blob: 268e47a755c731d027cd0a721be0d5ff293ee801 [file] [log] [blame]
/*
* Fast path Classifier
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) "mfp" " classifier:%s:%d: " fmt, __func__, __LINE__
#include "fp_common.h"
#include "fp_database.h"
#include "fp_device.h"
#include "fp_core.h"
struct fpc_stats {
u32 total;
u32 slow;
u32 fast;
};
static struct fpc_stats stats;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 3, 0)
static unsigned int udp_ct_timeout = UDP_DEFAULT_TIMEOUT;
static unsigned int udp_ct_timeout_stream = UDP_DEFAULT_TIMEOUT_STREAM;
static unsigned int tcp_ct_timeout = TCP_DEFAULT_TIMEOUT;
#endif
static int fp_acct_flag = 1;
static int fp_ip_log_en = 255;
static int fp_ip_log_pkt_num;
static unsigned char *fp_ip_log_buf;
static int fp_ip_log_index;
#define ONE_IP_LOG_LEN 96
//#define CONFIG_SET_HL_64
static inline int fp_ip_decrease_ttl(struct sk_buff *skb)
{
if (ip_hdr(skb)->version == 4)
return ip_decrease_ttl(ip_hdr(skb));
else
return --ipv6_hdr(skb)->hop_limit;
}
/* builds a tuple according to the parameters received) */
static inline void build_tuple(const struct sk_buff *skb,
struct nf_conntrack_tuple *tuple)
{
int proto;
struct udphdr *udph;
/* Fill l3 info */
if (ip_hdr(skb)->version == 4) {
tuple->src.l3num = AF_INET;
tuple->src.u3.ip = ip_hdr(skb)->saddr;
tuple->dst.u3.ip = ip_hdr(skb)->daddr;
proto = ip_hdr(skb)->protocol;
} else {
tuple->src.l3num = AF_INET6;
tuple->src.u3.in6 = ipv6_hdr(skb)->saddr;
tuple->dst.u3.in6 = ipv6_hdr(skb)->daddr;
proto = ipv6_hdr(skb)->nexthdr;
}
/* Fill l4 info*/
udph = (struct udphdr *)skb_transport_header(skb);
tuple->dst.protonum = proto;
tuple->dst.u.all = udph->dest;
tuple->src.u.all = udph->source;
tuple->dst.dir = 0;
}
static inline void log_ip_pkt(const struct sk_buff *skb, unsigned char *buf)
{
struct tcphdr *tcph;
struct iphdr *piphdr;
struct ipv6hdr *pipv6hdr;
struct timespec64 ts;
piphdr = ip_hdr(skb);
ktime_get_real_ts64(&ts);
memcpy(buf, &ts.tv_sec, 8);
buf += 8;
memcpy(buf, &ts.tv_nsec, 4);
buf += 4;
/* Fill l3 info */
if (piphdr->version == 4) {
*buf = 4;
buf += 1;
*buf = piphdr->protocol;
buf += 1;
memcpy(buf, &piphdr->id, 2);
buf += 2;
memcpy(buf, &piphdr->tot_len, 2);
buf += 4;
memcpy(buf, &piphdr->saddr, 4);
buf += 16;
memcpy(buf, &piphdr->daddr, 4);
buf += 16;
} else {
pipv6hdr = ipv6_hdr(skb);
*buf = 6;
buf += 1;
*buf = pipv6hdr->nexthdr;
buf += 1;
*buf = 0;
*(buf+1) = 0;
buf += 2;
memcpy(buf, &pipv6hdr->payload_len, 2);
buf += 4;
memcpy(buf, &pipv6hdr->saddr, 16);
buf += 16;
memcpy(buf, &pipv6hdr->daddr, 16);
buf += 16;
}
/* Fill l4 info*/
tcph = (struct tcphdr *)skb_transport_header(skb);
memcpy(buf, &tcph->source, 2);
buf += 2;
memcpy(buf, &tcph->dest, 2);
buf += 2;
memcpy(buf, &tcph->seq, 4);
buf += 4;
memcpy(buf, &tcph->ack_seq, 4);
buf += 4;
memcpy(buf, ((char *)&tcph->ack_seq)+4, 2);
buf += 2;
}
/* checksum adjust (inline) */
static inline void fpc_checksum(unsigned char *chksum,
unsigned char *optr, unsigned long olen,
unsigned char *nptr, unsigned long nlen,
int proto)
{
long x, old, neu;
if (proto == IPPROTO_UDP && *(__sum16 *)chksum == 0)
return;
x = chksum[0] * 256 + chksum[1];
x = ~x & 0xFFFF;
while (olen) {
old = optr[0] * 256 + optr[1];
optr += 2;
x -= old & 0xffff;
if (x <= 0) {
x--;
x &= 0xffff;
}
olen -= 2;
}
while (nlen) {
neu = nptr[0] * 256 + nptr[1];
nptr += 2;
x += neu & 0xffff;
if (x & 0x10000) {
x++;
x &= 0xffff;
}
nlen -= 2;
}
x = ~x & 0xFFFF;
chksum[0] = (unsigned char)(x / 256);
chksum[1] = (unsigned char)(x & 0xff);
}
static inline int fp_hard_header(struct sk_buff *skb, struct fpdb_entry *e)
{
struct hh_cache *hh = &e->hh;
int hh_len = hh->hh_len;
unsigned int hh_alen = 0;
unsigned int headroom;
if (!hh_len)
return 0;
headroom = skb_headroom(skb);
if (likely(hh_len <= HH_DATA_MOD)) {
hh_alen = HH_DATA_MOD;
/* this is inlined by gcc */
if (likely(headroom >= HH_DATA_MOD))
memcpy(skb->data - HH_DATA_MOD, hh->hh_data,
HH_DATA_MOD);
} else {
hh_alen = HH_DATA_ALIGN(hh_len);
if (likely(headroom >= hh_alen))
memcpy(skb->data - hh_alen, hh->hh_data,
hh_alen);
}
if (WARN_ON_ONCE(headroom < hh_alen))
return 1;
skb_push(skb, hh_len);
return 0;
}
/**
* Refresh ct (reschedule timeout)
*
* @param skb
* @param el
* @param acct do accounting
*/
static inline void fpc_refresh(struct sk_buff *skb, struct fpdb_entry *el, int acct)
{
struct nf_conn *ct = el->ct;
const struct nf_conntrack_l4proto *l4proto;
enum ip_conntrack_info ctinfo = el->dir ? IP_CT_IS_REPLY : 0;
unsigned long extra_jiffies = 0;
#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 3, 0)
unsigned int *timeouts;
#endif
l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
NF_CT_ASSERT(l4proto);
#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 3, 0)
if (l4proto->l4proto == IPPROTO_TCP) {
timeouts = nf_tcp_pernet(nf_ct_net(ct))->timeouts;
WARN_ON(ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED);
extra_jiffies = timeouts[TCP_CONNTRACK_ESTABLISHED];
} else if (l4proto->l4proto == IPPROTO_UDP) {
timeouts = nf_udp_pernet(nf_ct_net(ct))->timeouts;
if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
extra_jiffies = timeouts[UDP_CT_REPLIED];
else
extra_jiffies = timeouts[UDP_CT_UNREPLIED];
}
#else
if (l4proto->l4proto == IPPROTO_TCP) {
WARN_ON(ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED);
extra_jiffies = tcp_ct_timeout;
} else if (l4proto->l4proto == IPPROTO_UDP) {
if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
extra_jiffies = udp_ct_timeout_stream;
else
extra_jiffies = udp_ct_timeout;
}
#endif
__nf_ct_refresh_acct(ct, ctinfo, skb, extra_jiffies, acct);
fpdb_trace(el, (l4proto->l4proto == IPPROTO_TCP) ? tcp_hdr(skb) : NULL);
}
/**
* Modify skb as if it was forwarded by the ip stack:
* L2: Add MAC Header, set skb->pkt_type = PACKET_HOST
* L3: Decrement ttl, NAT, checksum
* L4: Checksum
*
* @param skb skb to modify
* @param el fpdb_entry related to this connection
*/
static inline int fpc_modify(struct sk_buff *skb,
struct fpdb_entry *el)
{
int version = ip_hdr(skb)->version;
int proto = (version == 4) ? ip_hdr(skb)->protocol : ipv6_hdr(skb)->nexthdr;
struct udphdr *udph = udp_hdr(skb);
struct tcphdr *tcph = tcp_hdr(skb);
/**
* skb->pkt_type can be either PACKET_HOST or PACKET_OTHERHOST
* (see fpc_classify_start). We also know that this flow passed
* through slowpath (otherwise fastpath connection would not
* have been created in the first place). Therefore it is safe
* to change the pkt_type since this is what the IP Stack would
* have done.
*
* Slowpath behavior:
* PACKET_OTHERHOST is set by the receiving interface if the
* dest MAC is different from it's MAC address. In this case
* this means that the packet is not destined to us and is
* dropped. The only exception is if the receiving interface is
* behind a bridge. In this case, the dest MAC in packets sent
* outside the LAN is the bridge MAC address, in which case the
* bridging code sets the pkt_type to PACKET_HOST before
* routing the packet. Packes withing the LAN sre bridged and
* are not passed to the upper layers, and therefore doesn't go
* through fastpath unless CONFIG_BRIDGE_NETFILTER is enabled -
* which is the only case where fastpath "misbehaves" and sets
* the pkt_type to PACKET_HOST for bridged packets - this might
* need revision in the future.
*/
skb->pkt_type = PACKET_HOST;
if (fp_hard_header(skb, el))
return 1;
fp_ip_decrease_ttl(skb);
/* NAT (incase used by this connection) */
if (NF_CT_NAT(el->ct)) {
void *old, *new;
unsigned int size;
__sum16 *check;
/* NAT L3 ip addresses manipulation */
if (likely(version == 4)) {
struct iphdr *iph = ip_hdr(skb);
iph->saddr = el->out_tuple.dst.u3.ip;
iph->daddr = el->out_tuple.src.u3.ip;
#ifdef CONFIG_SET_HL_64
iph->ttl = 64;
#endif
ip_send_check(iph); /*IPv4 checksum */
} else {
struct ipv6hdr *iph = ipv6_hdr(skb);
iph->saddr = el->out_tuple.dst.u3.in6;
iph->daddr = el->out_tuple.src.u3.in6;
#ifdef CONFIG_SET_HL_64
iph->hop_limit = 64;
#endif
}
/* Adjust transport header checksum */
check = (proto == IPPROTO_UDP) ? &udph->check : &tcph->check;
size = (version == 4) ? 4 : 16;
old = &el->in_tuple.src.u3.in6;
new = &el->out_tuple.dst.u3.in6;
fpc_checksum((u8 *)check, old, size, new, size, proto);
old = &el->in_tuple.dst.u3.in6;
new = &el->out_tuple.src.u3.in6;
fpc_checksum((u8 *)check, old, size, new, size, proto);
/* NAT L4 ports manipulation */
size = sizeof(__be16);
old = &el->in_tuple.dst.u.all;
new = &el->out_tuple.src.u.all;
if (*(__be16 *)old != *(__be16 *)new) {
udph->dest = *(__be16 *)new;
fpc_checksum((u8 *)check, old, size, new, size, proto);
}
old = &el->in_tuple.src.u.all;
new = &el->out_tuple.dst.u.all;
if (*(__be16 *)old != *(__be16 *)new) {
udph->source = *(__be16 *)new;
fpc_checksum((u8 *)check, old, size, new, size, proto);
}
}
return 0;
}
static inline bool ipv4_is_fragmented(struct iphdr *iph)
{
__be16 df = iph->frag_off & htons(IP_DF);
return (iph->frag_off && !df);
}
static inline int parse_headers(struct sk_buff *skb)
{
int ihl, proto;
BUG_ON(!skb);
skb_reset_network_header(skb);
/* L3 Protocol parsing */
if (likely(ip_hdr(skb)->version == 4)) {
ihl = ip_hdr(skb)->ihl * 4;
proto = ip_hdr(skb)->protocol;
/*ipv4 sanity checks*/
if (unlikely(ihl > sizeof(struct iphdr))) {
pr_debug("ipv4 options in header\n");
return 0;
}
/* check ttl */
if (unlikely(ip_hdr(skb)->ttl == 1)) {
pr_debug("ip->ttl==1\n");
return 0;
}
/* check fragmantation */
if (unlikely(ipv4_is_fragmented(ip_hdr(skb)))) {
pr_debug("fragmented packet (frag_offs=%x)\n",
ntohs(ip_hdr(skb)->frag_off));
return 0;
}
/* ipv4 reassembled pkts */
if (unlikely(skb->data_len)) {
pr_debug("ipv4 reassembled pkts --> send to slowpath\n");
return 0;
}
} else if (likely(ip_hdr(skb)->version == 6)) {
ihl = sizeof(struct ipv6hdr); /* without extentions */
proto = ipv6_hdr(skb)->nexthdr;
/* ipv6 sanity checks */
if (unlikely(ipv6_hdr(skb)->hop_limit == 1)) {
pr_debug("ip->ttl==1 --> send to slowpath\n");
return 0;
}
/* ipv6 reassembled pkts */
if (unlikely(skb->data_len)) {
pr_debug("ipv6 reassembled pkts --> send to slowpath\n");
return 0;
}
} else {
/* Not an IP packet (neither ipv4 nor ipv6) */
pr_debug("not an IP packet\n");
return 0;
}
/* L4 Protocol parsing */
skb_set_transport_header(skb, ihl);
if (proto == IPPROTO_TCP) {
struct tcphdr *th = tcp_hdr(skb);
if (tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_FIN)) {
pr_debug("tcp rst or fin\n");
return 0;
}
} else if (proto != IPPROTO_UDP) {
pr_debug("not a TCP or UDP packet\n");
return 0;
}
return 1;
}
#define NETIF_INVALID(x) (!(x) || !netif_device_present(x) || \
!netif_running(x) || !netif_carrier_ok(x))
/**
* finish classification for this database entry.
* If skb is not NULL, it is tracked & mangled.
*
* @param skb skb to mangle & track, or NULL if not desired
* @param el fpdb_entry previously aquired by fpc_classify
*/
int fpc_classify_finish(struct sk_buff *skb, struct fpdb_entry *el)
{
int ret = 0;
if (skb) {
fpc_refresh(skb, el, fp_acct_flag);
if (fpc_modify(skb, el)) {
ret = 1;
goto exit;
}
/* update timestamp if fpdb used */
el->tstamp = jiffies;
if (!el->tstamp)
el->tstamp = 1;
}
exit:
fpdb_put(el);
return ret;
}
/**
* Classifies an skb as fast or slow, without changing the skb.
* Caller MUST call fpc_classify_finish to free the database entry.
*
* @param skb skb to classify
*
* @return fpdb_entry for this skb
*/
struct fpdb_entry *fpc_classify_start(struct sk_buff *skb, struct nf_conntrack_tuple *tuple)
{
struct fpdb_entry *el = NULL;
struct net_device *src, *dst;
int tmp_log_pkt_index;
unsigned char *plog_pos;
BUG_ON(!skb);
BUG_ON(!skb->dev); /* eth_type_trans always sets skb->dev - we count on it here */
src = skb->dev;
stats.total++;
if (unlikely(skb_headroom(skb) < ETH_HLEN)) {
pr_debug("No room for MAC header in skb\n");
goto slowpath;
}
/* source device sanity checks */
if (unlikely(NETIF_INVALID(src))) {
pr_debug("src (%s) state invalid (%lu)\n", src->name, src->state);
goto slowpath;
}
memset(tuple, 0, sizeof(struct nf_conntrack_tuple));
if (unlikely(!parse_headers(skb)))
goto slowpath;
/* Check fp_database for match */
build_tuple(skb, tuple);
if (1 == fp_ip_log_en) {
tmp_log_pkt_index = fp_ip_log_index++;
if (fp_ip_log_index > fp_ip_log_pkt_num - 50)
fp_ip_log_index = 0;
plog_pos = fp_ip_log_buf + tmp_log_pkt_index*ONE_IP_LOG_LEN;
log_ip_pkt(skb, plog_pos);
}
el = fpdb_get(tuple);
if (unlikely(!el))
goto slowpath;
if (unlikely(el->block)) {
pr_debug("entry blocked, send to slowpath\n");
goto slowpath;
}
if (unlikely(nf_ct_protonum(el->ct) == IPPROTO_TCP) &&
el->ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) {
pr_debug("tcp connection state not established\n");
goto slowpath;
}
if (unlikely(el->in_dev->dev != src &&
el->in_dev->br != src)) {
/**
* Since entry can be updated (due to route changes) this case
* is legal for a short period of time in which packets are
* received using the old entry and transmitted using the new
* one. Since we dont knwo if this is the case or not we will
* just forward this packets to slowpath to decide what to do.
*/
pr_debug("in_dev->dev=%s(%p) != src=%s(%p)\n",
el->in_dev->dev->name, el->in_dev->dev, src->name, src);
goto slowpath;
}
if (unlikely(!el->in_dev->forward || !el->out_dev->forward)) {
pr_debug("forwarding disabled (%s forward=%d, %s forward=%d)\n",
el->in_dev->dev->name, el->in_dev->forward,
el->out_dev->dev->name, el->out_dev->forward);
goto slowpath;
}
dst = el->out_dev->dev;
if (unlikely(NETIF_INVALID(dst))) {
pr_debug("dst (%s) state invalid (%lu)\n", dst->name, dst->state);
goto slowpath;
}
if (unlikely(dst->mtu < skb->len)) {
pr_info_once("mtu (%d) < len (%d)\n", dst->mtu, skb->len);
goto slowpath;
}
if (unlikely(dst == src)) {
/* src == dst entries should be blocked, it's a bug otherwise */
/* here we don't need to dump entry. It will cause assert */
/* because it takes a lot of time yhuang 20160622 */
pr_err("Bug in classifier dst_dev==src_dev(%s), block=%d\n",
src->name, (unsigned int)el->block);
/* FP_ERR_DUMP_ENTRY(NULL, el); */
/* BUG_ON(debug_level & DBG_WARN_AS_ERR); */
goto slowpath;
}
if (unlikely(dst->header_ops && !el->hh.hh_len)) {
pr_debug("hh_cache not valid, send to slowpath\n");
goto slowpath;
}
if (unlikely(skb->pkt_type != PACKET_HOST &&
skb->pkt_type != PACKET_OTHERHOST)) {
pr_debug("invalid skb->pkt_type(%d)\n", skb->pkt_type);
goto slowpath;
}
pr_debug("Packet from %s to %s (pkt_p %p len %d) classified as fast path\n",
src->name, dst->name, skb->data, skb->len);
stats.fast++;
return el;
slowpath:
if (el)
fpdb_put(el);
pr_debug("Packet from %s (pkt_p %p len %d) classified as slow path\n",
src->name, skb->data, skb->len);
stats.slow++;
return NULL;
}
/**
* classify, mangle, track and hold the output device
* Caller MUST release the device with fp_dev_put() once finished.
*
* @param skb skb to classify and mangle
*
* @return destination fp_net_device or NULL if classified as
* slow path
*/
struct fp_net_device *fpc_classify(struct sk_buff *skb)
{
struct fpdb_entry *el;
struct fp_net_device *fdev;
struct nf_conntrack_tuple tuple;
el = fpc_classify_start(skb, &tuple);
if (unlikely(!el))
return NULL;
fdev = fpdev_hold(el->out_dev);
if (fpc_classify_finish(skb, el))
return NULL;
return fdev;
}
static ssize_t stats_show(struct fastpath_module *m, char *buf)
{
int len;
len = sprintf(buf, "Fast Path Classifier statistics:\n");
len += sprintf(buf + len, "Total Classified %d ", stats.total);
len += sprintf(buf + len, "(Fast %d, Slow %d)\n", stats.fast, stats.slow);
return len;
}
static ssize_t stats_clear(struct fastpath_module *m, const char *buf,
size_t count)
{
pr_debug("reset stats...\n");
memset(&stats, 0, sizeof(stats));
return count;
}
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 3, 0)
static ssize_t udp_ct_timeout_set(struct fastpath_module *m, const char *buf,
size_t count)
{
unsigned int sec;
sscanf(buf, "%u", &sec);
udp_ct_timeout = sec * HZ;
return count;
}
static ssize_t udp_ct_timeout_get(struct fastpath_module *m, char *buf)
{
unsigned int sec = udp_ct_timeout / HZ;
return sprintf(buf, "%u\n", sec);
}
static ssize_t tcp_ct_timeout_set(struct fastpath_module *m, const char *buf,
size_t count)
{
unsigned int sec;
sscanf(buf, "%u", &sec);
tcp_ct_timeout = sec * HZ;
return count;
}
static ssize_t tcp_ct_timeout_get(struct fastpath_module *m, char *buf)
{
unsigned int sec = tcp_ct_timeout / HZ;
return sprintf(buf, "%u\n", sec);
}
static FP_ATTR(udp_ct_timeout, S_IRUGO|S_IWUSR, udp_ct_timeout_get, udp_ct_timeout_set);
static FP_ATTR(tcp_ct_timeout, S_IRUGO|S_IWUSR, tcp_ct_timeout_get, tcp_ct_timeout_set);
#endif
static ssize_t fp_acct_set(struct fastpath_module *m, const char *buf,
size_t count)
{
int flag;
sscanf(buf, "%d", &flag);
fp_acct_flag = flag;
return count;
}
static ssize_t fp_acct_get(struct fastpath_module *m, char *buf)
{
int flag = fp_acct_flag;
return sprintf(buf, "%d\n", flag);
}
static ssize_t fp_ip_log_set(struct fastpath_module *m, const char *buf,
size_t count)
{
int flag;
int old_flag;
int num;
int ret;
struct file *filep;
mm_segment_t old_fs;
sscanf(buf, "%d", &flag);
switch (flag) {
case 0:
fp_ip_log_en = flag;
pr_err("fp_ip_log_set: disable ip_log:fp_ip_log_index=%d to 0\n",
fp_ip_log_index);
fp_ip_log_index = 0;
break;
case 1:
fp_ip_log_index = 0;
sscanf(buf, "%d,%d", &flag, &num);
if (fp_ip_log_buf == NULL) {
fp_ip_log_buf = kzalloc(ONE_IP_LOG_LEN*num, GFP_KERNEL);
if (fp_ip_log_buf == NULL)
pr_err("fp_ip_log_set: %d,%d,%d, but malloc failed\n",
flag, num, fp_ip_log_index);
else
pr_err("fp_ip_log_set: %d,%d,%d, buf=%x, size=%d\n",
flag, num, fp_ip_log_index,
(unsigned int)fp_ip_log_buf,
num*ONE_IP_LOG_LEN);
} else {
pr_err(" fp_ip_log_set: buffer has been allocated:%d\n",
fp_ip_log_pkt_num);
}
fp_ip_log_pkt_num = num;
fp_ip_log_en = flag;
break;
case 2:
old_flag = fp_ip_log_en;
pr_err("fp_ip_log_set: output buf to file(tmp/iplog.txt):\
old_flag=%d index=%d\n",
old_flag, fp_ip_log_index);
fp_ip_log_en = 2;
/*Don't delete this part of code. It's for reference on data structure
{
char* pex_log_pos;
unsigned int* ptime_h;
unsigned int* ptime_l;
unsigned short* pver;
unsigned short* ppro;
unsigned short* plen;
unsigned int* psadd;
unsigned int* pdadd;
unsigned short* psport;
unsigned short* pdport;
unsigned int* pseq;
unsigned int* pack_seq;
int i;
for (i = 0; i < 2; i++) {
pex_log_pos = fp_ip_log_buf+i*ONE_IP_LOG_LEN;
ptime_h = (unsigned int*)pex_log_pos;
pex_log_pos +=4;
ptime_l = (unsigned int*)pex_log_pos;
pex_log_pos +=4;
pver = (unsigned short*)pex_log_pos;
pex_log_pos +=2;
ppro = (unsigned short*)pex_log_pos;
pex_log_pos +=2;
plen = (unsigned short*)pex_log_pos;
pex_log_pos +=4;
psadd = (unsigned int*)pex_log_pos;
pex_log_pos += 16;
pdadd = (unsigned int*) pex_log_pos;
pex_log_pos+=16;
psport = (unsigned short*) pex_log_pos;
pex_log_pos +=2;
pdport = (unsigned short*) pex_log_pos;
pex_log_pos+=2;
pseq = (unsigned int*)pex_log_pos;
pex_log_pos +=4;
pack_seq =(unsigned int*)pex_log_pos;
pr_err("Time:%x %x, ver*pro:%x, pid:%x, len:%x,
sadd:%x, dadd:%x, sport:%x, dport:%x,
seq;%x, ack_seq:%x\n",
*ptime_h, *ptime_l, *pver, *ppro, *plen,
*psadd, *pdadd, *psport, *pdport,
*pseq, *pack_seq);
}
}
*/
filep = filp_open("/tmp/iplog.bin", O_RDWR|O_CREAT, 0644);
if (IS_ERR(filep)) {
pr_err("fp_ip_log_set: fail to open IP log file\n");
} else {
old_fs = get_fs();
set_fs(KERNEL_DS);
filep->f_pos = 0;
ret = filep->f_op->write(filep, fp_ip_log_buf,
ONE_IP_LOG_LEN*fp_ip_log_pkt_num,
&filep->f_pos);
set_fs(old_fs);
pr_err("fp_ip_log_set: write to /tmp/iplog.bin, ret=%d\n",
ret);
}
filp_close(filep, NULL);
fp_ip_log_en = old_flag;
break;
case 3:
fp_ip_log_en = flag;
if (fp_ip_log_buf != NULL) {
kfree(fp_ip_log_buf);
pr_err("fp_ip_log_set: free the buffer\n");
fp_ip_log_buf = NULL;
} else {
pr_err("fp_ip_log_set: buffer is NULL\n");
}
break;
default:
fp_ip_log_en = flag;
pr_err("fp_ip_log_set: not support this command:\
%d, but the log will stop\n", flag);
break;
}
return count;
}
static ssize_t fp_ip_log_get(struct fastpath_module *m, char *buf)
{
int flag = fp_ip_log_en;
int num = fp_ip_log_pkt_num;
return sprintf(buf, "%d,%d buf=%x\n",
flag,
num,
(unsigned int)fp_ip_log_buf);
}
static FP_ATTR(fp_acct_flag, S_IRUGO|S_IWUSR, fp_acct_get, fp_acct_set);
static FP_ATTR(fp_ip_log, S_IRUGO|S_IWUSR, fp_ip_log_get, fp_ip_log_set);
static FP_ATTR(stats, S_IRUGO|S_IWUSR, stats_show, stats_clear);
static struct attribute *fp_classifier_attrs[] = {
&fp_attr_stats.attr,
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 3, 0)
&fp_attr_udp_ct_timeout.attr,
&fp_attr_tcp_ct_timeout.attr,
#endif
&fp_attr_fp_acct_flag.attr,
&fp_attr_fp_ip_log.attr,
NULL, /* need to NULL terminate the list of attributes */
};
static void fp_classifier_release(struct kobject *kobj)
{
struct fastpath_module *module = to_fpmod(kobj);
pr_debug("fp_classifier released\n");
kfree(module);
}
static struct kobj_type ktype_classifier = {
.sysfs_ops = &fp_sysfs_ops,
.default_attrs = fp_classifier_attrs,
.release = fp_classifier_release,
};
static int fp_classifier_probe(struct fastpath_module *module)
{
int ret;
module->priv = NULL;
snprintf(module->name, sizeof(module->name), "fp_classifier");
kobject_init(&module->kobj, &ktype_classifier);
ret = kobject_add(&module->kobj, module->fastpath->kobj, "%s", module->name);
if (ret < 0) {
pr_err("kobject_add failed (%d)\n", ret);
kobject_put(&module->kobj);
return ret;
}
kobject_uevent(&module->kobj, KOBJ_ADD);
pr_debug("fp_classifier probed\n");
return 0;
}
static int fp_classifier_remove(struct fastpath_module *module)
{
kobject_put(&module->kobj);
pr_debug("fp_classifier removed\n");
return 0;
}
struct fastpath_module_ops fp_classifier_ops = {
.probe = fp_classifier_probe,
.remove = fp_classifier_remove,
};