs_change is requested */
if (previous->cs_change)
cs_deassert(drv_data);
}
/* Check if we can DMA this transfer */
if (!asr_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
/* reject already-mapped transfers; PIO won't always work */
if (message->is_dma_mapped
|| transfer->rx_dma || transfer->tx_dma) {
dev_err(&drv_data->pdev->dev,
"pump_transfers: mapped transfer length of "
"%u is greater than %d\n",
transfer->len, MAX_DMA_LEN);
message->status = -EINVAL;
giveback(drv_data);
return;
}
/* warn ... we force this to PIO mode */
dev_warn_ratelimited(&message->spi->dev,
"pump_transfers: DMA disabled for transfer length %ld "
"greater than %d\n",
(long)drv_data->len, MAX_DMA_LEN);
}
/* Setup the transfer state based on the type of transfer */
if (asr_spi_flush(drv_data) == 0) {
dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
message->status = -EIO;
giveback(drv_data);
return;
}
drv_data->xfer_way = XFER_PUMP;
drv_data->tx = (void *)transfer->tx_buf;
drv_data->tx_end = drv_data->tx + transfer->len;
drv_data->rx = transfer->rx_buf;
drv_data->rx_end = drv_data->rx + transfer->len;
drv_data->rx_dma = transfer->rx_dma;
drv_data->tx_dma = transfer->tx_dma;
drv_data->len = transfer->len;
/* Change speed and bit per word on a per transfer */
bits = transfer->bits_per_word;
message->state = RUNNING_STATE;
asr_spi_xfer_prepare(drv_data, bits, 0, 0);
asr_spi_xfer_start(drv_data);
}
void asr_spi_pump_transfers(struct spi_driver_data *drv_data)
{
if (drv_data->no_tasklet)
return pump_transfers((unsigned long)drv_data);
else
tasklet_schedule(&drv_data->pump_transfers);
}
static int asr_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct spi_driver_data *drv_data = spi_master_get_devdata(master);
drv_data->cur_msg = msg;
/* Initial message state*/
drv_data->cur_msg->state = START_STATE;
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
struct spi_transfer,
transfer_list);
/*
* prepare to setup the SSP, in pump_transfers, using the per
* chip configuration
*/
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
if (master->max_speed_hz != drv_data->cur_transfer->speed_hz) {
master->max_speed_hz = drv_data->cur_transfer->speed_hz;
clk_set_rate(drv_data->clk, master->max_speed_hz);
}
/* Mark as busy and launch transfers */
asr_spi_pump_transfers(drv_data);
return 0;
}
static int asr_spi_unqueued_transfer(struct spi_device *spi, struct spi_message *msg)
{
int status;
struct spi_master *master = spi->master;
struct spi_driver_data *drv_data = spi_master_get_devdata(master);
if (master->auto_runtime_pm) {
status = pm_runtime_get_sync(spi->master->dev.parent);
if (status < 0) {
pm_runtime_put_noidle(spi->master->dev.parent);
dev_err(&spi->master->dev, "Failed to power device: %d\n",
status);
return status;
}
}
drv_data->xfer_way = XFER_UNQUEUE;
return asr_spi_transfer_one_message(master, msg);
}
static int asr_spi_unprepare_transfer(struct spi_master *master)
{
struct spi_driver_data *drv_data = spi_master_get_devdata(master);
/* Disable the SSP now */
asr_spi_write(drv_data, TOP_CTRL,
asr_spi_read(drv_data, TOP_CTRL) & ~(TOP_SSE | TOP_HOLD_FRAME_LOW));
return 0;
}
static int setup_cs(struct spi_device *spi, struct chip_data *chip)
{
int err = 0;
if (chip == NULL)
return 0;
if (gpio_is_valid(chip->gpio_cs))
gpio_free(chip->gpio_cs);
if (gpio_is_valid(spi->cs_gpio)) {
err = gpio_request(spi->cs_gpio, "SPI_CS");
if (err) {
dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
spi->cs_gpio);
return err;
}
chip->gpio_cs = spi->cs_gpio;
chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
err = gpio_direction_output(chip->gpio_cs,
!chip->gpio_cs_inverted);
}
return err;
}
static int setup(struct spi_device *spi)
{
struct chip_data *chip;
struct spi_driver_data *drv_data = spi_master_get_devdata(spi->master);
uint tx_thres, tx_hi_thres, rx_thres;
tx_thres = TX_THRESH_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_DFLT;
/* Only alloc on first setup */
chip = spi_get_ctldata(spi);
if (!chip) {
chip = devm_kzalloc(&spi->master->dev, sizeof(struct chip_data),
GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->gpio_cs = -1;
chip->enable_dma = 0;
chip->timeout =
drv_data->slave_mode ? drv_data->slave_rxfifo_timeout : drv_data->master_rxfifo_timeout;
}
chip->top_ctrl = 0;
chip->fifo_ctrl = 0;
chip->enable_dma = drv_data->master_info->enable_dma;
if (chip->enable_dma) {
/* set up legal burst and threshold for dma */
if (asr_spi_set_dma_burst_and_threshold(chip, spi,
spi->bits_per_word,
&chip->dma_burst_size,
&chip->dma_threshold)) {
dev_warn(&spi->dev,
"in setup: DMA burst size reduced to match bits_per_word\n");
}
}
chip->threshold = (FIFO_RxTresh(rx_thres) & FIFO_RFT) |
(FIFO_TxTresh(tx_thres) & FIFO_TFT);
chip->top_ctrl &= ~(TOP_SPO | TOP_SPH);
chip->top_ctrl |= (((spi->mode & SPI_CPHA) != 0) ? TOP_SPH : 0)
| (((spi->mode & SPI_CPOL) != 0) ? TOP_SPO : 0);
if (spi->mode & SPI_LOOP)
chip->top_ctrl |= TOP_LBM;
/* Enable rx fifo auto full control */
if (drv_data->ssp_enhancement && !drv_data->slave_mode )
chip->fifo_ctrl |= FIFO_RXFIFO_AUTO_FULL_CTRL;
if (spi->bits_per_word <= 8) {
chip->n_bytes = 1;
chip->read = u8_reader;
chip->write = u8_writer;
} else if (spi->bits_per_word <= 16) {
chip->n_bytes = 2;
chip->read = u16_reader;
chip->write = u16_writer;
} else if (spi->bits_per_word <= 32) {
chip->n_bytes = 4;
chip->read = u32_reader;
chip->write = u32_writer;
}
if (spi->master->max_speed_hz != spi->max_speed_hz) {
spi->master->max_speed_hz = spi->max_speed_hz;
clk_set_rate(drv_data->clk, spi->master->max_speed_hz);
}
spi_set_ctldata(spi, chip);
return setup_cs(spi, chip);
}
static void cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata(spi);
if (!chip)
return;
if (gpio_is_valid(chip->gpio_cs))
gpio_free(chip->gpio_cs);
devm_kfree(&spi->dev, chip);
}
static bool asr_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
return false;
if (op->data.nbytes && op->dummy.nbytes &&
op->data.buswidth != op->dummy.buswidth)
return false;
if (op->addr.nbytes > 4)
return false;
if (op->cmd.dtr || op->addr.dtr || op->data.dtr)
return false;
return true;
}
static int asr_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_driver_data *drv_data = NULL;
u8 *txbuff = NULL;
int i, len, ret = 0, pio = 0;
drv_data = spi_master_get_devdata(mem->spi->master);
drv_data->cur_chip = spi_get_ctldata(mem->spi);
if (asr_spi_flush(drv_data) == 0) {
return -EIO;
}
len = 1 + op->addr.nbytes + op->dummy.nbytes;
txbuff = kzalloc(len, GFP_KERNEL | GFP_DMA);
if (!txbuff)
return -ENOMEM;
drv_data->xfer_way = XFER_SPIMEM;
txbuff[0] = op->cmd.opcode;
for (i = 0; i < op->addr.nbytes; i++)
txbuff[i+1] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
memset(&txbuff[1 + op->addr.nbytes], 0xa5, op->dummy.nbytes);
drv_data->len = len;
drv_data->tx = txbuff;
drv_data->tx_end = drv_data->tx + len;
drv_data->rx = NULL;
drv_data->rx_end = drv_data->rx + len;
/* use pio+polling for cmd/addr/dummy */
asr_spi_xfer_prepare(drv_data, 8, 1, 1);
asr_spi_xfer_start(drv_data);
ret = asr_spi_pio_xfer(drv_data, 1);
if (!ret)
goto xfer_timeout;
if (op->data.nbytes) {
asr_spi_xfer_pause(drv_data);
len = op->data.nbytes;
drv_data->len = len;
drv_data->tx = (void *)op->data.buf.out;
drv_data->tx_end = drv_data->tx + len;
drv_data->rx = op->data.buf.in;
drv_data->rx_end = drv_data->rx + len;
pio = asr_spi_xfer_prepare(drv_data, 8, 0, 0);
asr_spi_xfer_start(drv_data);
if (pio) { /* pio mode used */
ret = asr_spi_pio_xfer(drv_data, 1);
if (!ret)
goto xfer_timeout;
} else {
ret = wait_for_completion_timeout(&drv_data->dma_completion,
msecs_to_jiffies(len));
if (ret <= 0)
goto xfer_timeout;
}
}
asr_spi_xfer_stop(drv_data);
return 0;
xfer_timeout:
asr_spi_xfer_stop(drv_data);
return -ETIMEDOUT;
}
static const struct spi_controller_mem_ops asr_spi_mem_ops = {
.supports_op = asr_spi_mem_supports_op,
.exec_op = asr_spi_mem_exec_op,
};
static const struct of_device_id asr_spi_dt_ids[] = {
{ .compatible = "asr,asr-spi", .data = (void *) ASR_SSP },
{}
};
MODULE_DEVICE_TABLE(of, asr_spi_dt_ids);
static int asr_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct asr_spi_master *platform_info;
struct spi_master *master = NULL;
struct spi_driver_data *drv_data = NULL;
struct device_node *np = dev->of_node;
const struct of_device_id *id =
of_match_device(of_match_ptr(asr_spi_dt_ids), dev);
struct resource *iores;
u32 bus_num;
const __be32 *prop;
unsigned int proplen;
int status;
u32 tmp;
platform_info = dev_get_platdata(dev);
if (!platform_info) {
platform_info = devm_kzalloc(dev, sizeof(*platform_info),
GFP_KERNEL);
if (!platform_info)
return -ENOMEM;
if (!of_property_read_u32(np, "asr,spi-cs-num", &tmp))
platform_info->num_chipselect = tmp;
else
platform_info->num_chipselect = 1;
/* TODO: NO DMA on FPGA yet */
if (of_get_property(np, "asr,ssp-disable-dma", NULL))
platform_info->enable_dma = 0;
else
platform_info->enable_dma = 1;
}
master = spi_alloc_master(dev, sizeof(struct spi_driver_data));
if (!master) {
dev_err(&pdev->dev, "cannot alloc spi_master\n");
return -ENOMEM;
}
drv_data = spi_master_get_devdata(master);
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (iores == NULL) {
dev_err(dev, "no memory resource defined\n");
status = -ENODEV;
goto out_error_master_alloc;
}
drv_data->ioaddr = devm_ioremap_resource(dev, iores);
if (drv_data->ioaddr == NULL) {
dev_err(dev, "failed to ioremap() registers\n");
status = -ENODEV;
goto out_error_master_alloc;
}
drv_data->irq = platform_get_irq(pdev, 0);
if (drv_data->irq < 0) {
status = -ENODEV;
goto out_error_master_alloc;
}
/* Receive FIFO auto full ctrl enable */
if (of_get_property(np, "asr,ssp-enhancement", NULL))
drv_data->ssp_enhancement = 1;
if (of_get_property(np, "asr,spi-1-cycle-delay", NULL))
drv_data->one_cycle_delay = 1;
if (of_get_property(np, "asr,ssp-slave-mode", NULL)) {
drv_data->slave_mode = 1;
dev_warn(&pdev->dev, "slave mode\n");
timer_setup(&drv_data->slave_rx_timer,
slave_rx_timer_expired, 0);
if (!of_property_read_u32(np, "asr,slave-rxtimer-to-ms", &tmp))
drv_data->slave_rxtimer_to_ms = tmp;
else
drv_data->slave_rxtimer_to_ms = SLAVE_RX_TIMER_MS;
}
if (!of_property_read_u32(np, "asr,spi-master-rxto", &tmp))
drv_data->master_rxfifo_timeout = tmp;
else
drv_data->master_rxfifo_timeout = TIMOUT_DFLT;
if (!of_property_read_u32(np, "asr,spi-slave-rxto", &tmp))
drv_data->slave_rxfifo_timeout = tmp;
else
drv_data->slave_rxfifo_timeout = TIMOUT_DFLT_SLAVE;
if (of_get_property(np, "asr,ssp-hold-frame-low", NULL))
drv_data->hold_frame_low = TOP_HOLD_FRAME_LOW;
if (of_get_property(np, "asr,spi-cs-comb-ctrl", NULL))
drv_data->cs_comb_ctrl = 1;
prop = of_get_property(dev->of_node, "asr,ssp-lpm-qos", &proplen);
if (!prop) {
dev_err(&pdev->dev, "lpm-qos for spi is not defined!\n");
status = -EINVAL;
goto out_error_master_alloc;
} else
drv_data->qos_idle_value = be32_to_cpup(prop);
init_dvfm_constraint(drv_data);
master->dev.of_node = dev->of_node;
drv_data->ssp_type = (uintptr_t) id->data;
if (!of_property_read_u32(np, "asr,ssp-id", &bus_num))
master->bus_num = bus_num;
drv_data->ssdr_physical = iores->start + DATAR;
if (!of_property_read_u32(np, "asr,spi-pio-interval", &tmp)) {
drv_data->pio_cs_auto_deasert = 1;
drv_data->pio_interval_us = tmp;
}
else {
drv_data->pio_cs_auto_deasert = 0;
drv_data->pio_interval_us = 0;
}
if (of_get_property(np, "asr,spi-unqueued-transfer", NULL))
drv_data->unqueued_transfer = 1;
else
drv_data->unqueued_transfer = 0;
if (of_get_property(np, "asr,spi-no-tasklet", NULL))
drv_data->no_tasklet = 1;
else
drv_data->no_tasklet = 0;
drv_data->clk = devm_clk_get(dev, NULL);
if (IS_ERR_OR_NULL(drv_data->clk)) {
dev_err(&pdev->dev, "cannot get clk\n");
status = -ENODEV;
goto out_error_clk_check;
}
drv_data->master = master;
drv_data->master_info = platform_info;
drv_data->pdev = pdev;
master->dev.parent = &pdev->dev;
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
master->dma_alignment = DMA_ALIGNMENT;
master->cleanup = cleanup;
master->setup = setup;
if (drv_data->unqueued_transfer) {
master->transfer = asr_spi_unqueued_transfer;
drv_data->no_tasklet = 1;
}else{
master->transfer_one_message = asr_spi_transfer_one_message;
}
master->auto_runtime_pm = true;
master->unprepare_transfer_hardware = asr_spi_unprepare_transfer;
if (of_get_property(np, "asr,ssp-spi-mem", NULL)) {
init_completion(&drv_data->dma_completion);
master->mem_ops = &asr_spi_mem_ops;
}
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
drv_data->int_cr = INT_EN_TIE | INT_EN_RIE | INT_EN_TINTE; /* INT_EN */
drv_data->dma_cr = INT_EN_RIM | INT_EN_TIM;
drv_data->clear_sr = STATUS_ROR | STATUS_TINT;
drv_data->mask_sr = STATUS_TINT | STATUS_RFS | STATUS_TFS | STATUS_ROR;
drv_data->dma_top_ctrl = DEFAULT_DMA_TOP_CTRL;
drv_data->dma_fifo_ctrl = DEFAULT_DMA_FIFO_CTRL;
status = of_property_read_u32(np, "asr,ssp-clock-rate", &master->max_speed_hz);
if (status < 0) {
dev_err(&pdev->dev, "cannot get clock-rate from DT file\n");
goto out_error_clk_check;
}
status = devm_request_irq(&pdev->dev, drv_data->irq, ssp_int, IRQF_SHARED, dev_name(dev),
drv_data);
if (status < 0) {
dev_err(&pdev->dev, "cannot get IRQ %d\n", drv_data->irq);
goto out_error_clk_check;
}
/* Setup DMA if requested */
if (platform_info->enable_dma) {
status = asr_spi_dma_setup(drv_data);
if (status) {
dev_dbg(dev, "no DMA channels available, using PIO\n");
platform_info->enable_dma = false;
}
}
clk_set_rate(drv_data->clk, master->max_speed_hz);
master->max_speed_hz = clk_get_rate(drv_data->clk);
clk_prepare_enable(drv_data->clk);
/* Load default SSP configuration */
asr_spi_write(drv_data, TOP_CTRL, 0);
asr_spi_write(drv_data, FIFO_CTRL, 0);
tmp = FIFO_RxTresh(RX_THRESH_DFLT) |
FIFO_TxTresh(TX_THRESH_DFLT);
asr_spi_write(drv_data, FIFO_CTRL, tmp);
tmp = TOP_FRF_Motorola | TOP_DSS(8);
asr_spi_write(drv_data, TOP_CTRL, tmp);
asr_spi_write(drv_data, TO, 0);
asr_spi_write(drv_data, PSP_CTRL, 0);
master->num_chipselect = platform_info->num_chipselect;
if (!drv_data->no_tasklet)
tasklet_init(&drv_data->pump_transfers, pump_transfers,
(unsigned long)drv_data);
if (master->auto_runtime_pm) {
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
/* Register with the SPI framework */
platform_set_drvdata(pdev, drv_data);
status = devm_spi_register_master(&pdev->dev, master);
if (status != 0) {
dev_err(&pdev->dev, "problem registering spi master\n");
goto out_error_clock_enabled;
}
return status;
out_error_clock_enabled:
clk_disable_unprepare(drv_data->clk);
asr_spi_dma_release(drv_data);
free_irq(drv_data->irq, drv_data);
out_error_clk_check:
deinit_dvfm_constraint(drv_data);
out_error_master_alloc:
spi_master_put(master);
return status;
}
int register_spi_removed_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&removed_notifier_list, nb);
}
EXPORT_SYMBOL(register_spi_removed_notifier);
static int asr_spi_remove(struct platform_device *pdev)
{
struct spi_driver_data *drv_data = platform_get_drvdata(pdev);
blocking_notifier_call_chain(&removed_notifier_list, 0, "removing");
if (!drv_data)
return 0;
pm_runtime_get_sync(&pdev->dev);
/* Disable the SSP at the peripheral and SOC level */
asr_spi_write(drv_data, TOP_CTRL, 0);
asr_spi_write(drv_data, FIFO_CTRL, 0); /* whether need this line? */
clk_disable_unprepare(drv_data->clk);
/* Release DMA */
if (drv_data->master_info->enable_dma)
asr_spi_dma_release(drv_data);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
/* Release IRQ */
free_irq(drv_data->irq, drv_data);
deinit_dvfm_constraint(drv_data);
return 0;
}
static void asr_spi_shutdown(struct platform_device *pdev)
{
int status = 0;
if ((status = asr_spi_remove(pdev)) != 0)
dev_err(&pdev->dev, "shutdown failed with %d\n", status);
}
#ifdef CONFIG_PM_SLEEP
static int asr_spi_suspend(struct device *dev)
{
struct spi_driver_data *drv_data = dev_get_drvdata(dev);
int status = 0;
pm_runtime_get_sync(dev);
status = spi_master_suspend(drv_data->master);
if (status != 0)
return status;
asr_spi_write(drv_data, TOP_CTRL, 0);
asr_spi_write(drv_data, FIFO_CTRL, 0); /* whether need this line? */
status = pm_runtime_force_suspend(dev);
return status;
}
static int asr_spi_resume(struct device *dev)
{
struct spi_driver_data *drv_data = dev_get_drvdata(dev);
int status = 0;
/* Enable the SSP clock */
status = pm_runtime_force_resume(dev);
if (status) {
dev_err(dev, "failed to resume pm_runtime (%d)\n", status);
return status;
}
/* Start the queue running */
status = spi_master_resume(drv_data->master);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (status != 0) {
dev_err(dev, "problem starting queue (%d)\n", status);
return status;
}
return 0;
}
#endif
#ifdef CONFIG_PM
static int asr_spi_runtime_suspend(struct device *dev)
{
struct spi_driver_data *drv_data = dev_get_drvdata(dev);
clk_disable_unprepare(drv_data->clk);
return 0;
}
static int asr_spi_runtime_resume(struct device *dev)
{
struct spi_driver_data *drv_data = dev_get_drvdata(dev);
clk_prepare_enable(drv_data->clk);
return 0;
}
#endif
static const struct dev_pm_ops asr_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(asr_spi_suspend, asr_spi_resume)
SET_RUNTIME_PM_OPS(asr_spi_runtime_suspend,
asr_spi_runtime_resume, NULL)
};
static struct platform_driver driver = {
.driver = {
.name = "asr-spi",
.pm = &asr_spi_pm_ops,
.of_match_table = asr_spi_dt_ids,
},
.probe = asr_spi_probe,
.remove = asr_spi_remove,
.shutdown = asr_spi_shutdown,
};
static int __init asr_spi_init(void)
{
return platform_driver_register(&driver);
}
module_init(asr_spi_init);
static void __exit asr_spi_exit(void)
{
platform_driver_unregister(&driver);
}
module_exit(asr_spi_exit);