blob: 44d2b5bb3ead85d4971aa027ee030943b5260420 [file] [log] [blame]
/*
LzmaDecode.c
LZMA Decoder
LZMA SDK 4.01 Copyright (c) 1999-2004 Igor Pavlov (2004-02-15)
*/
#include "LzmaDecode.h"
#include "Errors.h"
//#define LZMA_DEBUG
#ifndef Byte
#define Byte unsigned char
#endif
#ifndef NULL
#define NULL 0
#endif
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
typedef struct _CRangeDecoder
{
Byte *Buffer;
Byte *BufferLim;
UInt32 Range;
UInt32 Code;
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback;
int Result;
#endif
int ExtraBytes;
} CRangeDecoder;
Byte RangeDecoderReadByte(CRangeDecoder *rd)
{
if (rd->Buffer == rd->BufferLim)
{
#ifdef _LZMA_IN_CB
UInt32 size;
rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
rd->BufferLim = rd->Buffer + size;
if (size == 0)
#endif
{
rd->ExtraBytes = 1;
return 0xFF;
}
}
return (*rd->Buffer++);
}
/* #define ReadByte (*rd->Buffer++) */
#define ReadByte (RangeDecoderReadByte(rd))
void RangeDecoderInit(CRangeDecoder *rd,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback
#else
Byte *stream, UInt32 bufferSize
#endif
)
{
int i;
#ifdef _LZMA_IN_CB
rd->InCallback = inCallback;
rd->Buffer = rd->BufferLim = 0;
#else
rd->Buffer = stream;
rd->BufferLim = stream + bufferSize;
#endif
rd->ExtraBytes = 0;
rd->Code = 0;
rd->Range = (0xFFFFFFFF);
for(i = 0; i < 5; i++)
{
rd->Code = (rd->Code << 8) | ReadByte;
#ifdef LZMA_DEBUG
obm_printf("0x%x\n\r", rd->Code);
#endif
}
}
#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;
#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }
UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
{
RC_INIT_VAR
UInt32 result = 0;
int i;
for (i = numTotalBits; i > 0; i--)
{
/* UInt32 t; */
range >>= 1;
result <<= 1;
if (code >= range)
{
code -= range;
result |= 1;
}
/*
t = (code - range) >> 31;
t &= 1;
code -= range & (t - 1);
result = (result + result) | (1 - t);
*/
RC_NORMALIZE
}
RC_FLUSH_VAR
return result;
}
int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
{
UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
if (rd->Code < bound)
{
rd->Range = bound;
*prob += (kBitModelTotal - *prob) >> kNumMoveBits;
if (rd->Range < kTopValue)
{
rd->Code = (rd->Code << 8) | ReadByte;
rd->Range <<= 8;
}
return 0;
}
else
{
rd->Range -= bound;
rd->Code -= bound;
*prob -= (*prob) >> kNumMoveBits;
if (rd->Range < kTopValue)
{
rd->Code = (rd->Code << 8) | ReadByte;
rd->Range <<= 8;
}
return 1;
}
}
#define RC_GET_BIT2(prob, mi, A0, A1) \
UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
if (code < bound) \
{ A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
else \
{ A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
RC_NORMALIZE
#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)
int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
int mi = 1;
int i;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
for(i = numLevels; i > 0; i--)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + mi;
RC_GET_BIT(prob, mi)
#else
mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
#endif
}
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return mi - (1 << numLevels);
}
int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
int mi = 1;
int i;
int symbol = 0;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
for(i = 0; i < numLevels; i++)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + mi;
RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
#else
int bit = RangeDecoderBitDecode(probs + mi, rd);
mi = mi + mi + bit;
symbol |= (bit << i);
#endif
}
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
{
int symbol = 1;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
do
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + symbol;
RC_GET_BIT(prob, symbol)
#else
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
#endif
}
while (symbol < 0x100);
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
{
int symbol = 1;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
do
{
int bit;
int matchBit = (matchByte >> 7) & 1;
matchByte <<= 1;
#ifdef _LZMA_LOC_OPT
{
CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
}
#else
bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, rd);
symbol = (symbol << 1) | bit;
#endif
if (matchBit != bit)
{
while (symbol < 0x100)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + symbol;
RC_GET_BIT(prob, symbol)
#else
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
#endif
}
break;
}
}
while (symbol < 0x100);
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
{
if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
return RangeDecoderBitTreeDecode(p + LenLow +
(posState << kLenNumLowBits), kLenNumLowBits, rd);
if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
(posState << kLenNumMidBits), kLenNumMidBits, rd);
return kLenNumLowSymbols + kLenNumMidSymbols +
RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
}
#define kNumStates 12
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif
#ifdef _LZMA_OUT_READ
typedef struct _LzmaVarState
{
CRangeDecoder RangeDecoder;
Byte *Dictionary;
UInt32 DictionarySize;
UInt32 DictionaryPos;
UInt32 GlobalPos;
UInt32 Reps[4];
int lc;
int lp;
int pb;
int State;
int PreviousIsMatch;
int RemainLen;
} LzmaVarState;
int LzmaDecoderInit(
unsigned char *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
unsigned char *dictionary, UInt32 dictionarySize,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback
#else
unsigned char *inStream, UInt32 inSize
#endif
)
{
LzmaVarState *vs = (LzmaVarState *)buffer;
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
UInt32 i;
if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
return LZMA_RESULT_NOT_ENOUGH_MEM;
vs->Dictionary = dictionary;
vs->DictionarySize = dictionarySize;
vs->DictionaryPos = 0;
vs->GlobalPos = 0;
vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
vs->lc = lc;
vs->lp = lp;
vs->pb = pb;
vs->State = 0;
vs->PreviousIsMatch = 0;
vs->RemainLen = 0;
dictionary[dictionarySize - 1] = 0;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
RangeDecoderInit(&vs->RangeDecoder,
#ifdef _LZMA_IN_CB
inCallback
#else
inStream, inSize
#endif
);
return LZMA_RESULT_OK;
}
int LzmaDecode(unsigned char *buffer,
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed)
{
LzmaVarState *vs = (LzmaVarState *)buffer;
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
CRangeDecoder rd = vs->RangeDecoder;
int state = vs->State;
int previousIsMatch = vs->PreviousIsMatch;
Byte previousByte;
UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << (vs->pb)) - 1;
UInt32 literalPosMask = (1 << (vs->lp)) - 1;
int lc = vs->lc;
int len = vs->RemainLen;
UInt32 globalPos = vs->GlobalPos;
Byte *dictionary = vs->Dictionary;
UInt32 dictionarySize = vs->DictionarySize;
UInt32 dictionaryPos = vs->DictionaryPos;
if (len == -1)
{
*outSizeProcessed = 0;
return LZMA_RESULT_OK;
}
while(len > 0 && nowPos < outSize)
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
len--;
}
if (dictionaryPos == 0)
previousByte = dictionary[dictionarySize - 1];
else
previousByte = dictionary[dictionaryPos - 1];
#else
int LzmaDecode(
Byte *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback,
#else
unsigned char *inStream, UInt32 inSize,
#endif
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed)
{
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
CProb *p = (CProb *)buffer;
CRangeDecoder rd;
UInt32 i;
int state = 0;
int previousIsMatch = 0;
Byte previousByte = 0;
UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << pb) - 1;
UInt32 literalPosMask = (1 << lp) - 1;
int len = 0;
if (bufferSize < numProbs * sizeof(CProb))
return LZMA_RESULT_NOT_ENOUGH_MEM;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
RangeDecoderInit(&rd,
#ifdef _LZMA_IN_CB
inCallback
#else
inStream, inSize
#endif
);
#endif
*outSizeProcessed = 0;
while(nowPos < outSize)
{
int posState = (int)(
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& posStateMask);
#ifdef _LZMA_IN_CB
if (rd.Result != LZMA_RESULT_OK)
return rd.Result;
#endif
if (rd.ExtraBytes != 0)
return LZMA_RESULT_DATA_ERROR;
if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
{
CProb *probs = p + Literal + (LZMA_LIT_SIZE *
(((
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& literalPosMask) << lc) + (previousByte >> (8 - lc))));
if (state < 4) state = 0;
else if (state < 10) state -= 3;
else state -= 6;
if (previousIsMatch)
{
Byte matchByte;
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
matchByte = dictionary[pos];
#else
matchByte = outStream[nowPos - rep0];
#endif
previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
previousIsMatch = 0;
}
else
previousByte = LzmaLiteralDecode(probs, &rd);
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#endif
}
else
{
previousIsMatch = 1;
if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
{
if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
{
if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
{
#ifdef _LZMA_OUT_READ
UInt32 pos;
#endif
if (
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
== 0)
return LZMA_RESULT_DATA_ERROR;
state = state < 7 ? 9 : 11;
#ifdef _LZMA_OUT_READ
pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
continue;
}
}
else
{
UInt32 distance;
if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
distance = rep1;
else
{
if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
distance = rep2;
else
{
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
state = state < 7 ? 8 : 11;
}
else
{
int posSlot;
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < 7 ? 7 : 10;
len = LzmaLenDecode(p + LenCoder, &rd, posState);
posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits), kNumPosSlotBits, &rd);
if (posSlot >= kStartPosModelIndex)
{
int numDirectBits = ((posSlot >> 1) - 1);
rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
if (posSlot < kEndPosModelIndex)
{
rep0 += RangeDecoderReverseBitTreeDecode(
p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
}
else
{
rep0 += RangeDecoderDecodeDirectBits(&rd,
numDirectBits - kNumAlignBits) << kNumAlignBits;
rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
}
}
else
rep0 = posSlot;
rep0++;
}
if (rep0 == (UInt32)(0))
{
/* it's for stream version */
len = -1;
break;
}
if (rep0 > nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
{
return LZMA_RESULT_DATA_ERROR;
}
len += kMatchMinLen;
do
{
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
len--;
}
while(len > 0 && nowPos < outSize);
}
}
#ifdef _LZMA_OUT_READ
vs->RangeDecoder = rd;
vs->DictionaryPos = dictionaryPos;
vs->GlobalPos = globalPos + nowPos;
vs->Reps[0] = rep0;
vs->Reps[1] = rep1;
vs->Reps[2] = rep2;
vs->Reps[3] = rep3;
vs->State = state;
vs->PreviousIsMatch = previousIsMatch;
vs->RemainLen = len;
#endif
*outSizeProcessed = nowPos;
return LZMA_RESULT_OK;
}
#ifdef _LZMA_IN_CB
// upwards align
#ifndef MAKE_BOOTROM
// clear watchdog callback function
typedef void (* Drv_Func)(void);
extern Drv_Func funcgDrvFeedSoftWatchdogHook;
#endif
#define ALIGN_UP(addr,align) ( ((unsigned int)(addr) + (unsigned int)((align) - 1)) & ~(unsigned int)((align) - 1) )
#define MAX_DECOMPRESS_READ_COUNT 10
typedef struct _CBuffer
{
ILzmaInCallback InCallback;
unsigned char *Buffer;
unsigned int Size;
unsigned int PerSize;
unsigned int PerCount;
} CBuffer;
int LzmaReadCompressed(void *object, unsigned char **buffer, unsigned int *size)
{
CBuffer *bo = (CBuffer *)object;
#ifdef MAKE_BOOTROM
// print out percentage of decompress
if( bo->PerCount != 0 )
{
// printf("%ld%%...", bo->PerCount * 100 / MAX_DECOMPRESS_READ_COUNT );
}
#else
// clear watchdog
if( funcgDrvFeedSoftWatchdogHook != NULL )
{
funcgDrvFeedSoftWatchdogHook();
}
Drv_FeedHardWatchDog();
#endif
if( bo->PerCount == ( MAX_DECOMPRESS_READ_COUNT - 1 ) )
{
*size = bo->Size - bo->PerSize * bo->PerCount;
}
else if ( bo->PerCount < ( MAX_DECOMPRESS_READ_COUNT - 1 ) )
{
*size = bo->PerSize;
}
else
{
//LZMA_Print("\r\n LzmaReadCompressed() : Read compressd mem fail !");
return LZMA_RESULT_NOT_ENOUGH_MEM;
}
*buffer = bo->Buffer + bo->PerSize * bo->PerCount;
bo->PerCount ++;
return LZMA_RESULT_OK;
}
#endif
unsigned int LZMA_DecompressOutsize(void *pSrc)
{
int ii;
unsigned char *pCharSrc = pSrc;
unsigned int outSize = 0;
pCharSrc += 5;
for (ii = 0; ii < 4; ii++)
{
unsigned char b;
b = *pCharSrc;
pCharSrc ++;
outSize += (unsigned int)(b) << (ii * 8);
}
return outSize;
}
/*-----------------------------------------------------------------------------
Function name : LZMA_Decompress();
Function: LZMA compression algorithm to extract interface
Input parameter: pDst, decompression of the objective memory address
pulDstLen, Decompression of the objective memory length
pSrc, Decompression of the source address of the memory
ulSrcLen, Decompression of the source memory length
Output parameters: *pulDstLen, if successfully decompressed, actual unpacked length;
Return value:0, successful;Other, failed.
-----------------------------------------------------------------------------*/
unsigned long LZMA_Decompress( void *pDst, unsigned int *pulDstLen, void *pSrc, unsigned int ulSrcLen, int choice )
{
unsigned int compressedSize, outSize, outSizeProcessed, lzmaInternalSize;
void *inStream, *outStream, *lzmaInternalData;
unsigned char properties[5];
unsigned char prop0;
int ii,i,j;
int lc, lp, pb;
int res;
#ifdef _LZMA_IN_CB
CBuffer bo;
#endif
unsigned char *pCharSrc = pSrc;
unsigned int * test = pSrc, temp;
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress start here.........\n\r");
#endif
/*
if( ( NULL == pDst ) || ( NULL == pulDstLen ) || ( NULL == pSrc ) )
{
#ifdef LZMA_DEBUG
obm_printf("\r\n LZMA_Decompress() : Input prt is null\n\r");
#endif
return 1;
}
*/
if( ( 0 == pulDstLen ) || ( 0 == ulSrcLen ) )
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : Input mem len is zero\n\r");
#endif
return 1;
}
memcpy(properties, pSrc, sizeof(properties) );
pCharSrc += sizeof(properties);
outSize = 0;
for (ii = 0; ii < 4; ii++)
{
unsigned char b;
b = *pCharSrc;
pCharSrc ++;
outSize += (unsigned int)(b) << (ii * 8);
}
if (outSize == 0xFFFFFFFF)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : stream version is not supported\n\r");
#endif
return 1;
}
for (ii = 0; ii < 4; ii++)
{
unsigned char b;
b = *pCharSrc;
pCharSrc ++;
if (b != 0)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : too long file\n\r");
#endif
return 1;
}
}
compressedSize = ulSrcLen - 13;
inStream = pCharSrc;
prop0 = properties[0];
if (prop0 >= (9*5*5))
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : Properties error\n\r");
#endif
return 1;
}
for (pb = 0; prop0 >= (9 * 5);
pb++, prop0 -= (9 * 5));
for (lp = 0; prop0 >= 9;
lp++, prop0 -= 9);
lc = prop0;
lzmaInternalSize = (LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)))* sizeof(CProb);
#ifdef _LZMA_OUT_READ
lzmaInternalSize += 100;
#endif
outStream = pDst;
if (outSize > *pulDstLen)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : outSize > *pulDstLen\n\r");
#endif
return 1;
}
lzmaInternalData = malloc(lzmaInternalSize);
if(lzmaInternalData == NULL)
return HeapExhaustedError;
#if 0
switch (choice)
{
case 0x0:
lzmaInternalData = (void *)LZMA_INTERNAL_BOOT_BUFF;
break;
case 0x1:
default:
lzmaInternalData = (void *)LZMA_INTERNAL_FOTA_BUFF;
break;
}
//if (outStream == 0 || lzmaInternalData == 0)
if (lzmaInternalData == 0)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : outStream == 0 || lzmaInternalData == 0\n\r");
#endif
return 1;
}
#endif
#ifdef _LZMA_IN_CB
bo.InCallback.Read = LzmaReadCompressed;
bo.Buffer = (unsigned char *)inStream;
bo.Size = compressedSize;
bo.PerCount = 0;
bo.PerSize = ALIGN_UP( compressedSize / MAX_DECOMPRESS_READ_COUNT, 0x10 );
#endif
#ifdef _LZMA_OUT_READ
{
UInt32 nowPos;
unsigned char *dictionary;
UInt32 dictionarySize = 0;
int i;
for (i = 0; i < 4; i++)
dictionarySize += (UInt32)(properties[1 + i]) << (i * 8);
dictionary = malloc(dictionarySize);
if (dictionary == 0)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : dictionary == 0\n\r");
#endif
free(lzmaInternalData);
return 1;
}
LzmaDecoderInit((unsigned char *)lzmaInternalData, lzmaInternalSize,
lc, lp, pb,
dictionary, dictionarySize,
#ifdef _LZMA_IN_CB
&bo.InCallback
#else
(unsigned char *)inStream, compressedSize
#endif
);
for (nowPos = 0; nowPos < outSize;)
{
UInt32 blockSize = outSize - nowPos;
UInt32 kBlockSize = 0x10000;
if (blockSize > kBlockSize)
blockSize = kBlockSize;
res = LzmaDecode((unsigned char *)lzmaInternalData,
((unsigned char *)outStream) + nowPos, blockSize, &outSizeProcessed);
if (res != 0)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : res != 0\n\r");
#endif
free(lzmaInternalData);
free(dictionary);
return 1;
}
if (outSizeProcessed == 0)
{
outSize = nowPos;
break;
}
nowPos += outSizeProcessed;
}
free(dictionary);
}
#else
res = LzmaDecode((unsigned char *)lzmaInternalData, lzmaInternalSize,
lc, lp, pb,
#ifdef _LZMA_IN_CB
&bo.InCallback,
#else
(unsigned char *)inStream, compressedSize,
#endif
(unsigned char *)outStream, outSize, &outSizeProcessed);
outSize = outSizeProcessed;
free(lzmaInternalData);
if (res != 0)
{
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : res != 0\n\r");
#endif
return 1;
}
#endif
*pulDstLen = outSize;
#ifdef LZMA_DEBUG
obm_printf("LZMA_Decompress() : good!\n\r");
#endif
return 0;
}